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Abstract: In this paper, a hierarchical optimal operation strategy for a hybrid energy storage system
(HESS) is proposed, which is suitable to be utilized in distribution networks (DNs) with high
photovoltaic (PV) penetration to achieve PV power smoothing, voltage regulation and price arbitrage.
Firstly, a fuzzy-logic based variable step-size control strategy for an ultracapacitor (UC) with the
improvement of the lifetime of UC and tracking performance is adopted to smooth PV power
fluctuations. The impact of PV forecasting errors is eliminated by adjusting the UC power in real time.
Secondly, a coordinated control strategy, which includes centralized and local controls, is proposed
for lithium-ion batteries. The centralized control is structured to determine the optimal battery
unit for voltage regulation or price arbitrage according to lithium-ion battery performance indices.
A modified lithium-ion battery aging model with better accuracy is proposed and the coupling
relationship between the lifetime and the effective capacity is also considered. Additionally, the local
control of the selected lithium-ion battery unit determines the charging/discharging power. A case
study is used to validate the operation strategy and the results show that the lifetime equilibrium
among different lithium-ion battery units can be achieved using the proposed strategy.

Keywords: hybrid energy storage system (HESS); hierarchical operation strategy; photovoltaic (PV);
fuzzy-logic; lifetime equilibrium

1. Introduction

Due to the global energy crisis and environmental concerns, the installed capacity of photovoltaics
(PVs) in distribution networks (DNs) is increasing rapidly. However, the resulting power fluctuations,
voltage violations and other issues have aroused great concern [1,2]. To deal with these problems,
energy storage systems (ESSs) have become one of the effective solutions and the hybrid energy storage
system (HESS) concept has gained considerable attention because of the complementarity of different
types of ESSs [3,4].

The optimal operation strategy of HESS in DNs is a vital and active topic. Recent literatures provide
two paths: the first path adopts mathematical optimization methods, such as non-linear programming
(NLP) [5], mixed-integer linear programming (MILP) [6], second-order cone programming (SOCP) [7],
quadratic programming (QP) [8], etc., and intelligent algorithms, such as genetic algorithm (GA) [9],
particle swarm optimization (PSO) [10], etc. For mathematical methods, more complex models and
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constraints often result in an optimization with a non-convex feasible region in which it is difficult to
guarantee the convergence to the global optimum. On the other hand, a decent sized population and
generations are usually required before obtaining good results for intelligent algorithms [11,12].

The second path adopts heuristic rules methods. Unlike optimization solvers, it is easy to
put more complex mathematical models in heuristic rules, which may lead to a more accurate
solution. Although the optimal solution is not guaranteed, due to implementation simplicity and
good performance in applications, many works have been carried out on this kind of operation strategy.
References [13–16] propose different rule-based operation strategies to smooth the renewable energy.
In [13], a rule-based control strategy for HESS including vanadium redox battery and ultracapacitor (UC)
is proposed for smoothing power fluctuations of large PV plant. The power management is designed to
increase HESS efficiency by avoiding battery operating at low power levels. In [14], a control strategy is
proposed through decoupling of different frequency power components. Battery and UC are utilized
to handle sudden changes of PV and load. Reference [15] proposes a real-time coordinated control
algorithm for HESS, which is to eliminate the different term fluctuations by using capacitor and battery.
The ramp rate and state of charge (SOC) limitations are also considered in the proposed algorithm.
In [16], a wind power filtering approach is proposed to smooth different term fluctuations with HESS.
A frequency distribution allocates wind power fluctuations to the different HESS components to satisfy
different fluctuation mitigation requirements. The rule-based operation strategies aiming at voltage
regulation are proposed in [17–21]. In [17], a coordinated control of ESS with traditional on-load tap
changer transformers to deal with the voltage problems brought by large PV is proposed. A coordinated
implementation of PV and ESS to solve the voltage violation is proposed in [18], and in urban and rural
scenarios, the reactive capability of PV and ESS is evaluated. In [19], a coordinated control strategy
including distributed control and local control is proposed for ESS. The distributed control regulates the
feeder voltages by consensus algorithm and the local control adjusts SOC of each ESS. References [18,19]
noted that DNs usually have larger R/X ratios which makes active power more effective in voltage
control. In [20], a control strategy, including centralized and decentralized control, for multiple ESSs
is proposed for voltage regulations. Reference [21] provides an investigation into the use of ESS for
network voltage regulation of a rural feeder. Three different control strategies for the ESS are proposed
in different instances. In general, current researches mostly focus on limited objectives which may
reduce the effectiveness of utilizing HESS. Moreover, the operation strategy with single objective may
lead to heavy workload of certain HESS units, eventually causing unbalanced utilization ratio among
different units and resulting in high maintenance cost.

