
energies

Article

Smart Building: Use of the Artificial Neural Network
Approach for Indoor Temperature Forecasting

Nivine Attoue 1, Isam Shahrour 1,2,* and Rafic Younes 3 ID

1 Laboratory of Civil Engineering and Geo-Environment, Lille University, 59650 Villeneuve d’Ascq, France;
nivine.attoue@gmail.com

2 School of Civil Engineering, Tongji University, Shanghai 200092, China
3 Modeling Center, Lebanese University, Hadath 99000, Lebanon; ryounes@ul.edu.lb
* Correspondence: isam.shahrour@univ-lille1.fr; Tel.: +33-320434545

Received: 6 January 2018; Accepted: 7 February 2018; Published: 8 February 2018

Abstract: The smart building concept aims to use smart technology to reduce energy consumption,
as well as to improve comfort conditions and users’ satisfaction. It is based on the use of smart sensors
and software to follow both outdoor and indoor conditions for the control of comfort, and security
devices for the optimization of energy consumption. This paper presents a data-based model for
indoor temperature forecasting, which could be used for the optimization of energy device use.
The model is based on an artificial neural network (ANN), which is validated on data recorded in an
old building. The novelty of this work consists of the methodology proposed for the development of
a simplified model for indoor temperature forecasting. This methodology is based on the selection of
pertinent input parameters after a relevance analysis of a large set of input parameters, including solar
radiation outdoor temperature history, outdoor humidity, indoor facade temperature, and humidity.
It shows that an ANN-based model using outdoor and facade temperature sensors provides good
forecasting of indoor temperatures. This model can be easily used in the optimal regulation of
buildings’ energy devices.

Keywords: smart building; artificial neural network (ANN); indoor; temperature; facade; outdoor;
forecasting; relevance; sensors; recorded data

1. Introduction

The smart building concept aims to use smart technology to reduce energy consumption, as well
as to improve comfort and users’ satisfaction. Forecasting of the indoor temperature is necessary for
the regulation of energy devices to ensure occupant comfort, as well as for energy optimization [1,2].
This forecasting constitutes a complex task, because it is governed by complex physical and behavioral
phenomena. It is affected by a multitude of parameters, which could be classified into three groups:
outdoor conditions, building characteristics, and occupants’ behavior [3–5]. In addition, investigations
showed that the indoor temperature does not have uniform distribution [6].

Indoor temperature forecasting could be carried out using physical or data-driven approaches [7].
The physical approach is based on the use of numerical modelling [8,9], which requires detailed
information about a building’s characteristics, appliances, and occupant behavior.

The data-driven approach is based on the use of collected data for developing relationships
(models) between ‘input’ parameters and ‘output’ parameters. These relationships could be established
by learning from collected data. The artificial neural network (ANN) approach was used to build
data-driven models [10–12]. Soleimani-Mohseni et al. [13] showed that the operative temperature
could be well estimated by the ANN approach using the indoor air temperature, electrical power,
outdoor temperature, time of day, wall temperature, and ventilation flow rate. Lu and Viljanen [14]
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used the ANN approach to predict air temperature and relative humidity in a test room using indoor
and outdoor temperature and humidity. Recently, Zabada and Shahrour [15] used the ANN approach
for the analysis of the heating expenses in social housing. In these works, the ANN model was used
as a prediction tool for specific cases. This paper proposes a methodology, which could be followed
for the use of the ANN approach for the indoor temperature forecasting in any type of building.
This methodology is based on the use of a relevance analysis for the determination of pertinent input
parameters and the optimal ANN architecture. The methodology is presented through its application
on data recorded in an old building.

2. Data Collection

Data were collected using a smart monitoring of an old building of Polytech’Lille Engineering
School in the north of France. Monitoring concerned indoor and outdoor temperature and humidity,
as well as solar radiation [16,17]. Parameters were recorded at five-minute intervals and then sent
to a local server. Figure 1 illustrates an example of recorded data on a summer day. Data concerns
the outdoor temperature, as well as the indoor temperature at three locations in the office: facade,
center of the lateral wall, and office center. The external temperature varied between 17.5 ◦C and 34 ◦C,
while the facade indoor temperature varied between 21 ◦C and 25.5 ◦C. The temperatures at the center
of the office and the center of the lateral wall varied between 22 ◦C and 24.2 ◦C.

Data were collected for two summer months (June and July) in different offices of the building.

Figure 1. Temperature variation on a summer day.

