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Abstract: In recent years, multi-stage hydraulic fracturing technologies have greatly facilitated the 

development of unconventional oil and gas resources. However, a quantitative description of the 

“complexity” of the fracture network created by the hydraulic fracturing is confronted with many 

unsolved challenges. Given the multiple scales and heterogeneity of the fracture system, this study 

proposes a “bifurcated fractal” model to quantitatively describe the distribution of induced 

hydraulic fracture networks. The construction theory is employed to generate hierarchical fracture 

patterns as a scaled numerical model. With the implementation of discrete fractal-fracture network 

modeling (DFFN), fluid flow characteristics in bifurcated fractal fracture networks are 

characterized. The effects of bifurcated fracture length, bifurcated tendency, and number of 

bifurcation stages are examined. A field example of the fractured horizontal well is introduced to 

calibrate the accuracy of the flow model. The proposed model can provide a more realistic 

representation of complex fracture networks around a fractured horizontal well, and offer the way 

to quantify the “complexity” of the fracture network in shale reservoirs. The simulation results 

indicate that the geometry of the bifurcated fractal fracture network model has a significant impact 

on production performance in the tight reservoir, and enhancing connectivity of each bifurcate 

fracture is the key to improve the stimulation performance. In practice, this work provides a novel 

and efficient workflow for complex fracture characterization and production prediction in 

naturally-fractured reservoirs of multi-stage fractured horizontal wells. 

Keywords: numerical simulation; fractal theory; discrete fractal-fracture network; fractured 

horizontal well 

 

1. Introduction 

It has been commonly recognized that significant spatial heterogeneity, characterized by the 

multi-scale nature, extensively exists in shale reservoirs. The wetting properties and flow behavior of 

oil and gas change dramatically in different types of porous media. Cross-scale nano-micro porosity 

plays a dominant role in fluid storage, and micro-scale pore-throat morphology and connectivity 

strongly affected fluid transport phenomena. In addition, the fracture growth and the occurrence of 

natural fractures are extremely complex. Figure 1 shows multi-scale natural fractures, namely 

micrometer-scale (small scale), centimeter-scale (medium scale), and meter-scale (large-scale) 

fractures, co-exist in the shale reservoirs, of which the distribution pattern and occurrence both 

exhibit fractal features. Macro-scale favored flow areas are, accordingly, derived from the multi-scale 
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connected/isolated natural fractures, localized accumulation of organic matter, and heterogeneous 

porous structure of shale reservoirs, which further affect the dynamic changes of pressures and fluid 

compositions in shale reservoirs. In addition, the complexity associated with reservoir, fracture, and 

fluid properties make various engineering techniques inaccurate to evaluate reservoir and fracturing 

properties of shales, such as sampling, well logging, and pressure-transient and rate-transient 

analysis [1,2]. However, compared with individual fractures, characterizing the complexity of multi-

scale fracture networks still have many challenges. 

 

Figure 1. Multi-scale heterogeneity of reservoir system in shale reservoirs. 

To accurately capture of the fluid flow through the complex fracture network created by 

stimulation in unconventional reservoirs, previous studies focus on directly improving 

methodologies characterizing individual fractures for fracture networks. To the best of our 

knowledge, the existing models describing such complex systems are divided into three categories, 

including the dual-porosity model, the wire-mesh model, and the unconventional fracture model 

(UFM). The dual porosity model was first introduced by Warren and Root [3] to characterize the 

behavior of naturally-fractured reservoirs and is now widely applied in the shale gas fracture 

modeling [4–7]. Chaudhary [8] and Agboada et al. [9] simulate the fracture network with the help of 

logarithmic grid refinement, coupled with the dual porosity model, which is more flexible and able 

to offer a better description of pressure and saturation changes near the fracture. Hence, more 

accurate characterization of the flow pattern in the complex fracture network in the shale oil reservoir 

is obtained. By using the commercial simulator CMG, Odunuga [10] studied the self-similar reservoir 

fracture network fractal pattern and calculated the production capacity and drainage area of the 

fractured shale gas well with representative fractal patterns. The dual-porosity model is also used to 

shed light on the flow characteristics in shale gas reservoirs [11–13]. In the continuum media dual 

medium-based model, the fracture property is averaged and then assigned to each grid node, and it 

is generally reflected in the concept of the matrix and fracture, in which it is difficult to accurately 

characterize every detail of the complex fracture system. Carlson [14] studied the superior advantages 

of the discrete fracture model in dealing with the explicit fracture description of the non-continuum 

medium, which can provide more information concerning the inter-porosity flow, given that the 

fracture spacing is relatively large. A simplified discrete fracture model suitable for general-purpose 

reservoir simulators is presented to handle both 2D and 3D matrix-fracture systems [15]. Both the 

wire-mesh model and the unconventional fracture model originate from the discrete fracture model, 

which can explicitly describe the fracture network geometry based on fracture propagation. Xu et al. 

