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Abstract: With the increasing penetration of wind power and demand response integrated into the
grid, the combined uncertainties from wind power and demand response have been a challenging
concern for system operators. It is necessary to develop an approach to accommodate the combined
uncertainties in the source side and load side. In this paper, the fuzzy stochastic conditional
value-at-risk criterions are proposed as the risk measure of the combination of both wind power
uncertainty and demand response uncertainty. To improve the computational tractability without
sacrificing the accuracy, the fuzzy stochastic chance-constrained goal programming is proposed to
transfer the fuzzy stochastic conditional value-at-risk to a deterministic equivalent. The operational
risk of forecast error under fuzzy stochastic conditional value-at-risk assessment is represented
by the shortage of reserve resource, which can be further divided into the load-shedding risk
and the wind curtailment risk. To identify different priority levels for the different objective
functions, the three-stage day-ahead unit commitment model is proposed through preemptive
goal programming, in which the reliability requirement has the priority over the economic operation.
Finally, a case simulation is performed on the IEEE 39-bus system to verify the effectiveness and
efficiency of the proposed model.

Keywords: demand response; conditional value-at-risk; chance-constrained goal programming;
unit commitment; preemptive goal programming

1. Introduction

Energy is essential for economic development and domestic activities [1]. With the worldwide
depletion of fossil energy and greenhouse gas emission, wind power as a major renewable energy
has increasingly attracted attention [2,3]. However, because of the volatile and intermittent nature
of wind power availability, the integration of wind power has brought challenges to the operation
scheduling [4,5]. To accommodate wind power fluctuations in the dispatch, a sufficient flexibility of
the system has to be reserved. Traditionally, the reserve capacities are scheduled by a deterministic
and fixed ratio of the load [6], which is usually unsuitable for accommodating the forecast error of
wind power and even amplifies the risk of load shedding.

To enable a comprehensive and flexible consideration of the uncertainty of wind power, significant
studies have been performed through the stochastic optimization. The scenario-based method
generates a variety of wind power scenarios on the basis of the given probability distribution of
wind speed or wind power [7,8]. To improve the solution efficiency of the optimization model,
scenario reduction techniques were introduced at the expense of the accuracy [9]. To utilize the
statistical information of the uncertain variables, the chance-constrained programming (CCP) was
introduced to solve the unit commitment (UC) model [10,11]. To improve the flexibility of generation
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scheduling, the decision is allowed to violate the constraints within the predefined confidence interval.
Wang et al. [12] proposed stochastic chance-constrained goal programming (CCGP) by the combination
of CCP and goal programming to achieve the best trade-off between the reserve cost and the risk
level. In robust methods, the optimal solution is immune to the probability distribution and can
be generated within the given bound, which is usually solved by using dual programming and
Bender’s decomposition techniques [13,14]. The concept of uncertainty budget was introduced to
mitigate the overconservatism of solution [15]. To carry on the risk assessment of stochastic wind
power, the risk-based UC model usually introduces the concepts of operational risks of the power
system [16,17]. Zhang and Giannakis [18] introduced the value-at-risk (VaR) and the conditional
value-at-risk (CVaR) as the risk measures of load shedding and wind curtailment. Albeit VaR is
a widely accepted measure to evaluate risk, it is unable to comply with the subadditivity and the
consistency axioms. To overcome these drawbacks of VaR, CVaR was proposed as an adjustable risk
measure, and the stochastic CVaR cold be solved by an additional linear programming.

Integrated into the power system as dispatchable resources, demand response (DR) programs have
the potential to accommodate the uncertainty of wind power, and the traditional DR is dispatched as
deterministic consumer behaviors [19]. However, due to the change in consumption behaviors, lack of
policy attention, and other arbitrary factors, the actual response under DR is uncertain [20]. The impact
of the combined uncertainties from DR and wind power has been amplified by the deepening of the
integration of wind power and DR. Wang et al. [21] generated a variety of wind power scenarios
and price elastic load (PEL) by Monte Carlo simulation, and CCP was introduced to formulate the
risk constraint. Zhao et al. [22] proposed a multistage, robust optimization model considering the
combined uncertainties of wind power and PEL on the basis of the interval programming and robust
programming. Yang et al. [23] elaborated the probabilistic DR behaviors under an imprecise price
elasticity demand curve.

The majority of the current researches focuses on coping with the single uncertainty in source
side and demand side, which is inadequate to capture the full range of the combined uncertainties
from wind power and DR. Meanwhile, most of the existing risk assessments based on CVaR have
been performed on the basis of the probability distribution. Wang et al. [24] presented a distributional
robust model on the basis of the concept of CVaR to generate the required reserve, considering the
probability distribution of wind power forecast error. Paterakis et al. [25] developed the reserve
valuation framework based on CVaR and obtained the stochastic wind power scenarios on the basis
of historical data. Asensio and Contreras [26] established the two-stage UC model, including the
CVaR assessment in isolated systems, and took the uncertainty of stochastic energy resources into
consideration. Previous related works were done to evaluate the operational risk under a stochastic
environment, which were unable to tackle the complicated uncertainties. Furthermore, the traditional
CVaR had to be calculated by adding an additional linear programming, which aggravated the
structural complexity of the optimization model. The computational burden of the model is still of
concern when applied to practical implementations.