In addition, the lifetime of lithium-ion batteries is an important indicator in the operation
strategy design with consideration of its limitations and economic issues. In recent literatures,
the cumulative throughput model is adopted to estimate the lifetime of lithium-ion battery because
of its simplicity [22,23]. However, this model ignores the influences of the charging/discharging
rate, temperature and other external factors which limits the evaluating accuracy. Some models with
better accuracy have been proposed by relevant researchers who are focusing on the mechanism of
lithium-ion battery. Reference [24] adopts a power law equation to establish a life model that accounts
for ampere-hour throughput (time), charging/discharging rate, and temperature. In [25], the authors
propose a semi-empirical lithium-ion battery degradation model by combining some fundamental
theories of the battery degradation with battery aging test results. These studies provide a good
reference and facilitate the performance improvements of the operation strategy.

In this paper, a rule-based hierarchical operation strategy of HESS, including lithium-ion batteries
and UCs, for PV power smoothing, voltage regulation, and price arbitrage is proposed. For some DNs
with large R/X ratios, the regulation effects of active power are more significant. Therefore, the active
power of HESS is mainly considered in the proposed strategy. Firstly, a fuzzy-logic based variable
step-size control strategy for UC is proposed to smooth PV power fluctuation which improves the
UC lifetime as well as the tracking performance. The impact of PV forecasting error is eliminated
by adjusting UC power in real time. Secondly, in the coordinated control for lithium-ion battery,
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centralized control selects the optimal battery unit to perform voltage regulation or price arbitrage
according to evaluation matrix considering battery performance indices such as State of Charge (SOC),
charging/discharging power, remaining lifetime, voltage sensitivity factor (VSF), and voltage cost
sensitivity factor (VCSF). The local control of the selected lithium-ion battery unit determines the
charging/discharging power. A modified battery aging model with better accuracy is proposed.
The main contributions of this paper are summarized as follows:

(1) A multi-objectives hierarchical operation strategy with consideration of PV power smoothing,
voltage regulation, and price arbitrage is proposed, which can improve the effectiveness of
utilizing HESS.

(2) A fuzzy-logic based variable step-size control strategy is designed for UC to prolong its lifetime
and improve the tracking performance simultaneously.

(3) A more accurate aging model of lithium-ion battery considering the influences of solid
electrolyte interphase (SEI) film, charging/discharging rate, temperature and other external
factors is proposed. The coupling relationship between the lifetime and the effective capacity is
also considered.

(4) Due to the consideration of lithium-ion battery lifetime and multi-objectives of HESS, the heavy
workload of certain units is avoided and the lifetime equilibrium among different battery units
is achieved.

The paper is organized as follows: Section 2 describes the mathematical models of our problem.
Section 3 introduces the hierarchical optimal operation strategy for HESS. Finally, the results of case
studies and conclusions are presented in Sections 4 and 5, respectively.

2. Mathematical Models

2.1. UC

The energy stored in UC Ec can be calculated based on its terminal voltage:

Ec = FcU2
c /2 (1)

where Fc is the capacitance of UC, and Uc is UC’s terminal voltage. The SOC of UC Sc can be expressed
as follows:

Sc =
FcU2

c /2
FcU2

c,rated/2
=

U2
c

U2
c,rated

(2)

where Uc,rated is the rated voltage of UC.
The remaining lifetime of UC Lc is also a critical indicator in the design of operation strategy,

and in practice, the cumulative throughput model is often used [26,27]:

Lc = 1− ∑|Pc∆t|
Ec,li f e

(3)

where Ec,life is the total throughput of UC lifetime, Pc is UC’s charging/discharging power, ∆t is the
charging/discharging period.

2.2. Tracking Performance Indicator

In this paper, UC is used to smooth PV power and the tracking performance indicator δ is
adopted here:

δ =

∣∣∣Pv − Pc − Pv,re f

∣∣∣
Pv,re f

× 100% (4)

where Pv is PV power, Pv,ref is the expected reference value of PV power.