[16] established the wire-mesh model for hydraulic fracturing simulation, where there are two groups 

of planar fractures perpendicular to each other in the ellipse of the stimulated area. A new hydraulic-

fracture model is developed to simulate the complex fracture-network propagation in a formation 

with pre-existing natural fractures proposed by Weng et al. [17]. The interaction, coupling, and 

deformation of hydraulic fractures and pre-existing natural fractures is taken into consideration in 

their model. 

However, with the multi-scale features in particular shale reservoir, the guiding concept has 

changed from “bi-wing planar fractures” to “complex fracture networks”. To account for the clastic 

mass after fracturing, Guo et al. [18] conducted several fracture propagation experiments to evaluate 
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the crushability, Figure 2. Al-Obaidy et al. [19] proposed “branched fractal” models that describe the 

pressure depletion in gas condensate shale reservoirs, and their results show that the fractal models 

allow for using more realistic shale permeability and improve the match for the observed trend. To 

capture part of the complexity of the fracture network, Mhiri et al. [20] introduced a novel approach 

to model the hydraulic fractures using “random-walk” stochastic method. The geometry of a fracture 

network is related to the fractal controlling parameters, and the multi-level bifurcated geometry of a 

fractal fracture better represents fractures of different orders and branches. Fuyong et al. [21,22] 

investigate fluid flow in fractal porous media and propose simulation method for the permeability 

of porous media based on the multiple fractal models. 

 

Figure 2. Core fracture network experiment result. A total of six cracks are generated after fracturing. 

④ and ⑤ grow only single fractures perpendicular to the wellbore, but ①, ②, ③, and ⑥ split into 

two branches after propagating a few centimeters, modified from Guo et al. [18] 

The objective of this work is to apply fractal theory to model a multi-scale fracture system and 

provide a quantitative characterization of the induced hydraulic fracture networks. The fractal-

fracture network model will be built to reflect the distribution pattern of the fractal-branching 

network based on the discrete fracture method. This approach is expected to give a more realistic 

representation of fracture geometry and multi-scale features observed in the unconventional 

reservoir. The findings of this research provide theoretical foundations for the characterization of the 

complex fracture network created by the multi-stage fracturing, while offering guidance for the 

production prediction. 

2. Discrete Fractal-Fracture Network (DFFN) 

2.1. Physical Model 

The fracturing treatment aims at creating the stimulated reservoir volume (SRV) to form the 

hydraulic fracture-natural fracture system [23–26]. However, without effective fracturing-forced 

propagation and openness, the natural fractures are very difficult to contribute to the production. 

Figure 3 shows a schematic plot of the fracture representative element volume (FREV), in which 

connected natural fractures and induced fractures are the main flow paths in the SRV, where 

permeability is much higher than the matrix. Given the process and relevant characteristics of the 

multi-stage hydraulic fracturing in unconventional reservoirs, the fractal fracture pattern is generated 

by construction theory [27] in Figure 4. Assumptions are made as follows: (1) Only the hydraulic 

fractures and natural fractures (including each level of induced fractures) connected with each other 

and isolated natural fractures are not considered. (2) Fractal fractures are generated hierarchically, 

and they are all perpendicular to the wellbore and grow by means of “bifurcation”. (3) Fracture 

properties stipulate in each level of the fractal fractures by scaling factors. 
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Figure 3. Multi-stage fractured horizontal well with representative element volume (dark area). 

 

Figure 4. Determined self-similar fractal fracture model by construction theory. (a) represent 

branching fracture propagation geometry, modified from [23]; (b) represent the fracture 

representative element volume in Figure 2; (c) is determined Y-shape self-similar fractal fractures [28]. 

According to the fractal self-similar construction theory [27], the fractal dimension and the 

scaling factor of fractures can be determined. In terms of the symmetrically-distributed fracture 

network on each side of the main fracture, the branching fracture in the same level has the same 

length, while the branching fractures grow further following certain ratio factors. As hydraulic 

fractures propagate further, the fracture branch continuously increases, and the extended branching 

fractures become smaller than the previous cracks. Meanwhile, fracture properties, such as fracture 

width and fracture conductivity, with respect to each level, constantly decline. According to the 

deterministic self-similar fractal network, the branching fracture network is assumed to consist of N 

levels of branching fractures from the primary fracture to the secondary fracture, with a maximum 

fracture number of m. It is defined that the SRV of the secondary branching fractures and fracture 

network gradually decrease with the fracture propagation and, therefore, we introduced the concept 

of the stimulated fracture volume (SFV). The SFV of the fractal branching network is defined as being 

equal to the volume occupied by the fractures, which can be calculated by summarizing the effective 

stimulated volume of each level’s fractures. 