To develop a tool to accommodate both wind power uncertainty and DR uncertainty, in this paper,
fuzzy stochastic conditional value-at-risk (FSCVaR) criterions are proposed as the risk measure of the
combined uncertainties. To generate an efficient solution, the fuzzy stochastic chance-constrained
goal programming (FSCCGP) is introduced to transform the traditional FSCCGP into a deterministic
equivalent. In addition, the stochastic wind power and fuzzy PEL are considered, and FSCVaR is
formulated by the shortage-of-reserve resource. Considering the system reliability requirements and
economic goals, the three-stage UC model based on preemptive goal programming (PGP) is proposed.

The proposed FSCVaR based on FSCCGP is an adjustable risk assessment in comparison with
other related risk approaches. More specifically, the main contribution of this paper is threefold:

(1) The formulation of FSCVaR assessment can accommodate complicated uncertainties. Thus,
the operational risk, considering stochastic wind power and fuzzy PEL, is evaluated by FSCVaR.
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(2) The FSCCGP is introduced to transfer the traditional FSCCGP to a deterministic equivalent,
which mitigates the complexity of the UC model and contributes to high solution efficiency
and transparency.

(3) The PGP is proposed to consider the priorities of different goals and generate the tradeoff between
reliability requirements and economic goals.

The remaining part of this paper is organized as follows. In Section 2, the stochastic CVaR and the
fuzzy CVaR are introduced, and the FSCCGP is proposed to transform the FSCVaR into a deterministic
equivalent. In Section 3, the uncertain factors of the power system are taken into consideration,
and the shortage-of-reserve capacities are formulated by FSCVaR. In Section 4, a three-stage UC model
considering the combined uncertainty of wind power and DR is proposed, and the PGP is presented to
identify different priority levels of the objective functions. In Section 5, a case study on the IEEE 39-bus
system is performed, and the associated computational results are examined. In Section 6, a summary
of our discussions and contributions is presented.

2. The FSCVaR Based on FSCCGP

2.1. FSCVaR Theory

As widely accepted risk measures, VaR and CVaR have been traditionally utilized to hedge the
investment risk in the portfolio of financial instruments. VaR represents the maximum potential loss,
ensuring that the total loss of the financial asset suffers with the specified probability level. However,
the discontinuous distribution of VaR may aggravate the hurdles of computational complexities.
From the theoretical point of view, VaR lacks convexity and subadditivity, which makes VaR inadequate
to evaluate the coherent risk of general loss distribution.

As an adjustable risk measure derived from VaR, CVaR represents the conditional mean of
investment loss beyond VaR. CVaR complies with consistent axiom and convexity, which provides
an appropriate approach to measure the inherent risk effectively. Given the confidence level β, VaR and
CVaR in the stochastic environment are formulated, respectively, as follows:

RVarβ(x) = min{α ∈ R : ϕ( f (x, ξ), α) ≥ β} (1)

RCVarβ(x) =
1

1− β

∫
f (x,ξ)≥RVarβ(x)

f (x, ξ)ρ(ξ)dξ (2)

where, RVarβ is the stochastic VaR with the predefined confidence level β, RCVarβ is the stochastic
CVaR with the predefined confidence level β, x ∈ X is the decision vector in the portfolio optimization,
ξ is the stochastic vector, ρ(ξ) is the probability density function of ξ, f (x, ξ) is the stochastic loss
function, and ϕ( f (x, ξ), α) is the distribution probability of f (x, ξ) not exceeding the threshold α,
which is formulated as follows:

ϕ( f (x, ξ), α) =
∫

f (x,ξ)≤α
ρ(ξ)dξ (3)

The stochastic CVaR criterion is employed to assess the probabilistic risk in the majority of
current researches. However, since the combined uncertainties in the source side and demand side
are taken into consideration in this paper, it is necessary to develop a coherent risk measure in the
fuzzy environment.

The fuzzy VaR and CVaR assessment under the given confidence level β are formulated,
respectively, as follows [27]:

FVarβ(x) = min{α ∈ R : Cr( f (x, µ), α) ≥ β} (4)
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FCVarβ(x) =
1

1− β

∫ 1

β
FVarβ(r)dr (5)

where, FVarβ is the fuzzy VaR within the predefined confidence level β, FCVarβ is the fuzzy CVaR
within the predefined confidence level β, µ is the fuzzy vector in the uncertain environment, f (x, µ)

is the fuzzy loss function, and Cr( f (x, µ), α) is the credibility probability of f (x, µ) not exceeding the
threshold α.