Energies 2018, 11, 389 4 of 20

2.3. Lithium-Ion Battery

The relationship between capacity degradation of lithium-ion battery and cycle numbers is
non-linear. Figure 1 shows that the degradation rate is much higher during the early cycles because
of the formation of SEI film [28]. After forming a stable SEI, the degradation rate becomes steady
which mainly depends on the working conditions of the battery. Considering the influences of SEI
film, charging/discharging rate C, temperature T and other external factors, the battery remaining life
Lb can be expressed as [24,25]:

Lb = 1− αseie− fsei − (1− αsei)Be
−a1+a2C

RT ( Pb∆t
Ub,rated

)
z
/0.2Eb,rated

≈ 1− αsei − (1− αsei)Be
−a1+a2C

RT ( Pb∆t
Ub,rated

)
z
/0.2Eb,rated

(5)

where αsei is the rate of battery’s active material which is consumed to form the SEI film. fsei is a rate
related to the formation of the SEI film and e−fsei = 0 can be assumed because the process is transient.
Parameters B, a1, a2 and z are obtained from a large number of lifetime experiments. R is the gas
constant. Pb is the charging/discharging power of battery. Ub,rated is the rated voltage of battery.
Eb,rated is the rated capacity of the battery. According to the IEEE1188-1996 standard, when the capacity
loss is more than 20%, the battery has reached the end of its service lifetime.
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In general, state of health (SOH) is used to evaluate battery health state. When the battery is used
for a period of time, there will be capacity fading, and Hb can be defined as follows:

Hb =
Eaged

Eb,rated
=

Eb,rated − 0.2Eb,rated(1− Lb)

Eb,rated
= 0.8 + 0.2Lb (6)

where Eaged is the effective capacity of the battery.

2.4. Voltage Control Indicator

In this paper, lithium-ion battery is used to voltage regulation. The VSF describes the degree of
voltage changes at a specified location triggered by the variation in nodal active or reactive power.
For radial DNs, due to the focus on voltage magnitude, the sensitivity factor matrix can be simplified
as [29]:

∆Vi =
[

VSFPij VSFQij

][ ∆Pj
∆Qj

]
(7)
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where VSFPij = ∆Vi/∆Pj and VSFQij = ∆Vi/∆Qj, it means the effect of active power ∆Pj or reactive
power ∆Qj variation in nodal j to the node i voltage variation ∆Vi.

The VCSF is used to describe the cost associated with voltage control measures. The VCSF is
derived as a function of the voltage sensitivities and voltage control costs. For example, the VCSFis of
voltage control measure s to node i is defined as [30]:

VCSFis =
∆Vi
Cs

(8)

where Cs is the cost of voltage control measure s corresponding to node i voltage change ∆Vi.

2.5. HESS Profit

The price arbitrage, cost of voltage violation and profit of postpone the grid upgrading are chosen
as the HESS economic evaluation indicators. With consideration of the HESS installation, operation and
maintenance costs, and government subsidies, the HESS profit f is defined as [31,32]:

f =
365
∑

d=1

24
∑

t=1
Pgrid(t) fe(t)−

365
∑

d=1

24
∑

t=1
Pgrid,no(t) fe(t) + λd fdηPb,rated

+
365
∑

d=1

24
∑

t=1
Pb(t) fsub −

365
∑

d=1

24
∑

t=1

N
∑

i=1
Ai(t) fv

√∣∣∣Vi(t)2 −Vre f
2
∣∣∣

− λp fpPb,rated − λe feEb,rated − λc fcFc − fmPb,rated

(9)

where Pgrid and Pgrid,no are the interactive power between the DN and the main grid with and without
batteries, respectively. Pb,rated is the rated power of the battery. fe, fsub and fv are the real-time price,
the government subsidy price and the voltage violation cost coefficient, respectively. λd, λp, λe and λc are
the annual fixed assets depreciation rate of DN equipment, power conversion equipment, battery and
UC, respectively. fd, fp, fe, fc and fm are the unit capacity cost of DN equipment, power conversion
equipment, battery, UC and maintenance cost, respectively. η is the efficiency factor of the battery. N is
the total number of nodes. Vref is the node voltage reference value. Ai is a binary variable, when Vi is
within the limits, Ai = 0, otherwise Ai = 1.