𝑉𝑆𝑅𝑉 = ∑ 𝑛𝑘𝑙𝑘𝑑𝑘ℎ = 𝑛𝑚𝑙𝑚𝑑𝑚ℎ ∑ 𝑛𝑘−𝑚𝛼𝑘−𝑚𝛽𝑘−𝑚 = 𝑉𝑚𝑛𝑚
1 − (𝑛𝛼𝛽)−(𝑚+1)

1 − (𝑛𝛼𝛽)−1

𝑚

𝑘=0

𝑚

𝑘=0

 (1) 

where, 𝑉𝑚 = 𝑙𝑚𝑑𝑚ℎ represents the volume of the bifurcated fracture. 

2.2. Mathematical Model of Discrete Fractal-Fracture Network 

Following the mathematical model, we assumed a compressible single-phase fluid (i.e., oil) flow 

in the matrix and fracture systems, following Darcy’s law. The fractured horizontal well is located in 

the center area of the rectangular reservoir; multiple fractures with finite conductivity vertically cross 

the horizontal wellbore; the stimulated reservoir volume (SRV), distributed on the two sides of the 

fracture, is composed of the matrix/fracture medium. Dimensionless variables are defined, as follows: 
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𝑥𝐷 = 𝑥/𝐿, 𝑦𝐷 = 𝑦/𝐿, 𝑧𝐷 = 𝑧/𝐿 (2) 

𝑥𝑒𝐷 = 𝑥𝑒/𝐿, 𝑦𝑒𝐷 = 𝑦𝑒/𝐿 (3) 

𝐾𝑚𝐷 =
𝐾𝑚

𝐾𝑓

 (4) 

𝐾𝐹𝐷 =
𝐾𝐹

𝐾𝑓

 (5) 

where 𝐿  is the horizontal length, 𝑥𝑒  and 𝑦𝑒  represent the distance to the boundary in x and y 

directions, respectively, 𝑥𝐷 , 𝑦𝐷 , 𝑥𝑒𝐷 , and 𝑦𝑒𝐷  are the dimensionless distances, 𝐾𝑚  is the matrix 

permeability, 𝐾𝑓  represents the fracture network permeability inside SRV,  𝐾𝐹  represents the 

hydraulic fracture permeability, and 𝐾𝑚𝐷 , 𝐾𝑓𝐷, and 𝐾𝐹𝐷  represent the dimensionless permeability 

of the matrix, fracture network, and hydraulic fracture, respectively. 

𝑡𝐷 =
𝐾𝑓𝑡

𝜇𝐿2(𝜙𝑚𝐶𝑚 + 𝜙𝑓𝐶𝑓)
 (6) 

𝑝𝑟𝐷 =
2𝜋ℎ𝐾𝑛

𝜇𝑞𝑡𝑜𝑡𝑎𝑙

(𝑝𝑖 − 𝑝𝑟), 𝑟 = 𝑚, 𝑓, 𝐹 (7) 

𝜆 = 𝛼𝐿2𝐾𝑚𝐷  (8) 

𝜔𝑚𝑓 =
𝜙𝑓𝐶𝑓

𝜙𝑚𝐶𝑚 + 𝜙𝑓𝐶𝑓

 (9) 

where 𝑡𝐷  is the dimensionless time, 𝑝𝑟𝐷  is the dimensionless pressure, 𝜆  is the flow capacity 

coefficient, and 𝜔 represents the storability ratio. 

The motion equation for fluid flow in the matrix is: 

𝑣𝑚 = −
𝐾𝑚

𝜇
∇𝑝𝑚 (10) 

where, 𝑣𝑚 is the flow velocity tensor in the matrix, 10−3 m/s; 𝑝𝑚 is the matrix pressure, MPa; and 𝜇 

is the fluid viscosity, mPa·s. To account for the compressibility of rock and fluid, it is defined that 

𝜙 = 𝜙0𝑒
−𝐶𝑝(𝑝𝑖−𝑝𝑚) , 𝜌 = 𝜌0𝑒

−𝐶𝐿(𝑝𝑖−𝑝𝑚) . 

2.2.1. Flow in the Matrix 

∇ ∙ (𝜌𝑣𝑚) + 𝜌𝑞𝑚𝑓 = −
𝜕(𝜌𝜙)

𝜕𝑡
 (11) 

where 𝑞𝑚𝑓 is the volume flow rate in unit volume, and t represents the time, s. 