Traditionally, the optimization problem including VaR is computationally intractable. To circumvent
this problem, the original problem can be transformed into a linear programming problem by adding
auxiliary variables [18], which provides an approach to calculate the stochastic CVaR. Nevertheless,
the complexity of the optimization model is intensified by an additional linear programming, and the
optimization process mandates the application of a numerical optimizer. Moreover, the method is
unable to effectively formulate a fuzzy CVaR in the fuzzy environment. In order to propose the risk
measure in the source side and demand side, CCGP is utilized to formulate the FSCVaR criterion in
this paper.

2.2. The Deterministic Equivalent of FSCVaR by CCGP

To obtain the deterministic equivalent of FSCVaR, it is necessary to introduce the CCGP to
transform the traditional CVaR into the corresponding deterministic form. The transformation
sequence of FSCVaR is shown in Figure 1.
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Traditional CCP allows the decision to violate the chance constraints, but the probability of
constraint violation has to cover the predefined risk level. It is not easy to comply with multiple chance
constraints at the same time, which results in the recurrence of nondominated solutions. To overcome
the drawbacks of CCP, CCGP is proposed to identify different priority levels of multiple chance
constraints [28]. The stochastic CCGP can be formulated as follows:

minuid+i + vid−i
s.t.

Pr{gi(x,
→
ξ )− bi ≤ d+i } ≥ β+

i

Pr{bi − gi(x,
→
ξ ) ≤ d−i } ≥ β−i

d+i , d−i ≥ 0,

(6)

where, β+
i and β−i are the predefined confidence levels which are given by the decision maker, bi is the

goal value of the function gi, d+i and d−i are the positive deviation and the negative deviation of the
target value bi, respectively, ui and vi are the weight factors corresponding to the positive deviation
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and the negative deviation, respectively. The positive deviation and the negative deviation can be
analytically reformulated as follows:

d+i = min
{

d ∨ 0|Pr
{

gi(x,
→
ξ )− bi ≤ d+i

}
≥ β+

i

}
d−i = min

{
d ∨ 0|Pr

{
bi − gi(x,

→
ξ ) ≤ d−i

}
≥ β−i

} (7)

Noting that Pr( f (xi,
→
ξ )− bi ≤ d) = ϕ(x, d), Equation (7) can be transformed into VaR in a similar

form, as follows: {
d+i = RVar+β (x) ∨ 0
d−i = RVar−β (x) ∨ 0

(8)

It is noteworthy that the operational risk takes a non-negative value in the power system.
In contrast to previous works, stochastic VaR can be transformed to the deviation of CCGP without
sacrificing the accuracy. The existing researches indicate that if the chance constraints can be
reformulated according to the Equation (9) [28], whereby the stochastic variables can be separated from
the function and the stochastic vector can be represented by a variable ξ, given that φ is the probability
density function of ξ, the deviation of CCGP can be transferred to a deterministic equivalent, as follows:{

Pr
{

h(x)− ξ − bi ≤ d+i
}
≥ β+

i
Pr
{

bi − h(x) + ξ ≤ d−i
}
≥ β−i

, where gi(x, ξ) = h(x)− ξ (9)

{
d+i =

[
hi(x)− bi − φ−1(1− β+

i
)]
∨ 0

d−i =
[
bi − hi(x) + φ−1(β−i )] ∨ 0

(10)

Leveraging on the Equation (10), random CVaR(RCVaR) can be equivalently transformed into
a deterministic equivalent, as follows:

RCVar+β (x) = h(x)− 1
1−β+i

∫ φ−1(1−β+i )

φ−1(0) ξρ(ξ)dξ

RCVar−β (x) = 1
1−β−i

∫ φ−1(1)
φ−1(β−i )

ξρ(ξ)dξ − h(x)
(11)

Similar to the deterministic equivalent of stochastic CVaR, given that ψ is the credibility
distribution function of µ, fuzzy CVaR(FCVAR) can be formulated by implementing CCGP, as follows:

FCVar+β (x) = h(x)− 1
1−β+i

∫ 1
β+i

ψ−1(µ)dµ

FCVar−β (x) = 1
1−β−i

∫ 1
β−i

ψ−1(µ)dµ− h(x)
(12)

In sum, FSCVaR, which comprises stochastic CVaR and fuzzy CVaR, can be determined as the risk
measure in the complicated uncertainty environment. Compared with existing works, CVaR can be
directly transferred to the deterministic equivalent by introducing the deviation of CCGP, which can
drastically improve the solution efficiency.