3. Proposed Operation Strategy

The structure of the proposed hierarchical operation strategy of HESS is shown in Figure 2.
It includes a fuzzy-logic based variable step-size control strategy for PV power smoothing and
real-time adjustment strategy for PV forecasting error elimination in the UC, and a voltage regulation
and price arbitrage strategy for lithium-ion batteries. The UC charging/discharging power Pc and
tracking performance indicator δ calculated by PV forecasting data are the inputs of the fuzzy-logic
controller to determine UC control step-size Tc for PV power smoothing. Then UC adjusts its
charging/discharging power to eliminate the impact from the PV forecasting error in real-time control
strategy. The control commands of Pc and Tc are sent to the bidirectional converters to control the UC
unit while the SOC of UC Sc feeds back to the control strategy. For lithium-ion battery, the voltage
regulation only operates when node voltage violation occurs, otherwise the price arbitrage is preferred.
The centralized control selects the optimal battery unit according to the evaluation matrix considering
battery performance indices such as SOC, charging/discharging power, lifetime, VSF, and VCSF.
The local control of the selected unit determines its charging/discharging power and communicates
with the bidirectional converter for battery unit control. The details of the proposed strategy are
presented in the following sections.
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3.1. UC Control Strategy

An UC has the advantages of high power density, fast charging/discharging speed and long cycle
lifetime [33]. Therefore, an UC can respond flexibly and quickly on a short-time scale for smoothing
PV power fluctuation and eliminating the influence of PV forecasting error during real-time operation.
The details of the proposed operation strategy of UC can be summarized as below.

3.1.1. PV Power Smoothing

The control objective of this part is to smooth PV power fluctuation to reduce its impacts on
DNs. According to the cumulative throughput model in Equation (3), the remaining lifetime of UC
is closely related to its charging/discharging power Pc and step-size Tc. What’s more, the tracking
performance indicator δ is also affected by Tc which can be optimized to improve tracking performance
and prolong UC’s service lifetime. Therefore, a variable step-size control strategy for PV power
smoothing is proposed. Because of the difficulty to describe the logical relationship among Pc, δ and
Tc with mathematical formulas, a fuzzy-logic control is designed to adjust the step-size in this paper.

Seven fuzzy sets of the input Pc, i.e., (DH, DM, DL, ZE, CL, CM, and CH) and δ, i.e., (ZE, LS, MS,
HS, LB, MB, and HB) are designed. The output Tc has six fuzzy sets, i.e., (mf1, mf2, mf3, mf4, mf5 and
mf6). The membership functions of the inputs and output are shown in Figure 3. When δ is small,
it means the PV power injected to the grid Pv,in (Pv,in = Pv − Pc) tracks the reference value Pv,ref well.
And at this time, the step-size is chosen according to Pc. If |Pc| is large, a shorter Tc will be expected;
otherwise, a longer one. When δ is large, the quality of Pv,in should be prioritized and a smaller Tc is
expected to improve δ. The fuzzy-logic control rules are shown in Table 1.
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Table 1. Rules of fuzzy-logic control.

Sets DH DM DL ZE CL CM CH

ZE mf1 mf4 mf5 mf6 mf5 mf4 mf1
LS mf1 mf3 mf5 mf6 mf1 mf3 mf1
MS mf1 mf3 mf3 mf4 mf1 mf3 mf1
HS mf1 mf2 mf3 mf4 mf1 mf2 mf1
LB mf1 mf2 mf2 mf3 mf1 mf2 mf1
MB mf1 mf1 mf2 mf3 mf1 mf2 mf1
HB mf1 mf1 mf1 mf1 mf1 mf1 mf1

The reference value of PV power Pv,ref is calculated as below:

Pv,re f =
1
2

[
Pv,re f pre +

1
r

r

∑
t=0

Pv, f or(Tcur + t)

]
(10)

where Pv,for is the PV forecasting data, and Pv,refpre is the previous reference value of PV output. Tcur is
the current time parameter, and r is the number of Pv,for involved when calculating the reference value.

The SOC limits of UC which can be expressed as the terminal voltage limits according to
Equation (2) should also be taken into consideration. If the UC terminal voltage Uc exceeds the
limits, the UC charging/discharging power Pc,ref should be adjusted:

Pc,re f =

{
Fc(U2

c,max −U2
c )/2Tc Charging

Fc(U2
c,min −U2

c )/2Tc Discharging
(11)

where Uc,max and Uc,min are the upper and lower limits of the UC terminal voltage, respectively.

3.1.2. Real-Time Adjustment

Although the ultra-short-term forecasting can achieve high precision, with an error of 10% [34],
forecasting errors are still inevitable in real-time operation. UCs are ideal for eliminating the impact of
PV forecasting errors by adjusting their charging/discharging power due to their characteristics.
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In real-time operation, when the actual value of PV power is larger than the forecast value,
the voltage may exceed the upper limit if the UC power remains at the value given by a PV power
smoothing strategy based on PV forecasting data. To ensure the voltage security, the power of UC
should be adjusted:

Pc =

{
Pv,real − Pvin,max i f Pv,real − Pc,re f > Pvin,max

Pc,re f otherwise
(12)

where Pv,real is the actual value of PV power in real-time, and Pvin,max is the maximum value of Pv,in in PV
power smoothing strategy which is based on PV forecasting data. Pc,ref is the UC charging/discharging
power given by PV power smoothing strategy based on PV forecasting data.

