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Abstract: In a matrix converter, the frequencies of output voltage harmonics are related to the
frequencies of input, output, and carrier signals, which are independent of each other. This nature
may cause an inaccurate harmonic spectrum when using conventional analytical methods, such as
fast Fourier transform (FFT) and the double Fourier analysis. Based on triple Fourier series, this paper
proposes a method to pinpoint harmonic components of output voltages of an ultra sparse matrix
converter (USMC) under space vector pulse width modulation (SVPWM) strategy. Amplitudes and
frequencies of harmonic components are determined precisely for the first time, and the distribution
pattern of harmonics can be observed directly from the analytical results. The conclusions drawn in
this paper may contribute to the analysis of harmonic characteristics and serve as a reference for the
harmonic suppression of USMC. Besides, the proposed method is also applicable to other types of
matrix converters.

Keywords: ultra sparse matrix converter (USMC); space vector pulse width modulations (SVPWM);
triple fourier series; harmonic analysis

1. Introduction

The ultra-sparse matrix converter (USMC) evolved from the conventional matrix converter (CMC)
and inherited many merits from CMC including compact structure without intermediate storage,
sinusoidal input and output current, adjustable input power factor, etc. Meanwhile, USMC possesses
superiorities over CMC, such as simpler commutation technology, a decrease in number of switches,
etc. Currently, USMC is considered as a promising type of matrix converter [1–4].

As an AC–AC power converter, the primary task of USMC is to obtain a sinusoidal output
waveform with high quality. However, due to the characteristics of the power device and the
modulation methods, the output voltages of USMC inevitably contain harmonic components, thus
negatively impacting the practical application. Therefore, it is very important to analyze the harmonic
components in the output waveform of USMC, which not only lays the foundation for the suppression
of the harmonics but also improves the theory concerning matrix converter harmonic analysis.

Up to now, there are some studies on the harmonic analysis of power electronics converters.
Among them, fast Fourier transform (FFT) analysis is the most commonly used one [5–8]. It is simple
and easy to implement. However, FFT involves sampling and window etc. in the processing, which
will incur spectrum leakage, aliasing, and other issues. Therefore, when the frequencies of input,
output and carrier signals are special, the results of FFT analysis are not accurate. Another commonly
used method is calculating the analytical formula with Fourier series. In 1975, S. Bayes and B.M. Bird
first applied the double Fourier analysis method to power electronic converters which were originally
used in the communication system [9]. Since then, the studies on harmonic analytic solution have
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mostly concentrated on the double Fourier analysis. For example, the harmonic analytical formulas
of output voltage of two-level inverter are derived in [10] by using double Fourier analysis and then
a comparison about the high-frequency harmonics is carried out when using saw-tooth carrier and
triangular carrier in modulation process. In [11], Jacobi matrix is used to find the closed solution of
the double Fourier series; and the characteristics of output voltage of the inverter under different
space vector pulse width modulation (SVPWM) are compared. In [12] the output voltage harmonics
of inverters with different topologies under various modulation methods are analyzed in detail by
double Fourier analysis.

Like CMC, the output voltage of USMC is related to the frequencies of input, output and carrier
signals, which are independent of each other. If using double Fourier series analysis, only two of
these frequencies are considered at most, resulting in inaccurate spectral analytic results. In view of
this problem, some scholars have tried to use triple Fourier series to analyze the harmonic of output
waveform for CMC under “AV method” [13,14]. However, due to some differences in the topology
and control performance between USMC and CMC, a mature harmonic analysis theory for USMC
has yet to emerge. Compared with “AV method”, SVPWM not only increases the maximum voltage
transmission ratio from 0.5 to 0.866, but also achieves digitization easily. As a result, SVPWM is
currently widely applied [15–17]. Therefore, for USMC, the harmonic analysis of output voltage under
SVPWM is of important significance.

In this paper, based on the characteristics of SVPWM and triple Fourier series, an output voltage
harmonic calculation method for USMC is proposed, which can obtain an accurate harmonic spectrum
and identify the relations between the frequencies of harmonic components and the frequencies
of input, output and carrier signals. In addition, the harmonic distribution pattern and the main
harmonic components of output voltage of USMC are analyzed and summarized according to the
analytical results.