3. The Uncertainty Factors in the Grid and the Corresponding Reserve Constraints

With the increasing integration of the wind power and flexible demands, the combined
uncertainties in the source side and demand side have to be considered in the generation scheduling.
More specifically, the combined uncertainties contain the stochasticity of the wind power and the
fuzziness of PEL.
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3.1. The Uncertainty from Wind Power and DR

3.1.1. The Fuzziness of DR

DR is mainly divided in two categories: price DR and incentive DR. The consumer behaviors
under incentive DR are scheduled by signing contracts with the consumers. With the unaffordable
punishment applied in case of a breach of contract, most consumers are motivated to adhere to
predefined response behaviors, which can be approximately considered as the deterministic loads.
In comparison with incentive DR, the consumer behaviors of price DR vary with different prices.
Moreover, arbitrary factors have a remarkable impact on the consumer behaviors. More specifically,
because of the willingness of consumer behaviors, ignore policies and communication delays, the actual
response from the customers of PEL is uncertain in nature, as Figure 2 shown. With the increase of
the relative change of the price, the response from consumers has a tendency to decrease. Because
of the imprecise price elastic response curve, the fuzzy characteristics of consumer behaviors are
exposed. To mathematically characterize the uncertainty of DR, the concept of self–elastic is employed
to formulate the response behavior, as follows:

∆Lt = λt
epεttLt (13)

where ∆Lt is the demand response amount of PEL, λt
ep is the relative change in the price, εtt is

self-elastic coefficient, Lt is the forecast load without PEL.
The fuzzy error of the demand response amount can be formulated as follows:

∆̃Lµ
t
= µepλt

epεtt∆Lt (14)

where ∆̃Lµ
t

is the forecast error of the demand response amount of PEL and µep is the forecast error of
the relative change of the demand response amount, which is formulated by triangle fuzzy number.

µep = (−dλ, 0, dλ) (15)

where dλ is the threshold of the forecast error of PEL.
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3.1.2. The Stochasticity of Wind Power

With the influence of height, climate, and other natural factors, the actual output of wind power
is stochastic and volatile [29,30]. The prediction error of wind power adheres to a normal distribution,
and the mean of the distribution is set to zero:

ξ ∼ N(0, σ) (16)
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where ξ is the prediction error of wind power and σ is the variance of the prediction error of wind
power, which can be calculated by using the proposed method, as follows [31]:

ξ ∼ N(0,
1
5

Pt
W +

1
50

Ws) (17)

where Pt
W is the forecast wind power and Ws is the total installed capacity of wind power.

3.2. FSCVaR Based on System Reserve Shortage

To eliminate the forecast error in the source side and demand side, sufficient capacities have to be
reserved in unit commitment and dispatch. On the basis of the discussion in the Sections 2.2 and 3.1 ,
system reserve constraints can be formulated by fuzzy stochastic CCP:

Ch
(

n
∑

i=1
Pt

up,i ≥ ∆̃Lµ
t − ξ

)
(α1) ≥ β1

Ch
(

n
∑

i=1
Pt

dw,i ≥ ξ − ∆̃Lµ
t
)
(α2) ≥ β2

(18)

where α1, α2, β1, and β2 are the confidence levels given by the decision maker, and Pt
up,i and Pt

dw,i
are the upward reserve and the downward reserve of the thermal unit, respectively. Based on the
mathematical transformation in the Section 2.2, the reserve shortage can be rationally modelled by
CCGP by the Equation (19), which refers to the deviation between the actual reserve capacity and the
required reserve to cover the given risk level. In the terms of risk measure, the reserve shortage reflects
the VaR of the scheduling under the given risk level:

dt
up =

[
µ−1(2− 2β1)− φ−1(1− α1)−

n
∑

i=1
Pt

up,i

]
∨ 0

dt
dw =

[
−

n
∑

i=1
Pt

dw,i + φ−1(α2)− µ−1(2− 2β2)

]
∨ 0

(19)

To provide an intuitive way to distinguish the fuzzy CVaR from the stochastic CVaR, the upward
reserve and downward reserve are divided by two independent reserves, respectively.

Pt
up,i = Pt

urad,i + Pt
u f uz,i

Pt
dw,i = Pt

drad,i + Pt
d f uz,i

(20)

where Pt
urad,i and Pt

drad,i are the upward reserve and downward reserve for stochastic forecast error of
wind power, respectively, and Pt

u f uz,i and Pt
d f uz,i are the upward reserve and downward reserve for

fuzzy forecast error of DR, respectively. According to the Equation (20), the original VaR can be further
divided by fuzzy VaR and stochastic VaR as follows:

dt
urad =

[
−φ−1(1− α1)−

n
∑

i=1
Pt

urad,i

]
∨ 0

dt
drad =

[
−

n
∑

i=1
Pt

drad,i + φ−1(α2)

]
∨ 0

dt
u f uz =

[
µ−1(2− 2β1)−

n
∑

i=1
Pt

u f uz,i

]
∨ 0

dt
d f uz =

[
−µ−1(2− 2β2)−

n
∑

i=1
Pt

d f uz,i

]
∨ 0

(21)

where dt
urad and dt

drad are the upward reserve shortage and downward reserve shortage of the
stochastic forecast error, respectively, dt

u f uz and dt
d f uz are the upward reserve shortage and downward

reserve shortage of the fuzzy forecast error, respectively. In accordance with Equations (11) and
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(12) in the Section 2.2, FSCVaR, formulated by the deviation of CCGP, is transformed into the
deterministic equivalent:

rucvarrad(x) = σ2

(1−β)
ρ
(
φ−1(1− β)