To account for the formation matrix properties in both SRV and unstimulated reservoir volume, 

the surface source in three dimensions turns into a superposition of the line source in two-

dimensional space. Then, we can obtain the dimensionless mathematical flow equation: 

∇2𝑝𝑚𝐷 − (1 − 𝜔𝑚𝑓)
𝑘𝑓

𝑘𝑚

𝜕𝑝𝑚𝐷

𝜕𝑡𝐷
= 0 (12) 

The boundary condition and initial condition can be written as follows: 

𝑝𝑚𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷; 𝑡𝐷 = 0) (13) 

∂𝑝𝑚𝐷

∂𝑥𝐷

|
𝑥=𝑥𝑒𝐷

=
∂𝑝𝑚𝐷

∂𝑦𝐷

|
𝑦=𝑦𝑒𝐷

=
∂𝑝𝑚𝐷

∂𝑧𝐷

|
𝑧=𝑧𝑒𝐷

= 0 (14) 

  



Energies 2018, 11, 286 6 of 15 

 

2.2.2. Flow in Complex Fracture Network 

With the assumptions of a pseudo-steady state flow between matrix systems and fracture 

systems, the exchange flow equation in dual-porosity region is presented as: 

∇2𝑝𝑓 −
𝜙𝑓𝜇𝐶𝑓

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
+ 𝛼

𝐾𝑚

𝐾𝑓

(𝑝𝑚 − 𝑝𝑓) +
𝑞𝑓𝜇

𝐾𝑓

𝛿(𝑀 − 𝑀′) = 0 (15) 

where 𝐶𝑓 is the natural fracture compressibility, MPa−1; 𝑞𝑓  represents the sink/source term in the 

complex fracture system; 𝑝𝑓 is the fracture network system pressure; 𝜙𝑛 is the porosity of natural 

fractures; 𝛿(𝑀 − 𝑀′) represents the function of Delta, when 𝑀 = 𝑀′ , the function equals 1 and, 

otherwise, equals zero. 

Initial condition: 

𝑝𝑚(𝑥, 𝑦, 𝑧; 𝑡 = 0) = 𝑝𝑓(𝑥, 𝑦, 𝑧; 𝑡 = 0) = 𝑝𝑖  (16) 

Boundary condition: 

𝑝𝑓(𝑥, 𝑦, 𝑧; 𝑡) = 𝑝𝐹(𝑥, 𝑦, 𝑧; 𝑡) (17) 

𝑝𝐹  represents the hydraulic fracture pressure, MPa. 

The diffusivity equation with dimensionless variables can be written as follows: 

∇2𝑝𝑚𝐷 − (1 − 𝜔𝑚𝑓)
𝜕𝑝𝑚𝐷

𝜕𝑡𝐷
− λ(𝑝𝑚𝐷 − 𝑝𝑓𝐷) = 0 (18) 

The governing flow equations can be written by: 

∇2𝑝𝑓𝐷 − 𝜔𝑚𝑓

𝜕𝑝𝑓𝐷

𝜕𝑡𝐷
+ λ(𝑝𝑚𝐷 − 𝑝𝑓𝐷) + 2𝜋ℎ𝑒𝐷𝑞𝑓𝐷𝛿(𝑀𝐷 − 𝑀𝐷

′) = 0 (19) 

Initial condition: 

𝑝𝑚𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷; 𝑡𝐷 = 0) = 𝑝𝑓𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷; 𝑡𝐷 = 0) = 0  

2.2.3. Flow in the Hydraulic Fracture 

The hydraulic fracture is regarded as a single-continuum medium and the diffusivity equation 

can be obtained as follows: 

∇2𝑝𝐹 −
𝜙𝐹𝜇𝑐𝐹

𝐾𝐹

𝜕𝑝𝐹

𝜕𝑡
+

𝑞𝐹𝜇

𝐾𝐹

𝛿(𝑀 − 𝑀′) = 0 (20) 

where 𝑐𝐹 is the hydraulic fracture compressibility, MPa−1; 𝐾𝐹  is the hydraulic fracture permeability, 

and qF represents the sink/source flow term in the hydraulic fracture.  

Initial condition: 

𝑝𝐹(𝑥, 𝑦, 𝑧; 𝑡 = 0) = 𝑝𝑖 (21) 

Boundary condition: 

𝑝𝐹(𝑥, 𝑦, 𝑧; 𝑡) = 𝑝𝑓(𝑥, 𝑦, 𝑧; 𝑡) (22) 

The dimensionless governing equation inside the hydraulic fractures is expressed as: 

𝐾𝐹𝐷∇2𝑝𝐹𝐷 −
𝜙𝐹𝑐𝐹

𝜙𝑚𝑐𝑚 + 𝜙𝑓𝑐𝑓

𝜕𝑝𝐹𝐷

𝜕𝑡𝐷
+ 2𝜋ℎ𝑒𝐷𝑞𝐹𝐷𝛿(𝑀 − 𝑀′) = 0 (23) 

𝑝𝐹𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷; 𝑡𝐷 = 0) = 0 (24) 

𝑝𝑓𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷; 𝑡𝐷) = 𝑝𝐹𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷; 𝑡𝐷), ∂Ω𝑓 (25) 

Based on triangular grids and the finite element method, a planar 2-D unsteady flow 

mathematical model is established in the article, and we solve the model by using the finite element 

method. Please refer to Appendix A for numerical solution details. 
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3. Results and Discussion 

Based on the discrete fractal fracture model (DFFM), the effects of the fracture pattern and 

conductivity on the well performance are analyzed. The numerical model built for the representative 

element volume of the fracture is applied to estimate the performance following every iteration stage, 

which assumes that the homogeneous reservoir and each staged fractal fracture are open, and the 

existing natural fractures are not modeled. Since conductivity declines further from fracture networks 

[29,30], the multi-scale conductivity is also considered in the simulation. 