3.2. Lithium-Ion Battery Control Strategy

Compared to an UC, a lithium-ion battery has high energy density which it can charge/discharge
for a long period [35]. Therefore, lithium-ion batteries are more suitable for voltage regulation and
price arbitrage because of the requirement for large energy capacity.

3.2.1. Voltage Regulation

The purpose of voltage regulation is to solve the voltage violation problems caused by high PV
penetration. The strategy includes centralized and local controls: firstly, the centralized control selects
the optimal battery unit according to the evaluation matrix considering battery performance indices
such as SOC, charging/discharging power, lifetime, VSF, and VCSF; secondly, the local control of
the selected unit determines its charging/discharging power and communicates with the centralized
control for subsequent decision-making.

(1) Centralized control: The evaluation matrix of voltage regulation AV is built as bellow:

AV = S•P•L•VSF_total•VCSF_total = S1
. . .

Sn


 P1

. . .
Pn


 L1

. . .
Ln


 VSF_total1

. . .
VSF_totaln




VCSF_total1
. . .

VCSF_totaln

 (13)

To enhance the influences of voltage regulation operation on the node voltage, the battery unit
with larger VSF is preferred to be selected. The matrix S, P is related to SOC Sb and power Pb of battery:

Sn =

{
1 Sb,min ≤ Sb ≤ Sb,max
0 Sb < Sb,min; Sb > Sb,max

(14)

Pn =

{
1 −Pb,max ≤ Pn ≤ Pb,max
0 Pn < −Pb,max; Pn > Pb,max

(15)

where Sb,min and Sb,max are the lower and upper limit of battery SOC, respectively. Pb,max is the limit of
charging/discharging power. The matrix L represents battery’s remaining life calculated by Equation
(5). VSF_total is the voltage sensitivity factor matrix, which is the weighted average of the VSF:

VSF_totaln =
k

∑
i=1

∆Vi
k
∑

i=1
∆Vi

VSFin (16)
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where k is the number of the nodes which exceed the voltage limits. ∆Vi is the voltage deviation of
node i. VSFin is the voltage sensitivity factor of the battery node n to node i. VCSF_total is the voltage
cost sensitivity factor matrix, and its calculation can refer to Equation (16):

VCSF_totaln =
k

∑
i=1

∆Vi
k
∑

i=1
∆Vi

VCSFin (17)

where VCSFin is the voltage cost sensitivity factor of battery installed at node n to node i.
(2) Local control: The local control determines its individual charging/discharging power Pb

according to VSF and node voltage as below:

Pb =
k

∑
i=1

∆Vi
k
∑

i=1
∆Vi

∆Vi
VSFi

(18)

The limits of battery SOC and charging/discharging power are used to adjust Pb calculated by
Equation (19). If battery’s SOC exceeds limits, the charging/discharging power Pb is adjusted as below:

Pb =


(Sb,max−Sb)Eb,rated

Tb
Charging

(Sb,min−Sb)Eb,rated
Tb

Discharging
(19)

where Tb is the step-size of battery. If Pb exceeds its charging/discharging power limits, it needs to
be adjusted:

Pb =

{
−Pb,max i f Pb < −Pb,max
Pb,max i f Pb > Pb,max

(20)

3.2.2. Price Arbitrage

Currently, the investment cost of lithium-ion batteries is expensive, which will greatly reduce the
utilization value if lithium-ion batteries are only applied to voltage regulation without considering the
arbitrage opportunity of time of use (TOU) price. The control objective of this part is to realize price
arbitrage by charging at the valley-price period and discharging at the peak-price period under the
premise of voltage security. Similar to voltage regulation, the centralized control builds the evaluation
matrix and selects the optimal battery unit, and the local control of the selected one determines its
charging/discharging power in price arbitrage.

(1) Centralized control: The price arbitrage evaluation matrix AE is built as bellow:

AE = S•P•L•VSF_dtotal•VCSF_total = S1
. . .

Sn


 P1

. . .
Pn


 L1

. . .
Ln


 VSF_dtotal1

. . .
VSF_dtotaln




VCSF_total1
. . .