2. Triple Fourier Series

It is assumed that the three-variable function g(x, y, z) is periodic in x, y, and z directions with
the period of 2π, x, y and z being independent of each other. The triple Fourier series expression of
g(x, y, z) can be defined by the following:

g(x, y, z) =
+∞

∑
k=−∞

+∞

∑
p=−∞

+∞

∑
q=−∞

Fkpqej(kx+py+qz) (1)

where k, p, q are indices on the carrier frequency, output frequency and input frequency respectively;
Fkpq is the triple Fourier coefficient and its expression is

Fkpq =
1

8π3

∫ ∫ ∫ 2π

0
g(x, y, z)e−j(kx+py+qz)dxdydz (2)

Let x = 2πf ct, y = 2πf outt + φ0, z = 2πf int + φi then Equation (1) can be regarded as the output
voltage expression of any phase of USMC.; f c, f out and f in are respectively carrier frequency, output
voltage frequency and input voltage frequency of USMC; φi is the input power factor angle; φ0 is the
output voltage initial phase. In most applications, USMC is required to operate with unit power factor,
so φi = 0. When φo is not zero, the integration limits of Equation (2) should be adjusted. Since the
integrand g(x, y, z) is periodic in x, y, and z directions with the period of 2π, the integration results
would not be affected by the specific values of the integral limits as long as the periodic variation of x,
y and z over 2π intervals. Therefore, whether φ0 is zero does not have any effects on the calculation
results. To simplify calculation, it is assumed that φ0 = 0.
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Expending Equation (1) and it can be expressed in the following form:

g(x, y, z) = A000
2 +



+∞
∑

k=1
[Ak00 cos(kx) + Bk00 cos(kx)]+

+∞
∑

p=1

[
A0p0 cos(py) + B0p0 cos(py)

]
+

+∞
∑

q=1

[
A00q cos(qz) + B00q cos(qz)

]



+



+∞
∑

k=1

+∞
∑

p = −∞
p 6= 0

[Akp0 cos(kx + py) + Bkp0 sin(kx + py)] +

+∞
∑

p=1

+∞
∑

q = −∞
q 6= 0

[
A0pq cos(py + qz) + B0pq sin(py + qz)

]
+

+∞
∑

k=1

+∞
∑

q = −∞
q 6= 0

[Ak0q cos(kx + qz) + Bk0q sin(kx + qz)]


+

+∞
∑

k=1

+∞
∑

p = −∞
p 6= 0

+∞
∑

q = −∞
q 6= 0

[
Akpq cos(kx + py + qz)+

Bkpq sin(kx + py + qz)

]

(3)

In Equation (3) harmonic components are divided into four parts: the first part is the DC
component (k = 0, p = 0, q = 0); the second part is the fundamental voltage (k = 0, p = 1, q = 0)
and harmonic components only associated with the carrier frequency (when k = 1, 2, 3, . . . , p = 0,
q = 0), the input frequency (when k = 0, p = 0, q = 1, 2, 3, . . . ) or the output frequency (k = 0, p = 2,
3 . . . , q = 0) respectively; the third part is the harmonic components related to any two of the three
frequencies(input, output, and carrier frequencies), and their frequencies are the sum of the integral
multiple of the two frequencies; the fourth part is the harmonic components relevant to the three
frequencies, and their frequencies are sums of the integral multiples of the three frequencies.

According to the Fourier analysis theory, the frequency of any harmonic is kf c ± pf out ± qf in and
the harmonic amplitude Ukpq satisfies the following relationship with Fkpq:

Ukpq = 2
∣∣∣Fkpq

∣∣∣ (4)

3. Harmonic Calculation of Output Voltage of USMC Under SVPWM Strategy

3.1. SVPWM

The topology of USMC is shown in Figure 1, which is divided into two stages, the rectifier
stage and the inverter stage. There are three phases in rectifier stage, each of which consists of one
unidirectional IGBT and four diodes. The inverter stage has the same structure as the traditional
two-level voltage source inverter.
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The SVPWM strategy of rectifier stage is shown in Figure 2a, in which the six effective vectors
I1–I6 divide the space into six sectors. Taking I1(a, c) as an example, “a” represents that Sa and Sc are
on-state, while Sb is off-state. In each sector, there is always one phase remaining the maximum current
amplitude in the rectifier stage. In order to obtain the maximum voltage utilization, the switching
device corresponding to maximum current amplitude is kept open, and the other two switches are
switched on alternately. The duty cycles of the two adjacent effective vectors required to synthesize
the reference input current vector Iref can be obtained by the following equation:

dm =
sin[π3 −z−π

6 +
π
3 (kin−1)]

cos[z−π
3 (kin−1)]

dn =
sin[z+π

6 −
π
3 (kin−1)]

cos[z−π
3 (kin−1)]