3.1. Fractal Fracture Network Pattern 

With the fractal branching fracture propagation, hydraulic fractures encounter natural fractures 

and divert to form next-level branching fractures. The fracture bifurcation pattern is created via 

numerical programming, and the fracture geometry is illustrated in Figure 5. The connectivity for 

each branching fracture varies, with the initial hydraulic fracture conductivity of 200 D·cm. After five 

iterations, the value decreases to 2.4 D·cm, which only accounts for 12% of the main fracture. Figure 

6 shows the fracture width and reservoir contact area, as well as the induced fracture numbers, which 

indicates that with increasing induced fracture numbers (the fracture network becomes more 

complex further away), even the fractal bifurcation width decreases evidently, but it leads to 

exponential growth of the reservoir contact area. 

 

Figure 5. Fractal geometry design for one stage (bifurcation angle is 45°). 

 

Figure 6. Fractal fracture width and reservoir contact area change with respect to induced fracture 

numbers. 

The actual production data from the Changqing oil field are used for history matching so as to 

validate the proposed model, and the result is shown in Table 1. After generating the fractal fracture 

cases, all five models are found to give similar daily production in the previous two years. Induced 

fractal fracture geometry varies significantly, and the well performance remains very close (Figure 

7a). However, the induced fracture model predicates much higher cumulative volumes in the next 15 

years, and the production volume with eight induced fractures estimated from this model is 20% 

larger than that from a single fracture (Figure 7b), which indicates the great contribution of the 

induced fracture network to the well performance in the late production stage. 
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Table 1. Changqing oil field data. 

Parameter, Symbol, Unit Value 

Fracture unit in the x, m 300 

Fracture unit in the y, m 200 

Reservoir thickness, m 19 m 

Matrix permeability, D 2.3 × 10−4 

Matrix porosity 0.108 

Matrix compressibility, pa−1 3.75 × 10−10 

Main fracture conductivity, D·cm 200 

Main fracture porosity 0.000015 

Fracture compressibility, pa−1 3.75 × 10−8 pa−1 

 

  
(a) (b) 

Figure 7. Fractal fracture network history matching combined with Changqing oil field data. (a) 

represent production rate with respect to different induced fracture scenario; (b) represent the 

cumulative production for all cases.  

Figure 8 shows the stimulated fracture volume (SFV) and cumulative oil production change with 

respect to the induced fracture numbers. The complexity of the fracture network rises with the 

stimulated fracture volume of branching fractures. Higher induced fracture numbers can generate 

more complicated networks, but they also bring strong interference between the connected induced 

fractures, which can lead to a production decrease in the end. 

 

Figure 8. Stimulated fracture volume and cumulative oil production change with respect to induced 

fracture numbers. 
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3.2. Multi-Scale Fractal Fracture Network Conductivity 

Due to the features of brittle, naturally-fractured shale formations, massive shear failure occurs 

during hydraulic fracturing. When the rough rock surface encounters shear slippage, it cannot restore 

to original status and shear-induced permeability is maintained, which is known as the “self-

propped” fracture network. In order to investigate the effect of multi-scale conductivity, fracture 

conductivity is considered to decrease with the bifurcation, which means the natural decrease of 

fracture conductivity from the primary fracture to the secondary and tertiary branches (Figure 9). The 

fully-propped fracture network refers to the case where the proppants can be transported to the 

secondary fracture network far from the wellbore. The partially-propped case means that after the 

fracturing fluid is pumped into the formation, the proppants can only migrate near the primary 

fracture and massive “self-propped” fracture networks are generated at distant fracture systems. 

Meanwhile, the conductivity of the fracture network gradually declines as proppants break, migrate, 

or block the formation. In terms of the un-propped fracture network, the main fracture is effectively 

propped, while the secondary fracture and tertiary branches are only self-propped, which means no 

more proppant migration in the fracture networks. 

 

Figure 9. Schematic plot for a propped discrete fracture network. 

Based on the fracture geometry in Figure 5, we propose a model to investigate the effects of 

fracture propped patterns (Table 2) on cumulative oil production. The result shows that cumulative 

oil production of the fully-propped fracture network greatly exceeds that of the other two propped 

patterns. This indicates that the models with arbitrarily propped fracture geometry are superior to 

the single fracture. The partially-propped fractures’ cumulative oil volume decreases significantly 

due to the decline of the fracture permeability and fracture width. Figure 10 also indicates that with 

the rapid decrease of complex fracture conductivity, the cumulative production increases slightly 

with growing complexity of the fracture network. Therefore, improving the effective conductivity of 

the fracture network is the precondition for hydraulic fracture stimulation. 