3. Artificial Neural Network Approach

The ANN approach is inspired from the ability of the human brain to predict patterns based on
learning and recalling processes. It allows the construction of relationships between input parameters
and output parameters using artificial neurons, which are arranged in an input layer, an output layer
and one or more hidden layers [18]. Analyses were conducted using the multilayer back-propagation
neural network. We used a three-layer ANN with n, m, and k as the number of input, hidden,
and output nodes, respectively, based on the equation:

Yk = S(∑m
j=1 Wjk × S(∑n

i=1 WijXi)), (1)

where Yk stands for the output values and Xi denotes the input values; Wij gives the weights of
connection between the input layer and the hidden layer.
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The ANN performances could be evaluated using the mean square error (MSE) and the coefficient
of correlation (R)

MSE = ∑n
i=1 (

e2
i

N
), (2)

R = ±

√√√√ ∑N
i=1 (Yi − X )

2

∑N
i=1 (Xi − X )

2 =

√√√√1 − ∑N
i=1 (ei )

2

∑N
i=1 (Xi − X )

2 (3)

where ei is the error between the ANN output (Yi) and the experimental input (Xi), X represents the
mean of the input target.

Different ANN architectures exist. The multilayer perception (MLP) structure is the most
popular [19–24]. Its use with a single hidden layer and a sufficient number of neurons provided
good accuracy for the approximated function [25,26]. This architecture is used in this work.

The use of ANN for temperature forecasting aims to predict the building indoor temperature for
the optimal regulation of energy devices as well as for ensuring occupants’ comfort. Indoor conditions
of a building are highly affected by its age and thermal performance, which depends on its envelope
and construction material. The input parameters concern the outdoor conditions, indoor conditions,
as well as the occupants’ behavior. The forecasting time depends on the building thermal inertia
and energy regulation system. Each building is characterized by its time lag and the time of heat
transmission delay [27–30]. The prediction time for ANN models ranged from 0.5 to 4 h to cover the
phase of heating exchange through the facade and to investigate the effectiveness of this approach.

This paper proposes a methodology composed of two steps for the use of the ANN approach
for indoor temperature forecasting. The first step concerns the indoor facade temperature forecasting
considering outdoor and indoor conditions, while the second step concerns the prediction of the
temperature at the room center considering the indoor facade temperature.

Analyses were conducted using MATLAB (Mathworks Inc., Natick, MA, USA—Group License)
for ANN modeling and IBM SPSS statistics for input parameter ranking.

4. Facade Indoor Temperature Forecasting

4.1. Analysis of the Input Parameters’ Relevance

The input parameters used in the global analysis are summarized in Table 1. They concern the
outdoor conditions (temperature, humidity, and solar radiation), outdoor temperature history (input
matrix for the last 3-h values having 30 min lag between its different columns: if the actual outdoor
temperature was recorded at time t, the history matrix corresponds to t—0.5 h, t—1 h, t—1.5 h, t—2 h,
t—2.5 h, and t—3 h, the indoor facade temperature history (similar matrix history as the outdoor
temperature), and time (cumulative minutes of the day). The time range of history inputs was chosen
with respect to the prediction time to cover the phase shift that will occur at the facade level. The impact
of a larger range (t—5 h, t—6 h, etc.) for the history inputs did not affect the results. A 30 min lag was
chosen to detect any sudden variation at the facade level.

Table 1. Input parameters for the facade temperature forecasting.

Input Parameters

Outdoor temperature
Outdoor humidity

Solar radiation
Outdoor temperature history

Time
Facade temperature history
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The ANN optimal architecture (Figure 2) was fixed after several comparative analyses. It includes
one hidden layer with four neurons. Table 2 provides the weights of neurons’ connections obtained
from MATLAB software. We can observe that the weight could be negative or positive providing
excitatory or inhibitory influence on each input.

Figure 2. Artificial Neural Network (ANN) optimal architecture.

Table 2. Weight of neurons’ connections.

Input Parameters Neuron 1 Neuron 2 Neuron 3 Neuron 4

Time 2.59 0.02 1.46 –0.02

Outdoor temperature 1.13 –1.25 –0.05 1.32

History of outdoor temperature

2.55 1.65 –0.93 –1.60
1.79 –1.05 –1.66 0.93
2.67 0.62 –2.02 –0.64
–1.11 –0.95 0.17 0.92
–1.21 0.21 –0.54 –0.27
0.86 –0.02 0.23 0.06

History of facade temperature

–2.65 –0.72 –2.76 1.43
–3.00 0.90 –1.58 –1.12
–1.04 0.50 –1.20 –0.38
–0.26 0.61 –1.18 –0.57
0.50 –0.31 –0.13 0.33
–0.34 0.07 –1.10 –0.12

Solar radiation 1.27 0.23 3.52 –0.22

Outdoor humidity 0.01 –0.10 –0.43 0.09

Figure 3 shows comparison of ‘predicted’ and ‘recorded’ facade temperatures. We observe a good
agreement between these values with R = 0.9967 and MSE = 0.0277. This result shows that the
ANN model predicts well the facade indoor temperature. The determination of input parameters
requires two temperature sensors (outdoor and indoor), an external humidity sensor, and a solar
radiation sensor.
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Figure 3. Predicted and recorded facade temperatures: (a) variation of both temperatures in time
domain; and (b) the predicted facade temperature with the recorded facade temperature.