)
−

n
∑

i=1
Pt

urad,i

rdcvarrad(x) = σ2

(1−β)
ρ
(
φ−1(1− β)

)
−

n
∑

i=1
Pt

drad,i

rucvar f uz(x) = (1− β)0 + βd−
n
∑

i=1
Pt

u f uz,i

rdcvar f uz(x) = (1− β)0 + βd−
n
∑

i=1
Pt

d f uz,i

(22)

where rucvarrad(x) and rdcvarrad(x) are CVaR represented by the upward reserve shortage and
downward reserve shortage of the stochastic forecast error, respectively, and rucvar f uz(x) and
rdcvar f uz(x) are CVaR represented by the upward reserve shortage and downward reserve shortage
of the fuzzy prediction error, respectively. To shed light on the essential concept and practical
implementation of CVaR, CVaR represented by the upward reserve is taken as an example, as shown
in Figure 3. When the actual wind power is inferior to the forecasted wind power and the upward
reserve is unable to handle the prediction error, rucvarrad(x) > 0. This indicates that the risk of
load shedding exceeds the given value. When the actual reserve is sufficient to satisfy the reserve
requirement, rucvarrad(x) = 0, which means that the risk of load shedding is inferior to the given value.
When the actual response from the consumers exceeds the prediction of the demand response amount,
rucvar f iz(x) > 0. This means that the underlying risk of load shedding is beyond the predefined risk
level, which is similar to the situation of rucvarrad(x). Corresponding to the risk of insufficient positive
reserve, rdcvarrad(x) and rdcvar f iz(x) indicate the risk of wind curtailment resulting from insufficient
downward reserve.Energies 2018, 11, x 9 of 18 
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4. The Three-Stage UC Model Based on PGP

To adequately consider the fuzzy stochastic characteristics of the source side and demand
side, the combined uncertainties of wind power and PEL are considered in the UC model.
Meanwhile, the FSCVaR criterions are modeled by FSCCGP as the risk measure in a complicated
uncertainty environment.

4.1. The Objective Functions of the Model

There is usually a conflict between the system reliability and the economic objectives, which requires
scheduling a plan to achieve the best trade-off between stability requirements and the economic operation.

According to Section 3.2, the system reliability goal in the UC model is formed by a deterministic
CVaR criterion, as follows:

min
(

rucvarrad + rdcvarrad(x) + rucvar f uz(x) + rdcvar f uz(x)
)

(23)

The economic goal is to minimize the operating cost, as follows:

minCtotal = C f c + Cres + Csu (24)

where Ctotal , C f c, Cres, and Csu are the operational cost, fuel cost, reserve cost, and start-up
cost, respectively.

4.2. Constraints of the UC Model

• Power balance constraint:
NG

∑
i=1

Pt
G,ivi,t +

NW

∑
j=1

Pt
W f ,j = Lt − ∆Lt (25)

where Pt
G,i is the output of thermal unit and vt

i is the on-off status of the thermal unit.

• Unit reserve constraints {
Pt

G,i + Pt
up,i ≤ PGmax,ivi,t

Pt
G,i − Pt

dw,i ≥ PGmin,ivi,t
(26)

where PGmax,i and PGmin,i are the maximum output and the minimum output of the thermal unit,
respectively.

• Ramping constraints: {
Pt

G,i + Pt
up,i ≤ PGmax,ivi,t

Pt
G,i − Pt

dw,i ≥ PGmin,ivi,t
(27)

where PGmax,i and PGmin,i are the maximum output and the minimum output of the thermal
unit, respectively.

• Minimum shut-up and shut-down time constraints:{
(vi,t−1 − vi,t)(Ton,i,t−1 − Ton,i) ≥ 0

(vi,t − vi,t−1)
(

To f f ,i,t−1 − To f f ,i

)
≥ 0

(28)

where Ton,i and To f f ,i are the minimum shut-up time and the minimum shut-down
time, respectively.

4.3. The Three-Stage UC Model Based on PGP

The objective functions of system reliability contain the shortage of the upward reserve capacity
and of the downward reserve capacity, of which, the shortage of the upward reserve has priority over
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the latter. This is mainly attributed to the fact that the risk of the load shedding is more unaffordable
than the risk of the wind curtailment. Meanwhile, in concordance with the essential requirements in
the thermal generation unit commitment, the system reliability has the priority over the economical
objective. To identify the different priority levels of the different functions, PGP is introduced in this
paper. In the PGP, the objective functions are ordered one on top of another in accordance with the
corresponding rank of every goal [32]. Firstly, the goal with the highest priority is optimized in the
original feasible region, and the feasible region of the lower stage is updated dynamically based on the
optimal solution of the upper stage.