Table 2. Different propped fracture network scenario and parameters. 

Scenario 

Induced Fracture Permeability, D (Fracture Width) 

Schematic Plot Main  

(5 cm) 

Second  

(3 cm) 

Third  

(1.8 cm) 

Fourth  

(1.08 cm) 

Fifth  

(0.648 cm) 

Fully-propped fracture network 2 2 2 2 2 

 

Partially-propped fracture network 

DR * = 0.6 2 1.2 0.72 0.432 0.259 

 

DR = 0.4 2 0.8 0.32 0.128 0.0512 
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Un-propped fracture network 2 0.0512 0.0512 0.0512 0.0512 

 

* DR is declined ratio of fracture permeability, whose value equals the ratio of the secondary fracture 

permeability over the previous fracture permeability. 

 

Figure 10. Cumulative production comparison among fractal bifurcate fracture with respect to 

different fracture network conductivity. 

Regarding the un-propped fracture model, the cumulative production fluctuation according to 

the geometry, topological structure, and tortuosity of the fracture network can cause extra fluid flow 

resistance while the fracture network conductivity is relatively low. Without the propped network in 

the stimulated reservoir volume, the primary fracture is the main contributor to production. The 

decrease of the main fracture length is bound to have a great impact on fracture production, and also 

connected, induced, complex fractures interfering with each other can lead to lower performance. 

We also investigate he cumulative production with different induced fracture deviation angles 

(Figure 11). It is illustrated that the reservoir contact area of the fracture network increases with the 

bifurcation angle (deviation angle). When fractures are featured by high conductivity, it is 

inappropriate to create a denser network in the stimulated reservoir volume, and only a few 

interweaving fractures can result in very good performance. The cumulative oil production of the 

partially-propped fracture case is fairly close to the others, and the effect of fracture morphology on 

yield is not great. When it comes to lower conductivity fractures, the effect of the main fracture 

substantially overweighs the secondary and tertiary fractures. 

 

 

(a) (b) 

Figure 11. Cumulative production comparison among fractal bifurcate fracture geometries with 

respect to different fracture network conductivity. (a) reflect the cumulative production changed with 

induced fracture deviation angle; (b) represent the pressure distribution at the end of simulation.  
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4. Conclusions 

This paper investigates the fractal characteristics of the complex fracture network created by 

multi-stage fracturing in shale reservoirs. It has been found that discrete fractal-fracture network 

(DFFN) models allow for using more realistic fracture values to evaluate the well performance. (1) 

We establish the numerical simulation model for fractal fracture network characterization. The 

proposed model meshes with the unstructured grid, which is solved using the finite element method. 

(2) We proposed a new method for fractal fracture network characterization according to the 

construction theory. (3) The correlation between multi-scale fractal fracture patterns, conductivity, 

and corresponding production has been quantitatively analyzed with the help of the mathematical 

formula. The proposed research may provide valuable insight into optimal hydraulic fracturing 

design and unconventional resource recovery maximization. For future extensions, a stochastic-

based fractal fracture network combined with micro-seismic events may be coupled to quantify the 

complex network fractures; this will improve hydraulic fracture design and production performance. 
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Nomenclature 

L Lateral length of horizontal well, m 

N Directions, x, y, and z 

𝑥𝑒 Distance to boundary in x-direction, m 

𝑦𝑒  Distance to boundary in y-direction, m 

𝑥𝑒𝐷 Dimensionless distance to x boundary 

𝑦𝑒𝐷 Dimensionless distance to y boundary 

𝐾𝑚 Permeability of reservoir matrix, m 
𝐾𝑓 Permeability of fracture networks in SRV, mD 

𝐾𝐹 Permeability of hydraulic fractures, mD 

𝐾𝑚𝐷 Dimensionless permeability of reservoir matrix 
𝐾𝑓𝐷  Dimensionless permeability of fracture networks in SRV 

𝐾𝐹𝐷 Dimensionless permeability of hydraulic fractures 

𝑡 Time, s 

𝑡𝐷 Dimensionless time 

𝑝𝑟𝐷 Dimensionless pressure 

𝜆 Flow capacity coefficient 

𝜔  Storability ratio 

𝑣𝑚 Fluid flow velocity tensor in reservoir matrix, 10−3 m/s 

𝑝𝑖 Original reservoir pressure, MPa 

𝑝𝑚 Pore pressure of reservoir matrix, MPa 

𝑝𝐹 Pressure in hydraulic fractures, MPa 
𝑝𝑓 Pressure in complex fracture network system, MPa 

𝜇 Fluid viscosity, mPa.s 

𝜙 Reservoir porosity 

𝜙𝑜 Original reservoir porosity 

𝜙𝑛 Natural fractures porosity 

𝜌 Fluid density, kg/m3 

𝜌𝑜 Original fluid density, kg/m3 
𝐶𝑝 Pore compressibility coefficient, MPa−1 
𝐶𝑓 Natural fracture compressibility coefficient, MPa−1 
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𝐶𝐹 Hydraulic fracture compressibility coefficient, MPa−1 

𝐶𝐿 Fluid compressibility coefficient, MPa−1 
𝑞𝑚𝑓 volume flow rate in unit volume, s−1 

𝑞𝑓 Sink/source term in complex fracture system, s−1 

𝑞𝐹 Sink/source flow term in hydraulic fracture, s−1 

𝛿(𝑀 − 𝑀′) Delta function. It equals to 1 when M = M’, otherwise, it equals to zero. 