In order to determine the most important input parameters in the ANN model, IBM SPSS statistical
software was used to analyze the ‘importance’ of these parameters. This software is based on inferential
statistics. It uses recorded data to perform a sensitivity analysis for the determination of the importance
of each input parameter. Table 3 summarizes the obtained results. It shows that the solar radiation,
time and humidity have a low role in the forecasting model, with an importance factor lower than
5.1%. The outdoor temperature has the highest importance (Importance Factor = 42%), followed by
the historical facade temperature (Importance Factor = 31.9%). The historical outdoor temperature has
an intermediate influence with an Importance Factor = 12.8%.

Table 3. Analysis of the relevance of input parameters.

Parameter Importance Factor (%)

Solar radiation 3.7
Time 4.5

Humidity 5.1
Historic outdoor temperature 12.8
Historic facade temperature 31.9

Outdoor temperature 42.0

Since the role of some input parameters in the ANN model is very weak (with reference to the
SPSS classification), analyses were conducted by neglecting these parameters. Table 4 summarizes the
results of these analyses. It shows clearly that the neglect of solar radiation, humidity, and historical
outdoor temperature (Model 5) does not significantly deteriorate the quality of the ANN model:
the mean square error (MSE) increases from 0.0277 to 0.0365, while the coefficient of correlation (R)
decreases from 0.9967 to 0.9959. The additional neglect of the historical data of the facade temperature
(Model 6) has a higher influence: MSE increases from 0.0277 to 0.4922, while R decreases from 0.9967
to 0.946. Figure 4 illustrates the results of Models 1, 5, and 6. As expected and according to the physics
of the heat transfer in transient conditions, this result shows that the facade temperature could be
effectively predicted in considering only the outdoor temperature and the historical data of the facade
indoor temperature.
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Figure 4. R results for different models: (a) Model 1; (b) Model 5; and (c) Model 6.

Table 4. Degraded model results.

Model Input Parameter R MSE

1 Outdoor temperature and history, outdoor humidity,
sun radiation, time, facade history 0.9967 0.0277

2 Outdoor temperature, historic, outdoor humidity, time,
facade history 0.99687 0.03

3 Outdoor temperature, historic, outdoor humidity,
facade history 0.9969 0.0269

4 Outdoor temperature, historic, facade history 0.9975 0.0199

5 Outdoor temperature, facade history 0.9959 0.0365

6 Outdoor temperature 0.946 0.4922

4.2. Facade Temperature Forecasting Model

4.2.1. Use of the Outdoor Temperature as Input Parameter

Considering the results of the previous section, the outdoor temperature is first used as the
input parameter for forecasting the facade indoor temperature. The forecasting model provides the
temperature at 0.5, 1, 2, and 4 h.

Figures 5 and 6 show the forecasting results at 0.5 and 1.0 h. We observe that the ANN model
reproduces well the recorded temperature. For 0.5-h forecasting, R is equal to 0.956 and MSE is equal to
0.4369; while for one-hour forecasting, R = 0.928 and MSE = 0.48454. Figure 7 shows the forecasting error
distribution for 0.5 and one hour. It shows that about 90% of the forecasting error are less than 1 ◦C.

Figures 8 and 9 shows the forecasting results at two and four hours. We observe a deterioration
in the quality of forecasting regarding those obtained at 0.5 and one hour. For two-hour forecasting,
R = 0.9109 and MSE = 0.89078, while for four-hour forecasting, R = 0.8370 and MSE = 1.23783. Figure 10
shows the forecasting error distribution for two and four hours. It shows that for the former, about 70%
of the forecasting error are less than 1 ◦C, while for the latter about 64% of the forecasting error are less
than 1 ◦C. Table 5 summarizes the forecasting results.
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Figure 5. Recorded and predicted facade temperature variation in the time domain: (a) prediction for
0.5 h; and (b) prediction for 1 h.

Figure 6. Predicted facade temperature with the recorded facade temperature (input parameter =
outdoor temperature): (a) prediction for 0.5 h; and (b) prediction for 1 h.

Figure 7. Distribution of the error forecasting (input parameter = outdoor temperature): (a) prediction
for 0.5 h; and (b) prediction for 1 h.
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Figure 8. Recorded and predicted facade temperature variation in the time domain: (a) prediction for
2 h; (b) prediction for 4 h.