The objective function of the first stage is to minimize the shortage of the upward reserve, aiming
at substantially mitigating the risk of load shedding:

min rucvarrad(x) + rucvar f uz(x) (29)

The objective function of the second stage is to minimize the shortage of the downward reserve,
which is combined with the objective function of the first stage to meet the reliability requirement.
On the basis of the PGP theory, because of the priority of the load shedding risk over the wind
curtailment, the additional constraint based on the optimal solution of the first stage is established in
the second stage: {

min rdcvarrad(x) + rdcvar f uz(x)
rucvarrad + rucvar f uz(x) ≤ Z1

(30)

where Z1 is the optimal solution of the first stage.
The objective function of the third stage is that the operational cost fulfill the economic goals

in the UC model. Because of the priority of the safety requirement over the economical demand,
the additional constraints based on the optimal solution of the first stage and the second stage are
established in the last stage: 

minCtotal = C f c + Cres + Csu

rucvarrad(x) + rucvar f uz(x) ≤ Z1

rdcvarrad(x) + rdcvar f uz(x) ≤ Z2

(31)

where Z2 is the optimal solution of the second stage.
In sum, every stage of the UC model based on PGP needs to hold the original constraints which

are contained in Equations (25)–(28). Meanwhile, the additional constraints based on the optimal
schedules of the former stages have to be satisfied in the every stage.

5. Case Sudy

For the sake of the risk assessment of the combined uncertainties in the source side and demand
side, an illustrative case is studied, represented by the IEEE 39-bus system with 10 generators.
The forecasted wind power and forecasted system load are shown in Figure 4. The self-elastic
coefficient εtt is −0.15, and the threshold of the forecast error of PEL, dλ, is 0.4. The data related to the
IEEE 39-bus system with 10 generators is shown in [33]. The reserve cost is assumed to be 50% of the
fuel cost of the corresponding units, and the confidence level in the reserve is α1 = α2 = β1 = β2 = 0.95.
The power output of generation is shown in Figure 5.



Energies 2018, 11, 341 11 of 18

Energies 2018, 11, x 11 of 18 

 

1

2

min =
( ) ( )

( ) ( )

total fc res su

rad fuz

rad fuz

C C C C

rucvar x rucvar x Z

rdcvar x rdcvar x Z

 + +
 + ≤
 + ≤

 (31)

where 2Z  is the optimal solution of the second stage. 
In sum, every stage of the UC model based on PGP needs to hold the original constraints which 

are contained in Equations (25)–(28). Meanwhile, the additional constraints based on the optimal 
schedules of the former stages have to be satisfied in the every stage. 

5. Case Sudy 

For the sake of the risk assessment of the combined uncertainties in the source side and demand 
side, an illustrative case is studied, represented by the IEEE 39-bus system with 10 generators.  
The forecasted wind power and forecasted system load are shown in Figure 4. The self-elastic 
coefficient ttε  is −0.15, and the threshold of the forecast error of PEL, dλ , is 0.4. The data related to 
the IEEE 39-bus system with 10 generators is shown in [33]. The reserve cost is assumed to be 50% of 
the fuel cost of the corresponding units, and the confidence level in the reserve is 1 2 1 2= = = =0.95α α β β . 
The power output of generation is shown in Figure 5. 

2500 The forecast load
The forecast wind power

2000

1500

1000

500

0
0 6 12 18 24

Po
w

er
 o

ut
pu

t/
M

W

Time/h  
Figure 4. The forecast values of load and wind power. Figure 4. The forecast values of load and wind power.Energies 2018, 11, x 12 of 18 

 

 
Figure 5. The power output of generation. 

5.1. Risk Criterions Analysis 

In order to explore the impact of the risk measure on the UC scheduling, we compare three cases 
in the test and analyze the corresponding available reserve capacities: 

A1: the one-stage UC model is established to optimize the operation cost without the reliability 
requirements. The objective function of the UC model is modeled according to the Equation (24). 

A2: the three-stage UC model is established, by which the VaR is determined as the risk measure 
of the UC model. The objective functions of the first stage and second stage in Section 4.3 are replaced 
by the corresponding VaR form; 

A3: the three-stage UC model proposed in Section 4.3 is established, by which the CVaR is 
determined as the risk measure of the UC model. 

The minimum reserve required for the given risk level is shown in Figure 6, and the available 
reserve capacities of the different cases is illustrated in Figure 7. 

0 6 12 18 24250

300

350
The required reserve in A2

Time/h

MW

The required reserve in A3

 
Figure 6. The required reserve for covering the risk. 

Figure 5. The power output of generation.

5.1. Risk Criterions Analysis

In order to explore the impact of the risk measure on the UC scheduling, we compare three cases
in the test and analyze the corresponding available reserve capacities:

A1: the one-stage UC model is established to optimize the operation cost without the reliability
requirements. The objective function of the UC model is modeled according to the Equation (24).