(5)

where kin is the sector number of the reference input current vector.
When Iref is in the first sector, the expression of average DC voltage udc in a carrier cycle is as follows:

udc = dmuab + dnuac =
3Uim

2 cos z
(6)

where uab and uac are input line voltage, uab =
√

3Uimcos(z + π/6), uac =
√

3Uimcos(z − π/6); Uim is
the amplitude of input phase voltage.
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Figure 2. The space vector modulation strategy of Ultra Sparse matrix converter (a) rectifier stage
(b) inverter stage.

Similarly, when Iref is in other sectors, the values of udc and the duty cycles da, db and dc of the
switches Sa, Sb and Sc can be obtained as shown in Table 1.
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Table 1. The expression of da, db, and dc when Iref in diffirent vectors.

z kin da db dc udc

[−π/6,π/6) 1 1 dm dn 3Uim/2cosz
[π/6,π/2) 2 dm dn 1 −3Uim/2cos(z + 2π/3)
[π/2,5π/6) 3 dn 1 dm 3Uim/2cos(z − 2π/3)

[5π/6,7π/6) 4 1 dm dn −3Uim/2cosz
[7π/6,3π/2) 5 dm dn 1 3Uim/2cos(z + 2π/3)
[3π/2,11π/6) 6 dn 1 dm −3Uim/2cos(z − 2π/3)

Figure 2b shows the SVPWM strategy of inverter stage, in which the six effective vectors V1–V6

divide the space vector into six sectors. Taking V1(1, 0, 0) as an example, “1” means that SpA is on-state
in the upper bridge arm of phase A; and the second and third bits “0” represent that SNB and SNC are
turned on in the lower bridge arm of phase B and phase C respectively. The duty cycles of the two
adjacent effective vectors and zero vectors required to synthesize the reference output voltage vector
Vref can be obtained by the following equation:

d1 =
√

3Uref
udc

sin
[
π
3 − y + π

3 (kout − 1)
]

d2 =
√

3Uref
udc

sin
[
y− π

3 (kout − 1)
]

d0 = 1− d1 − d2

(7)

where kout is the sector number of the reference output voltage vector, Uref is the amplitude of output
phase voltage.

The duty cycles of SPµ (µ = A, B, C) are defined as dPµ. When Vref is located in different sectors,
the values of dPµ are shown in Table 2. Since the conducting state of upper and lower bridge arm
switches in the same phase of A, B and C are complementary, the duty cycles of SPµ and SNµ satisfy
the following relationship: dNµ = 1 − dPµ.

Table 2. The expression of dPµ when Vref is in different vectors.

y kout dPA dPB dPC

[0,π/3) 1 (1 + d1 + d2)/2 (1 − d1 + d2)/2 (1 − d1 − d2)/2
[π/3,2π/3) 2 (1 + d1 − d2)/2 (1 + d1 + d2)/2 (1 − d1 − d2)/2

[2π/3,π) 3 (1 − d1 − d2)/2 (1 + d1 + d2)/2 (1 − d1 + d2)/2
[π,4π/3) 4 (1 − d1 − d2)/2 (1 + d1 − d2)/2 (1 + d1 + d2)/2

[4π/3,5π/3) 5 (1 − d1 + d2)/2 (1 − d1 − d2)/2 (1 + d1 + d2)/2
[5π/3,2π) 6 (1 + d1 + d2)/2 (1 − d1 − d2)/2 (1 + d1 − d2)/2

3.2. Harmonic Calculation of Output Voltage

Since the three-phase output voltages of USMC are symmetrical, the following calculation and
analysis take Phase A as an example. It can be seen from Equation (4) that the amplitude corresponding
to each harmonic can be determined by the value of Fourier coefficients. Considering the SVPWM
process, the integration limit can be redefined without altering the analytical solution, requiring only
cyclic variation of x, y and z over 2π intervals. So the expression of FA_kpq in Equation (2) can be defined
as follows:

FA_kpq =
1

8π3

∫ 11π
6

−π
6

∫ 2π

0

∫ π

−π
uAe−j(kx+py+qz)dxdydz (8)