Figure 9. Predicted facade temperature with the recorded facade temperature (input parameter =
outdoor temperature): (a) prediction for 2 h; and (b) prediction for 4 h.

Figure 10. Distribution of error forecasting (input parameter = outdoor temperature): (a) prediction for
2 h; and (b) prediction for 4 h.
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Table 5. Performances of the forecasting models (input parameter = outdoor temperature)

Model Time R MSE

1 +0.5 h 0.9560 0.436900
2 +1 h 0.9528 0.484594
3 +2 h 0.9109 0.89078
4 +4 h 0.8370 1.23783

4.2.2. Use of the Outdoor Temperature and the History of the Facade Temperature as Input Parameters

In this section, both outdoor temperature and three-hour facade temperature history are used as
input parameters in the forecasting model. The forecasting model provides the temperature at 0.5, 1, 2,
and 4 h. Table 6 summarizes the obtained results. The temperature forecasting is improved regarding
the forecasting model using the outdoor temperature as input. This result is particularly interesting for
the temperature foresting at two hours: R = 0.957 and MSE = 0.3299 to be compared with R = 0.9109
and MSE = 0.89078 obtained with the outdoor temperature as input parameter. Figure 11 shows the
forecasting error distribution for two hours. It shows that about 88% of the forecasting error are less
than 1 ◦C to be compared with 70% obtained with the previous model.

The four-hour foresting is still weak with R = 0.852; MSE = 1.0533. About 68% of the forecasting
error are less than 1 ◦C (Figure 11).

Figure 11. Distribution of error forecasting (input parameter = outdoor temperature and 3-h facade
temperature): (a) prediction for 2 h; and (b) prediction for 4 h.

Table 6. Performances of the forecasting models (input parameters = outdoor temperature and
three-hour facade temperature)

Model Time R MSE

1 +0.5 h 0.992 0.0701
2 +1 h 0.982 0.1515
3 +2 h 0.957 0.3299
4 +4 h 0.852 1.0533

4.3. Indoor Temperature Forecasting (Room Center)

The ANN approach is used for forecasting the temperature at the room center considering
only the facade temperature as input parameter. Figure 12 shows a comparison of ‘predicted’ and
‘recorded’ indoor temperatures. A good agreement is observed between recorded temperature and
ANN prediction with R = 0.951; MSE = 0.1679. Only 1% of data has an error greater than 1 ◦C
(Figure 13).



Energies 2018, 11, 395 10 of 12

Figure 12. Predicted and recorded indoor temperatures: (a) the variation of both temperatures in time
domain; and (b) the predicted indoor temperature with the recorded indoor temperature.

Figure 13. Distribution of error forecasting for indoor temperature (input parameters = facade
temperature).

5. Discussion of Results

Relevance analysis and ANN modeling using different sets of input parameters showed that the
indoor temperature forecasting could be conducted with good precision considering only outdoor
temperature and indoor facade temperature history. Indeed, the influence of solar radiation, humidity,
and outdoor temperature history in the forecasting model could be neglected. The prediction of the
facade temperature was conducted with different inputs parameters and for different forecasting
times. In the example presented in this paper, predictions were good up to two hours. The four-hour
prediction gave unsatisfactory results with R = 0.852; MSE = 1.0533.

Indoor temperature forecasting was successfully conducted using the facade temperature.
Available data did not include indoor activities. The presence of significant indoor activities—such as
meetings, use of energy consuming devices, as well as opening doors and windows—could
significantly affect the energy balance in the room. If these activities are significant, they should
be monitored and included in the forecasting model.

6. Conclusions

This paper proposed a methodology for the development of a simplified ANN-based model for
forecasting indoor temperature. The methodology includes two steps. The first step concerns the
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forecasting of the indoor facade temperature considering outdoor and indoor conditions, while the
second step concerns the prediction of the temperature at the room center considering only the indoor
facade temperature.

This paper shows that both relevance analysis and the use of different sets of input parameters
could lead to a simplified forecasting model with restricted input parameters. This methodology
was illustrated through its application to data collected in an old building. Data included outdoor
and indoor temperature and humidity, as well as solar radiation. Analyses showed that two-hour
facade temperature forecasting could be conducted with good precision using only the outdoor
temperature and three-hour facade temperature history. This result could not be generalized. However,
the proposed methodology could be used for other situations by using first only temperature sensors
for measuring the outdoor and the indoor facade temperatures. Concerning the second step, the ANN
model gave good forecasting of the temperature at the room center in considering only the facade
temperature. Available data did not include indoor activities. The presence of significant indoor
activities should be considered in the forecasting model.
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