A2: the three-stage UC model is established, by which the VaR is determined as the risk measure
of the UC model. The objective functions of the first stage and second stage in Section 4.3 are replaced
by the corresponding VaR form;

A3: the three-stage UC model proposed in Section 4.3 is established, by which the CVaR is
determined as the risk measure of the UC model.

The minimum reserve required for the given risk level is shown in Figure 6, and the available
reserve capacities of the different cases is illustrated in Figure 7.
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As Figure 7 shows, lower reserve capacities are provided in A1 than in A2 and A3. The reason
lies in the fact that the operation cost is determined as the only objective of A1 and the reliability
requirement is ignored. In order to generate the economic optimal solution of A1, the units with
more economic parameters have the priority, to generate more power output. Thus, the available
reserve capacities provided by the units are limited, which substantially reduces the system flexibility.
As Figure 6 shows, because of the difference of risk measure between A2 and A3, the required reserves
for covering the given risk in the A2 are smaller than those in A3, and higher required reserves
occur with higher available reserve capacities. This is mainly attributed to the fact that VaR describes
the greatest risk under the given confidence level and is unable to effectively handle the combined
uncertainties in the extreme scenarios. Compared with VaR, CVaR is competent enough to measure
the tail risk. Consequently, the maximization of the available reserve capacities is catered to cope with
the risk of complicated uncertainty in A3.

5.2. Computational Performance

In order to verify the solution efficiency of the CVaR criterion proposed in this paper, two methods
are adopted to optimize the three-stage UC model in different scales of the simulation cases.
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M1: the linear programming method is introduced to solve the CVaR [18]. The discrete scenario
number Ns in the linear programming method is 1000.

M2: the method proposed in this paper is introduced to transform CVaR into a deterministic
equivalent.

The computational efficiency of the two approaches is shown in Figure 8.
As Figure 8 shows, CVaR in M2 is much more computationally efficient than M1. As the system

scale escalates, there is a tendency of the calculation time to increase in two cases. Nevertheless,
in terms of changing trends, there is a significant difference between M1 and M2. The solution time in
M1 increases sharply, but M2 rises relatively gently. This is mainly attributed to the reason that the
traditional CVaR is calculated by adding auxiliary variables and an additional linear programming.
In M1, the optimization model in every stage needs an additional solution of the linear programming,
which intensifies the computational burden and structure complexity of the UC model. In M2, the CVaR
is transformed into the deterministic form by the application of CCGP, and no additional variables
need to be introduced. The result reveals that the computational efficiency can be increased drastically
by the application of the proposed approach.Energies 2018, 11, x 14 of 18 
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5.3. The Analysis of the Priorities of the Objective Goals

In order to elaborate a hierarchical relationship between different objective functions in the UC
model, four cases are simulated and analyzed to verify the influence of the priorities of different goals
on the optimization model. The shortage of the system reserves is shown in Figure 9:

C1: multiple objectives are translated to a single objective with the weight factors [23], and the
weight factors of the reserve shortage goals are 20.

C2: multiple objectives are translated to a single objective with the weight factors [23], and the
weight factors of the reserve shortage goals are 50.

C3: the PGP method is employed to establish a two-stage UC model, and the objective function of
each stage is formulated as Equations (23) and (24), respectively.

C4: the PGP method is employed to establish a three-stage UC model, and the objective function
of each stage is formulated as Equations (29)–(31), respectively.

As Figure 9 shows, the total amount of the reserve shortage in C1 is notably larger than in
C2. This indicates that a high weight of the reliability goals incurs into a low reserve shortage risk,
and the weight coefficients of the objective functions have a remarkable impact on the schedule.
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Meanwhile, the total amount of the reserve shortage in C1 and C2 is remarkably higher than that
in C3 and C4. Since there is no clear priority between system reliability and economic goals in C1
and C2, the reserve requirement is not fulfilled preferentially, and the scheduling is too rash and
risky to tackle the complicated uncertainties from wind power and PEL. PGP is employed to identify
the priority levels of the different goals in C3 and C4, and the minimization of the shortage risk is
catered. Albeit there is no difference in the total amount of the system reserve shortage, the shortage of
the upward reserve in C3 is notably lower than the shortage in C4. Recall that the upward reserve
shortage and the downward reserve shortage represent the load shedding risk and wind curtailment
risk in the Section 3.2, respectively. The load shedding risk in C3 has a more significant impact on the
schedule than in C4. Moreover, there is a frequent change from the upward reserve shortage to the
downward reserve shortage, which indicates that the complexity for generation scheduling has been
amplified. In comparison with the former cases, the schedule in C4 identifies different priority levels
for every objective function by introducing the PGP. The reliability requirement of the power system
has the priority over the economic goals, and the minimization of the upward reserve is catered in the
first stage.Energies 2018, 11, x 15 of 18 
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5.4. Sensitive Analysis 