VCSF_totaln

 (21)

To reduce the influences of price arbitrage operation on the node voltage, the battery with smaller
VSF is preferred to be selected. Therefore, the values of VSF are dual to VSF_d between 0 and 1 using
the piecewise linear function as below:

VSF_d =


1

1− VSF−VSFmin
VSFmax−VSFmin

0

VSF = VSFmin
VSFmin < VSF < VSFmax

VSF = VSFmax

(22)
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where VSFmin and VSFmax are the minimum and maximum of VSF, respectively. For the calculations
of matrix S, P, L, VSF_dtotal and VCSF_total refer to Section 3.2.1.

(2) Local control: To ensure each node voltage is within the limits, the minimum node
voltage security margin should be considered when the local controller determines its individual
charging/discharging power Pb:

Pb =

{
min |Vi−Vmax |

VSFi
Charging

−min |Vi−Vmin |
VSFi

Discharging
(23)

where Vmax and Vmin are the upper and lower limits of the node voltage, respectively. The process of
Pb adjustment can refer to Equations (19) and (20).

On basis of the proposed HESS operation strategy, the steps for implementation are shown in
Figure 4.
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Figure 4. Flowchart of implementation of the method.
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4. Case Study

The proposed strategy is tested on a rural DN with 41 buses referring to [21,36,37] which is shown
in Figure 5. The power base value is 10 MVA, the demand data are given in Table 2 and the parameters
of PV and HESS are given in Table 3. According to GB/T 12325-2008 ‘power quality and supply voltage
deviation’, 0.94–1.04 p.u. is selected as the limits of voltage deviations. The peak and valley prices are
0.5583 ¥/kWh (8:00–21:00) and 0.3583 ¥/kWh (21:00–8:00), respectively.
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13 0.001900 1.00 34 0.020425 0.95 
14 0.034675 0.95 36 0.008075 0.95 
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Table 3. Parameters of PV and HESS. 

Battery 
Location Eb,rated (p.u.) Pb,rated (p.u.) PV/UC Location Pv.rated (p.u.)/C(MF) 

4 1.948 0.2 19 0.85/0.008 
9 1.299 0.15 28 0.4/0.004 
28 0.844 0.1 40 1.03/0.010 
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In this section, five cases are carried out to verify the effectiveness of the proposed control 
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Table 2. Demand daily peak and power factors.

Bus Peak (p.u.) PF Bus Peak (p.u.) PF

4 0.641346 0.95 25 0.028975 0.95
6 0.089706 0.87 27 0.015200 0.95
8 0.318725 0.95 30 0.019475 0.95
10 0.057600 0.75 31 0.051775 0.95
13 0.001900 1.00 34 0.020425 0.95
14 0.034675 0.95 36 0.008075 0.95
22 0.004750 0.95 37 0.010450 0.95
23 0.000950 0.95 41 0.216600 0.95

Table 3. Parameters of PV and HESS.

Battery Location Eb,rated (p.u.) Pb,rated (p.u.) PV/UC Location Pv.rated (p.u.)/C(MF)

4 1.948 0.2 19 0.85/0.008
9 1.299 0.15 28 0.4/0.004
28 0.844 0.1 40 1.03/0.010
39 1.82 0.15 Sb,max/Sb,min 0.95/0.2
40 1.947 0.2 Uc,max/Uc,min(V) 390/200

In this section, five cases are carried out to verify the effectiveness of the proposed control strategy.
The length of the test period of Case 1 to Case 3 is 24 h, and the control step-size of lithium-ion battery
is 15 min. The five cases are summarized as below:
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Case 1: The control step-size of UCs is constant, e.g., 1 min, and the batteries are only used for
voltage regulation.

Case 2: The control step-size of UCs is constant, e.g., 1 min, and the batteries are used for both voltage
regulation and price arbitrage.

Case 3: The control step-size of UCs is adjusted by the fuzzy-logic control, and the operation strategy
of batteries is identical with Case 2.

Case 4: The control strategy of HESS is identical with Case 3. The fault situation, i.e., breakdown of
battery unit, is discussed to verify the robustness of the proposed control strategy.

Case 5: The influences of different battery control strategies on battery lifetime are compared in this
case and the effects of the lifetime equilibrium among different battery units are shown with
different initial lifetime states.

4.1. Case 1

In this case, the control step-size of UC is constant, e.g., 1 min, which means the
charging/discharging power of the UC Pc updates every minute according to Pv and Pref. The batteries
are only used for voltage regulation. That is, when all the node voltages are within the limits, the control
of lithium-ion battery will not be triggered.