Appendix A. Numerical Solution of Mathematical Model 

The fractures are treated explicitly based on the discrete fracture model, considering the 

properties of hydraulic fractured horizontal well, SRV, and reservoir unit [31]. The characteristic 

analysis is carried out for the reservoir matrix, SRV, and hydraulic fractures, respectively. The 

Galerkin method of weighted residuals is applied to establish the finite element integral equation, 

which makes continuous infinite degrees of freedom to solution unit discrete into the finite element 

[32–34]. The grid blocks on the horizontal well and fracture are made to be dense, employing a 

triangular frontier advancement meshing algorithm (gridblocks around the horizontal well are 

shown as Figures A1 and A2). Dimensions of hydraulic fractures are reduced based on the discrete 

fracturing model, which makes 3D fractures equivalent to 2D fractures with a certain degree of 

dimensionless width. Additionally, fluid flow in fractures, which obey the Navier-Stokes equation, 

is equivalent to be compliant with Darcy’s law. 

 

Figure A1. The 3D fracture volume is equal to the 2D fracture surface. 

 

Figure A2. Grid meshing generated for FDFN (2D). 

We assume that reservoir Ω consists of unstimulated reservoir matrix Ω𝑚, stimulated reservoir 

volume Ω𝑓 and hydraulic fractures Ω𝐹 , and the following equation can be derived by integration: 

∭𝑅

Ω

𝑑Ω = ∭𝑅

Ω𝑚

𝑑Ω𝑚 + ∭ 𝑅

Ω𝑓

𝑑Ω𝑓 + ∭ 𝑅

Ω𝐹

𝑑Ω𝐹  (A1) 
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where ∭ 𝑅
Ω

𝑑Ω𝐹 can be expressed as 𝑏𝑓 × ∬ 𝑅𝑑Ω𝐹
′

Ω𝐹
′ , and 𝑏𝑓 is the dimensionless fracture width. 

By applying interpolation function in the element, and the dimensionless pressure in element 

“s” can be expressed as: 

𝑝𝐷
(𝑠)(𝑥, 𝑦, 𝑧, 𝑡) = [𝑁𝑠(𝑥, 𝑦, 𝑧)]{𝑝𝐷

(𝑠)} (A2) 

where 𝑝𝐷
(𝑠)  is the dimensionless pressure in the element, and 𝑁𝑖(𝑥, 𝑦, 𝑧)  represents the 

corresponding interpolation function at node i in the element. In this paper, we use the linear 

polynomial interpolation function: 

𝑁𝑠(𝑥, 𝑦, 𝑧) = 𝑁1(𝑥, 𝑦, 𝑧), 𝑁2(𝑥, 𝑦, 𝑧), … , 𝑁𝑛(𝑥, 𝑦, 𝑧) (A3) 

𝑝𝐷
(𝑠) =

(

 
 
 

𝑝𝐷1
(𝑠)

𝑝𝐷2
(𝑠)

𝑝𝐷3
(𝑠)

…

𝑝𝐷𝑛
(𝑠)

)

 
 
 

 (A4) 

The approximate solution of differential fluid flow equations is derived using the Galerkin 

method of weighted residuals. 

The tetrahedron characteristic matrix of the reservoir matrix is expressed as: 

∫ ∇𝑁𝑠
𝑇∇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

𝑝𝑚𝐷
(𝑠)

+ (1 − 𝜔𝑚𝑓)
𝑘𝑓

𝑘𝑚

∫ 𝑁𝑠
𝑇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

𝜕𝑝𝑚
(𝑠)

𝜕𝑡𝐷
= 0 (A5) 

where ∇𝑁𝑠 =

[
 
 
 
 
 
𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥
𝜕𝑁1

𝜕𝑦

𝜕𝑁2

𝜕𝑦

 

𝜕𝑁3

𝜕𝑥

𝜕𝑁4

𝜕𝑥
𝜕𝑁3

𝜕𝑦

𝜕𝑁4

𝜕𝑦

𝜕𝑁1

𝜕𝑧
 
𝜕𝑁2

𝜕𝑧
 
𝜕𝑁3

𝜕𝑧
 
𝜕𝑁4

𝜕𝑧
 ]

 
 
 
 
 

, and 𝑝𝑚
(𝑠)

=

(

  
 

𝑝𝑚1
(𝑠)

𝑝𝑚2
(𝑠)

𝑝𝑚3
(𝑠)

𝑝𝑚4
(𝑠)

)

  
 

. 