In the operation process of USMC, uA is actually a pulse wave. Therefore, to solve Equation (8),
it is necessary to determine the trip point of the output voltage pulse and the value of uA. The following
is the process to solve various trip points of output voltage pulse based on the analysis of SVPWM
of USMC.
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When both the reference input current vector Iref and output voltage vector Vref are in the first
sector, the conduction state of each switch in one carrier period and instantaneous value of A-phase
output voltage can be determined based on the switching sequence of the rectification stage and the
inverter stage, as shown in Figure 3.Energies 2018, 11, x FOR PEER REVIEW  6 of 13 
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It should be noted that this paper is aimed at symmetrical regularly sampled SVPWM. The carrier
function c(x) used in this paper can be expressed as:

c(x) =
1
π
· arccos(cos x) , x ∈ [−π,π] (9)

Combine the duty cycle of each switch with Equation (9), and α1, α2 and α3 in Figure 3 can be
determined as follows: 

α1 = dNAdn = (1− dPA)dnπ

α2 = dnπ

α3 = (dn + dPAdm)π

(10)

When the reference vectors of input current and output voltage are located in other sectors, the
values of α1, α2 and α3 can be analyzed in a similar way. It is found that the expressions of α1, α2 and
α3 are the same when Iref and Vref are in different sectors, except that the specific values of dPA, dm and
dn are changed with kin or kout.

Based on the above analysis, Equation (8) can be further simplified as follows:

FA_kpq = FA1 + FA2 (11)

where

FA1 =
1

8π3 ∑
kin=1,3,5

6

∑
kout=1

∫ zf

zr

∫ yf

yr
D1 · e−j(py+qz)dydz (12)

FA2 =
1

8π3 ∑
kin=2,4,6

6

∑
kout=1

∫ zf

zr

∫ yf

yr
D2 · e−j(py+qz)dydz (13)

where
D1 =

∫ −α3
−π uA1e−jkxdx +

∫ −α1
−α3

uA2e−jkxdx +
∫ α1
−α1

uA3e−jkxdx

+
∫ α3

α1
uA4e−jkxdx +

∫ π
α3

uA5e−jkxdx
(14)
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D2 =
∫ −α3
−π uA1e−jkxdx +

∫ −α2
−α3

uA2e−jkxdx +
∫ −α1
−α2

uA3e−jkxdx

+
∫ α1
−α1

uA4e−jkxdx +
∫ α2

α1
uA5e−jkxdx +

∫ α3
α2

uA6e−jkxdx

+
∫ π

α3
uA7e−jkxdx

(15)

The integration limits zr and zf in Equations (12) and (13), and the values of uAλ (λ = 1–7) in
Equations (14) and (15) are related to the sector number of reference input current as shown in Table 3.;
yr and yf in Equations (12) and (13) are related to the sector number of reference output voltage,
as shown in Table 4.

Table 3. Value of uAλ, zr and zf when kin changes from 1 to 6.

kin zr zf uA1 uA2 uA3 uA4 uA5 uA6 uA7

1 −π/6 π/6 ub ua uc ua ub - -
2 π/6 π/2 uc ua ub uc ub ua uc
3 π/2 5π/6 uc ub ua ub uc - -
4 5π/6 7π/6 ua ub uc ua uc ub ua
5 7π/6 3π/2 ua uc ub uc ua - -
6 3π/2 11π/6 ub uc ua ub ua uc ub

Table 4. Value of yr and yf when kout change from 1 to 6.

kout 1 2 3 4 5 6

yr 0 π/3 2π/3 π 4π/3 5π/3
yf π/3 2π/3 π 4π/3 5π/3 2π

Based on Equations (11) and (15), the analytical solution of FA_kpq can be obtained by further
calculation in MATLAB; then the amplitude of each harmonic can be got.

4. Spectrum Analysis of Harmonic Characteristics of Output Voltage of USMC

When the voltage transmission ratio m is 0.5 (m is the ratio of Uref/Uim), the input frequency
f in is 50 Hz, the output frequency f out is 70 Hz and the carrier frequency f c is 5 kHz, the analytical
spectrums of output phase voltage uA and line voltage uAB can be obtained by the calculation formula
in Section 3. The spectrums are shown in Figure 4, where hA and hAB are normalized values based
on the fundamental amplitude of phase voltage and line voltage respectively. It can be seen that the
main harmonics are concentrated around the fundamental (k = 0) and 1 to 4 times of carrier frequency.
Enlarge part of Figure 4 and mark the main harmonic frequency, as shown in Figure 5.
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From Figure 5, it can be seen that the main components of low-frequency harmonics in output
phase voltage are 3f in and 3f out. The amplitude of 3f in is higher, which is up to 0.51 when m = 0.5.
These two components belong to the common-mode voltage, so they are not contained in line
voltage spectrum.