Figure 6 shows the curves of node voltages of different cases. In Figure 6a, from 10:00 to 14:00,
the PV power is much larger than the load because of the intense solar radiation which eventually
leads to the node voltage violation. During 18:00–22:00, the PV power is zero, but the load is heavy,
so the voltage violation occurs and there are 28 nodes’ voltages violating the lower limit with the peak
load at 20:00. In Figure 6b, the voltage issues are solved by the introducing of HESS.
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Because of price arbitrage operations, the gains in Case 2 are significantly improved, and the annual 
profit is 128.047 k¥ more than that in Case 1. However, as shown in Table 4, the current annual 
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4.2. Case 2

From Figure 6c, to realize price arbitrage, the batteries are preferring to charge in the valley price
period (21:00–8:00) and discharge in the peak price period (8:00–21:00) while keeping the voltage
within the limits. The annual HESS profit is calculated and the economic comparison is shown in
Table 4.

Table 4. Economic comparison.

Cases HESS Total Investment/10 k¥ Annual Profit/10 k¥

Without batteries 4840 −2244.715
Case 1 22956 −2068.572
Case 2 22956 −1940.525

In the case without batteries, the punishment cost of voltage violation is high, even though there are
no investments for batteries. The annual profit is still less than that in Case 1 and Case 2. Because of price
arbitrage operations, the gains in Case 2 are significantly improved, and the annual profit is 128.047 k¥
more than that in Case 1. However, as shown in Table 4, the current annual profits of three cases are
all negative because the HESS cost is high and energy conversion efficiency is low and the difference
between peak and valley price is not large enough compared with the developed countries, where the
on-peak electric price can be 4 to 5 times higher than the off-peak price. The relationship between Case 2
annual profit and two influencing factors (unit capacity cost of battery fe and the difference between
peak and valley price fpeak − fvally) is shown in Figure 7. With the development of technology and the
improvement of relevant support policies, the economy of HESS will be further improved.
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4.3. Case 3

In Case 3, the battery control part is identical with Case 2, so the results of voltage regulation and
price arbitrage are not repeated here.

Figure 8 shows the results of PV power smoothing and real-time adjustment of UC during
11:00–12:00. Pv,real and Pv,for are the real-time and forecasting data of PV power, respectively. Pc,real and
Pc,ref are the charging/discharging power of UC based on the actual and forecasting data of PV power,
respectively. When |Pc| is large, the control step-size is smaller, otherwise the control step-size is larger.
This obeys the rules of the fuzzy-logic control, and the effects of UC variable step-size control strategy
on its remaining life Lc and tracking performance indicator δ are shown in Table 5. According to
Equations (3) and (4), the more ∑|PcTc| and δ is close to zero, the better that the lifetime state and
tracking performance of UC will be. From Table 5, when the control step-size is 1 min, the tracking
performance is the best, but the value of ∑|PcTc| is about 1.5 times of variable step-size control.
When the control step-size increases, both of ∑|PcTc| and δ are larger than variable step-size control.
And the variable step-size control strategy has better performance both on the improvement of UC
lifetime and tracking performance.
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Table 5. Effects on ∑|PcTc| and δ.

Pv.rated/MW Index 1 min
Step-Size

2 min
Step-Size

5 min
Step-Size

10 min
Step-Size

Variable
Step-Size

8.5
∑|PcTc|/MWh 3.946 3.935 4.444 5.055 2.5548

δ/% 0 3.205 8.129 11.915 3.125

4
∑|PcTc|/MWh 1.857 1.852 2.091 2.379 1.249

δ/% 0 3.205 8.129 11.915 0.8227

10.3
∑|PcTc|/MWh 4.782 4.768 5.385 6.125 3.0061

δ/% 0 3.205 8.129 11.915 0.7614

4.4. Case 4

In Case 4, the operation strategy of HESS is identical with the strategy in Case 3. To verify the
robustness of the proposed control strategy, a fault situation is analyzed, i.e., a fault occurs and the
battery unit installed on bus 4 does not response for one whole day. As shown in Figure 9, although the
curves of node voltages are different from the case with all the battery units in Figure 6c, the voltage
security is maintained with the proposed control strategy. However, because of the reduction of the
total charging/discharging energy of batteries, the daily profit decreases comparing to Case 3 which is
shown in Table 6. In all, the available batteries are settled optimally to solve voltage violation problems
in Case 4. Furthermore, in some serious faults, PV power curtailment or load shedding may be required
to guarantee the voltage security when the capability of the available batteries is insufficient.
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Table 6. Results of price arbitrage.