In order to investigate the tendency of the reserve capacity under different reliability requirements, 
the confidence level is varied from 0.8 to 0.98, and a variety of scenarios are optimized. The results of 
the confidence level α  and β  are shown in Figures 10 and 11, respectively. 
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5.4. Sensitive Analysis

In order to investigate the tendency of the reserve capacity under different reliability requirements,
the confidence level is varied from 0.8 to 0.98, and a variety of scenarios are optimized. The results of
the confidence level α and β are shown in Figures 10 and 11, respectively.
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As Figures 10 and 11 shows, with the increase of the confidence level, the minimum required 
reserve for covering the risk level increases, which intensifies the shortage risk of the reserve capacity. 
When the confidence level is inferior to 0.94, the shortage risk of the system reserve is relatively small. 
This is mainly attributed to the fact that the total amount of the required reserve is affordable, and 
the system flexibility can be reserved by the system to cope with the combined uncertainties from 
wind power and DR. When the confidence level is greater than 0.94, the reserve deviation risk is 
increasingly stressing. This is mainly due to the reason that the minimum required reserve has 
gradually approached and even exceeded the largest available reserve capacity. Consequently, the 
forecasted error is not fully accommodated by the available reserve capacity, and the reserve 
deviation risk increases sharply. In addition, the tendency to increase of the required reserve under 
the confidence level β  is approximately linear, mainly due to the fuzzy characteristic of the DR 
uncertainty. 
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To evaluate the underlying risk of the combined uncertainties from wind power and DR, fuzzy 
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work are summarized as follows: 

(1) Compared with the value-at-risk, the unit commitment model based on the conditional value-
at-risk amplifies the required reserves to cater the minimization of the complicated uncertainty. 
The results of the risk criterions experiment indicate that the unit commitment model with 
conditional value-at-risk as the risk assessment can hedge against the operational risk and meet 
the system reliability requirement. 

(2) In comparison with the traditional linear programming to solve the CVaR, CVaR can be 
transferred to a deterministic equivalent by introducing CCGP in the proposed model. High 
solution efficiency and transparency have been ensured, which is supported by the simulation 
results of the computational performance. 

(3) The reserve capacities of the scheduling vary with the different priorities of the different 
objective functions. In the proposed unit commitment model based on preemptive goal 
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As Figures 10 and 11 show, with the increase of the confidence level, the minimum required
reserve for covering the risk level increases, which intensifies the shortage risk of the reserve capacity.
When the confidence level is inferior to 0.94, the shortage risk of the system reserve is relatively
small. This is mainly attributed to the fact that the total amount of the required reserve is affordable,
and the system flexibility can be reserved by the system to cope with the combined uncertainties
from wind power and DR. When the confidence level is greater than 0.94, the reserve deviation
risk is increasingly stressing. This is mainly due to the reason that the minimum required reserve
has gradually approached and even exceeded the largest available reserve capacity. Consequently,
the forecasted error is not fully accommodated by the available reserve capacity, and the reserve
deviation risk increases sharply. In addition, the tendency to increase of the required reserve under the
confidence level β is approximately linear, mainly due to the fuzzy characteristic of the DR uncertainty.
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6. Conclusions

To evaluate the underlying risk of the combined uncertainties from wind power and DR,
fuzzy stochastic conditional value-at-risk criterions are established by introducing the fuzzy stochastic
chance-constrained goal programming. To satisfy the different requirements with different priorities,
the three-stage unit commitment model is established by preemptive goal programming to generate
the best trade-off between system reliability and economical goal. The main contributions of this work
are summarized as follows:

(1) Compared with the value-at-risk, the unit commitment model based on the conditional
value-at-risk amplifies the required reserves to cater the minimization of the complicated
uncertainty. The results of the risk criterions experiment indicate that the unit commitment
model with conditional value-at-risk as the risk assessment can hedge against the operational
risk and meet the system reliability requirement.

(2) In comparison with the traditional linear programming to solve the CVaR, CVaR can be transferred
to a deterministic equivalent by introducing CCGP in the proposed model. High solution
efficiency and transparency have been ensured, which is supported by the simulation results of
the computational performance.

(3) The reserve capacities of the scheduling vary with the different priorities of the different objective
functions. In the proposed unit commitment model based on preemptive goal programming,
the load shedding risk is minimized preferentially, and the system reliability has the priority over
the economic goal, which is supported by the analysis of the priorities of the objective goals.

In future work, we plan to study the real-time dispatch considering the combined uncertainties
of wind power and demand response. We also want to conduct a comparison of risk assessment
between unit commitment and real-time dispatch. Another interesting direction for future research is
the potential consideration of more uncertain resources in the power system.
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CCP Chance-constrained programming
CCGP Chance-constraied goal programming
FSCCGP Fuzzy stochastic chance-constrained goal programming
UC Unit commitment
PGP Preemptive goal programming
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