With respect to high-frequency harmonics, they cluster around an integer multiple of the carrier
frequency and are symmetrical about the carrier frequency. Harmonics with high amplitudes in
Figure 5 are listed in Table 5. The frequency expression of each harmonic in the table shows the relation
between the frequency of main harmonics and the frequencies of input, output and carrier signals.
Comparing the spectrum of phase voltage with line voltage, it is found that except the harmonics of
3f in and 3f out, there are other harmonic components which also belong to the common mode voltage,
as marked gray in Table 5. The amplitude of 2f c is the highest among all the harmonic components,
up to 0.93 under the condition of m = 0.5, followed by the component of f c ± 6f in with the amplitude
of 0.53. According to literature [18–20], high-frequency common-mode voltages are the main cause
of bearing damage, winding fault, electromagnetic interference. The above analysis can accurately
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describe the amplitude of these common mode voltages, thus providing reference for the suppression
of common mode voltage.

Table 5. The main harmonic components in high-frequency bands.

f (kHz) f hA (%)
3.5/6.5 f c ± 30f in 9.69
3.8/6.2 f c ± 24f in 12.74
4.1/5.9 f c ± 18f in 17.66
4.4/5.6 f c ± 12f in 27.19
4.7/5.3 f c ± 6f in 53.29

4.85/5.15 f c ± 3f in 9.70
9.63/9.77/10.23/10.37 2f c ± f out ± 6f in 15.91

9.7/10.3 2f c ± 6f in 28.08
9.86/10.14 2f c ± 2f out 11.31
9.93/10.17 2f c ± f out 28.89

10.0 2f c 93.32
14.63/14.77/15.23/15.37 3f c ± f out ± 6f in 22.98

14.7/15.3 3f c ± 6f in 22.50
19.63//19.77/20.23/20.37 4f c ± f out ± 6f in 18.21

20.0 4f c 31.13

According to Equations (11) to (15), the amplitude of each harmonic is related to the voltage
transmission ratio m. When m increases from 0.1 to 0.8, the relationship between amplitudes of main
harmonics and m can be obtained, as shown in Figure 6. The harmonics in Figure 6a are components
except for the common mode voltage in the output phase voltage. It can be seen that except the
harmonic of 2f c ± 2f out most harmonics’ amplitudes decrease when m increase. The harmonics
in Figure 6b are common mode components. When m ≤ 0.5, the amplitudes of 2f c, f c ± 6f in, 3f in

and 3f c ± 6f in, are much higher than those of other harmonics. Besides, their amplitudes decrease
rapidly with the increase of m. When m > 0.5, the amplitudes of harmonics in Figure 6b are gradually
approaching, but still decrease with the increase of m.
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From the above analysis, it can be seen that the amplitudes of high-frequency common mode
components are much higher than those of other harmonics, especially when m is low. Besides, the
harmonics’ amplitudes are affected by the value of m. Most harmonics’ amplitudes decrease gradually
with the increase of m, but a few increase.
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5. Comparative Analysis with FFT

The spectrums of the experimental waveforms cannot be obtained based on the triple Fourier
series by the existing measurement techniques and analysis tools. FFT is usually used to deal with the
experimental waveforms. Since it is very sensitive to the periodicity and frequency resolution of the
waveforms, when the frequencies of input, output and carrier signals are all integers, and the time
interval over which FFT is conducted as an integer multiple of the period of these three signals, the
results obtained by the FFT analysis are accurate. However, when the values of these three frequencies
are special (for example, the multiplicities of the three frequencies’ reciprocals are large or the three
frequencies include non-integer), it is difficult to ensure that the time is an integer multiple of the
carrier cycle, input and output voltage cycle. Under this condition, the harmonic spectrums obtained
by FFT are not accurate. The following are the examples.