Similarly, the tetrahedron characteristic matrix of SRV can be obtained as: 

∫ ∇𝑁𝑠
𝑇∇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

𝑝𝑚
(𝑠)

+ (1 − 𝜔𝑚𝑓)∫ 𝑁𝑠
𝑇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

𝜕𝑝𝑚
(𝑠)

𝜕𝑡𝐷

+ λ∫ 𝑁𝑠
𝑇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

(𝑝𝑚
(𝑠)

− 𝑝𝑓
(𝑠)

) = 0 

(A6) 

∫ ∇𝑁𝑠
𝑇∇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

𝑝𝑓
(𝑠)

− 𝜔𝑚𝑓 ∫ 𝑁𝑠
𝑇𝑁𝑠𝑑Ω(𝑠)

𝛺(𝑠)

𝜕𝑝𝑓
(𝑠)

𝜕𝑡𝐷
+ λ∫ 𝑁𝑠

𝑇𝑁𝑠𝑑Ω(𝑠)
𝛺(𝑠)

(𝑝𝑚
(𝑠)

− 𝑝𝑓
(𝑠)

)

+ 2𝜋ℎ𝑒𝐷 ∫ 𝑁𝑠
𝑇

𝛺(𝑠)

𝑞𝑓𝐷𝛿(𝑀𝐷 − 𝑀𝐷
′)𝑑Ω(𝑠) = 0 

(A7) 

where ∇𝑁𝑠 =

[
 
 
 
 
 
𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥
𝜕𝑁1

𝜕𝑦

𝜕𝑁2

𝜕𝑦

 

𝜕𝑁3

𝜕𝑥

𝜕𝑁4

𝜕𝑥
𝜕𝑁3

𝜕𝑦

𝜕𝑁4

𝜕𝑦

𝜕𝑁1

𝜕𝑧
 
𝜕𝑁2

𝜕𝑧
 
𝜕𝑁3

𝜕𝑧
 
𝜕𝑁4

𝜕𝑧
 ]

 
 
 
 
 

, and 𝑝𝑓
(𝑠)

=

(

 
 
 

𝑝𝑓1
(𝑠)

𝑝𝑓2
(𝑠)

𝑝𝑓3
(𝑠)

𝑝𝑓4
(𝑠)

)

 
 
 

. 

In a similar way, the 2D hydraulic fracture characteristic matrix is: 

𝑏𝐹𝐾𝐹𝐷 ∬ ∇𝑁𝑠,𝐹
𝑇 ∇𝑁𝑠,𝐹𝑑Ω𝐹𝑠

𝐹𝑠

𝑝𝐹
(𝑠)

−
𝜙𝐹𝑐𝐹

𝜙𝑚𝑐𝑚 + 𝜙𝑓𝑐𝑓
𝑏𝐹 ∬ 𝑁𝑠,𝐹

𝑇 𝑁𝑠,𝐹𝑑Ω𝐹𝑠
𝐹𝑠

𝜕𝑝𝐹
(𝑠)

𝜕𝑡𝐷

+ 2𝜋ℎ𝑒𝐷𝑏𝐹 ∬ 𝑁𝑠,𝐹
𝑇

𝐹𝑠

𝑞𝐹𝐷𝛿(𝑀𝐷 − 𝑀𝐷
′)𝑑Ω𝐹𝑠

= 0 

(A8) 
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where 𝑏𝐹  is the width of the primary fracture, 𝑁𝑠,𝐹  equals [𝑁1, 𝑁2, 𝑁3], ∇𝑁𝑠,𝐹
𝑇 =

[
 
 
 
 
𝜕𝑁1

𝜕𝑥
 
𝜕𝑁2

𝜕𝑥
 
𝜕𝑁3

𝜕𝑥
 

𝜕𝑁1

𝜕𝑦
 
𝜕𝑁2

𝜕𝑦
 
𝜕𝑁3

𝜕𝑦
 

𝜕𝑁1

𝜕𝑧
 
𝜕𝑁2

𝜕𝑧
 
𝜕𝑁3

𝜕𝑧
 ]
 
 
 
 

, and 

𝑝𝐹
(𝑠)

= (

𝑝𝐹1
(𝑠)

𝑝𝐹2
(𝑠)

𝑝𝐹3
(𝑠)

). 

We combine the above characteristic matrices of different regions to obtain the matrix of the 

whole reservoir, and simplify the equation sets according to the obtained matrix elements and the 

corresponding serial numbers. The equation sets are discrete by backward differentiation on the 

timescale. In this paper, the triangle mesh grid and adaptive mesh subdivision technology are 

adopted in the model and we demonstrate that the results converge to a solution and are independent 

of mesh size. Refinement of the mesh has no effect on the solution. 
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