Cases Daily Profit/10 k¥

Case 3 −5.311
Case 4 −5.394

4.5. Case 5

In Case 5, the operation strategy of HESS is tested for a long period to show the lifetime
equilibrium among different battery units.
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According to the characteristics of radial DNs, the voltage deviation of the terminal node is
usually large. Therefore, in the process of voltage regulation, the batteries at the end of the line
are used frequently which causes the unbalanced utilization rate. With the price arbitrage process,
the batteries installed at the beginning of the line are also utilized fully because of the small VSFs.
Therefore, the utilization ratios among different battery units are balanced with the proposed operation
strategy which combines voltage regulation and price arbitrage. This is beneficial to the average
battery lifetime. In Figure 10a, the batteries only operate voltage regulation and the differences among
their utilization ratios are large. However, in Figure 10c, where the proposed operation strategy is
adopted, when the remaining lifetime of battery installed at node 4 is the same as that in Figure 10a,
the lifetime differences among different battery units are smaller. Figure 10b,d show the curves of
batteries SOC during one day when they are used for voltage regulation and both voltage regulation
and price arbitrage, respectively. It is shown that the batteries at the beginning of the line (battery 4,
battery 9) are almost not used in Figure 10b, and it eventually leads to the unbalanced utilization rates
between different battery units in Figure 10a.
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In addition, the battery lifetime is considered in the lithium-ion battery control strategy when
selecting the optimal battery units. Based on this, the working conditions of different battery units
are optimized according to different lifetime states. The proposed operation strategy is carried out
with identical or different initial life states for one year. Table 7 shows the results and Eb is the
charging/discharging energy of battery. Compared to cases with the same initial lifetime states,
when the initial lifetime states are different, the charging/discharging energies of batteries installed on
bus 4, 9 and 28 increases significantly, since for those batteries their initial lifetimes are longer than
those installed on bus 39 and 40. Similarly, the utilization of the batteries installed on bus 39 and 40,
whose initial lifetimes are shorter, will decrease accordingly. As a summary, the utilization ratios of the
batteries with short initial lifetime will decrease, and the utilization ratio of the batteries with long
initial lifetime will increase to achieve the equilibrium with the proposed operation strategy. Thus,
it would benefit the achievement of lifetime equilibrium and the whole system operation.



Energies 2018, 11, 389 18 of 20

Table 7. Results of Case 5.

Number Initial Lb Annual ∑∑∑Eb/MWh Initial Lb Annual ∑∑∑Eb/MWh

Battery 4 1 8289.305 1 8982.108
Battery 9 1 6513.481 0.92 6624.644

Battery 28 1 3743.667 0.95 4221.285
Battery 39 1 7776.123 0.9 7612.807
Battery 40 1 8739.034 0.8 7962.749

5. Conclusions

This paper proposes a hierarchical operation strategy of HESS in DNs with high PV penetration
for PV power smoothing, voltage regulation, and price arbitrage. A fuzzy-logic based variable
step-size control strategy and real-time adjustment are designed for UC. A coordinated control,
including centralized and local controls, is proposed for lithium-ion battery to perform voltage regulation
and price arbitrage. The results of case studies indicate that:

(1) Compared with the control strategies with fixed step-sizes, e.g., 1 min, 2 min, 5 min, 10 min,
the proposed variable step-size control strategy for UC can achieve better performance both on
improvements of UC lifetime and tracking performance.

(2) With the coordinated control for voltage regulation and price arbitrage, the economic benefits
of lithium-ion battery can be improved by making best use of the price difference of peak and
valley electricity without voltage violations. Although the cost of lithium-ion battery is still in
a high level, the economic will be further improved with technology development and relevant
support polices in the future.

(3) In the case of faults, the proposed control strategy has good robustness to guarantee the voltage
security by making full use of the available batteries. However, the economy decreases because
of the reduction of the available energy capacity. Furthermore, other measures, e.g., PV power
curtailment or load shedding, may be needed to maintain normal operation in some events of
serious faults.

(4) With consideration of multi-objectives and lifetime characteristics, the lifetime equilibrium among
different lithium-ion battery units can be achieved. The battery units with long lifetime have the
priority in utilization while the battery units with short lifetime will be less used which could
benefit the whole system operation.

This paper only discussed the operation problems of HESS under the determined configuration.
And the optimal siting and sizing is another important topic which will be studied in our future work.
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