The spectrums obtained by FFT on the experimental waveforms of output voltage are compared
with those analytical results based on the method proposed in this paper. Figure 7 shows the USMC
experimental system. When the amplitude of input phase voltage is 42 V and the voltage transmission
ratio m is 0.5, f in = 50 Hz, f out = 70 Hz, f c = 5 kHz. The time domain waveforms of output voltage
and their FFT results are shown in Figure 8, where Figure 8a denotes the waveform of phase voltage
uA and its FFT results and Figure 8b denotes the waveform of line voltage uAB and its FFT results.
The amplitudes of all the harmonic components in Figure 8 are the nominal value based on the
fundamental amplitude. The FFT results in Figure 8 cuts out a section of the output voltage waveform
for seven output voltage periods with a frequency resolution of 10 Hz. From the magnitudes of f in,
f out, and f c, the time corresponding to seven output voltage periods is an integer multiple of the carrier,
input and output period so the FFT results are accurate. The main harmonic components in Figure 8
are listed in Table 6 and compared with the results obtained from the analytical calculation. It can be
seen that the frequencies of primary harmonics in Figure 8 are consistent with the analytical results but
the amplitudes of them are slightly different. This is due to the existence of the switching dead-time,
the conduction voltage drop of the switching device and the ripple of the input voltage at line side.
The largest error between the measured spectrum and the theoretical results is only 3.06%.
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Table 6. The main harmonic components in Figure 8.

FFT Results Analytical Results

f (kHz) hA (%) f (kHz) hA (%)

0.15 49.54 0.15 51.51
0.21 20.73 0.21 21.51

3.5/6.5 9.56 3.5/6.5 9.69
3.8/6.2 11.69 3.8/6.2 12.74
4.1/5.9 18.18 4.1/5.9 17.66
4.4/5.6 25.72 4.4/5.6 27.19
4.7/5.3 51.07 4.7/5.3 53.29

4.85/5.15 10.17 4.85/5.15 9.70
9.63/9.77/10.23/10.77 14.50 9.63/9.77/10.23/10.77 15.90

9.7/10.3 30.40 9.7/10.3 28.06
9.86/10.14 12.14 9.86/10.14 11.31
9.93/10.07 27.45 9.93/10.07 28.89

10.0 90.26 10.0 93.32
14.63/14.77/15.23/15.37 23.07 14.63/14.77/15.23/15.37 22.98

14.7/15.3 24.36 14.7/15.3 22.50
19.63/19.77/20.23/20.37 19.07 19.63/19.77/20.23/20.37 18.21

20.00 28.20 20.00 31.13

When f in = 50 Hz, f out = 70.5 Hz, f c = 5 kHz, m = 0.5, the output voltage harmonic spectrums are
shown in Figure 9. Under this condition, at least 141 periods of output waveform has to be intercepted
to ensure the accuracy of FFT results. But the amount of data corresponding to 141 output periods
is too large to be processed. The FFT results in Figure 9 intercepted a section of the output voltage
waveform for seven output voltage periods with the frequency resolution of 10.07 Hz, it can be seen
that there exist large errors between the FFT analysis and the analytical results. However, the analytic
calculation method based on triple Fourier series in this paper is not affected by the magnitude of
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input, output and carrier frequencies. The analytical results can accurately determine the amplitudes
and frequency of each harmonic component regardless of the magnitude of the three frequencies.
In practical applications, the carrier frequency and the output frequency of USMC usually vary
according to application requirements. Therefore, the method proposed in this paper has a wider
scope of application than FFT.
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6. Conclusions

In this paper, a theoretical calculation method based on three Fourier series is proposed for USMC
under SVPWM. Taking input, output, and carrier frequencies into account, amplitudes and frequencies
of harmonic components of output voltage are determined precisely for the first time. Including both
the low-frequency harmonics and the high-frequency harmonic components, the relation between the
frequencies of harmonic components and the frequencies of input, output and carrier signals can be
determined. Through spectrum analysis in this paper, the following conclusions can be drawn:

1. The frequencies of low-frequency harmonics are triple that of the input or output frequencies.
The high-frequency harmonics are organized in sidebands and symmetrical about integer
multiples of carrier frequency.

2. The high-frequency common-mode components are kf c + 6f in, kf c, etc., whose amplitudes are
high. This feature is obvious, especially when the voltage transmission m is low.

3. The harmonic amplitudes are affected by the value of m, and most of which decrease gradually
with the increase of m, while a few decrease.
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