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Abstract: In underground mining, it is not currently feasible to forecast a coal burst incident. A coal
burst usually includes suddenly abrupt energy release in line with the significant deformed shape
in a coal mass as well as coal ejection. The major source of the released energy is the energy stored
in the coal. The effect of geological characteristics in the coal on the possible released energy due to
material and joint damping is classified as a current silent issue. Therefore, innovative research is
needed to understand the influence of coal’s joint and cleat characters (directions and densities) on
the possible energy release and/or dissipation. A simple and novel analytical solution is developed in
this paper to calculate the amount of released energy due to varying joint density. A broad validation
is conducted by comparing the outcomes of the developed analytical model with the results of
a three-dimensional numerical simulation using the commercial discrete element package 3DEC.
An appropriate agreement has been observed between the results from the numerical modelling and
the suggested closed form solution. The paper derives a novel analytical solution to calculate the
amount of released energy in coal with different joint densities.

Keywords: coal burst; mechanisms; released energy; analytical approach

1. Introduction

Coal bursts have been identified as one of the major catastrophic failures in underground coal
mines, causing a significant threat to safety and production. Many researchers define coal bursts as
abrupt, sudden fractures of the rock mass with a brittle, unstable release of elastic or strain energy
from the mining excavation area due to seismic incident as well as the mining activities. The coal burst
source is the mechanism that triggers or induces the damage mechanism visible on the excavation
surface. The coal burst source is generally associated with a seismic event that can be performed at a
wide range of local magnitudes [1–6]. Indeed, mining-induced seismicity can reach moderate values
of ground velocity and acceleration, and in some cases on the surface may lead to the generation of
low-intensity earthquakes [7]. The mechanism that produces the seismic event is a sudden release of
the strain energy that has been stored above a critical level within the rock/coal mass. Some portion of
this energy can be dissipated by the crack development, and the rest of the energy is converted into
kinetic energy [8,9]. When the energy source is located near the roadway, the released energy may lead
to coal fragmentation. When the major source of the energy is located in a plane of weakness inside the
coal mass, the released energy may considerably cause to create a shear displacement along the plane.
This sudden shear displacement can result in the generation of vibrations that cause coal ejections
when they are situated near the excavation boundaries [5]. Tarasov and Randolph [6] devoted special
attention to comprehensively elaborating the individual and inconsistent behaviours of hard rock at
the significant depth, which are directly in line with the rock fracture condition in deep excavations.
Tarasov and Randolph [6] broadly indicated that the shear failure procedures, under the significantly
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low frictional condition between the engaged surfaces, can be classified as the main reason for the
release of energy. Based on the suggested frictionless mechanism, the level of the brittleness of the
confined rock/coal masses might be increased under high stress conditions. This may result in reduced
overall ductility which would be in line with the abrupt fracture failure. Under an energy-balance
approach, the methods to predict coal burst risk are based on energy indexes such as energy release rate
(ERR) [1,8], energy storage rate (ESR), strain energy storage index [9], potential energy of elastic strain
(PES) or strain energy density (SED) (i.e., the elastic strain energy in a unit volume of the coal mass,
which can be computed by the uniaxial compressive strength of the coal and the relevant unloading
tangential modulus [8]), and burst potential index (BPI) [10]. Comprehensive reviews of research on
the chemical and physical properties of a coal samples have been conducted [11,12], however, there is
a critical need to undertake research on the physical responses of the joint and cleat densities on the
energy absorption and dissipation in a coal sample under different loading conditions. This paper
analyses the role of the joint and cleat characters on energy release in coal samples with respect to
the different joint densities and quantifies the strain energy and the release energy that potentially
contribute to coal bursts.

2. Calculation of the Three Dimensional Strain Energy in a Coal Mass

An analytical model is suggested to calculate the strain energy. The proposed model is based
on the Novozhilove approach [13]. According to Novozhilove [13], strain and plastic work may be
calculated by reference to an element, the deformed volume, which is:

dA = =
(
εxx, εyy, εzz, εxy, εyz, εzx

)
dxdydz (1)

where εxx, εyy, εzz are the tensorial strains in different directions.
The deformed volume is equal to the product of the undeformed volume dx, dy, dz and a function

of the six strain components. The form of this function depends on the physical properties of the
dimensions and shape of the body. Alternatively, the strain components can be expressed in terms
of the three principal strains ε1, ε2, ε3 and the direction cosines of the principal axes of strain ε1, ε2, ε3

with respect to the X, Y and Z axes. Thus, the direction cosines might be regarded as a function of
three independent quantities, the Euler angles (Figure 1) θ, ϕ, Ψ which determine the orientation of
the trihedral ε1, ε2, ε3 relative to the trihedral X, Y and Z. Therefore, dA can be written as:

dA = =(ε1, ε2, ε3, θ, ϕ, Ψ)dxdydz (2)

dA = =(ε1, ε2, ε3)dxdydz (3)
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The three independent invariants ε1, ε2, ε3 are important, as they have a simple physical meaning,
individually, in the case of small deformations. The strain components can be expressed by a0, a1, a2

factors, and thus it is more expedient to indicate the work of deformation on an element of an isotropic
body as a function of the three invariants a0, a1, a2:

a0 = εxxεyyεzz −
1
4

(
εxxε2

yz + εyyε2
xz + εzzε2

xy − εxyεxzεyz

)
(4)

a1 = εxxεyy + εxxεzz + εyyεzz −
1
4
(ε2

xy + ε2
xz + ε2

yz) = ε1ε2 + ε1ε3 + ε2ε3 (5)

a2 = εxx + εyy + εzz = ε1 + ε2 + ε3 (6)

Thus, the induced work by considering the possible deforming of an elementary parallelepiped
of an isotropic body can be calculated by:

dA = Φ(a2, a1, a0)dxdydz (7)

Therefore, for the entire body:

A =
∫ ∫ ∫

Φ(a2, a1, a0)dxdydz (8)

where the integration extends over the volume of the body in its unstrained state, as dxdydz is the
volume of an elementary parallelepiped in that state. The function Φ(a2, a1, a0) is the strain energy
of a unit volume of the body in its unstrained state, specific strain energy. To calculate all of the
possible induced energy inside the entire element due to the different deformations in the different
directions, the application of the principle of virtual displacement to a deformed body in a state of
equilibrium is considered. The arbitrary vectors including

→
u (x, y, z),

→
v (x, y, z) and

→
ω(x, y, z) were

assigned to the displacements and dξ, dζ, dη are virtual displacement (Figure 2), respectively, which can
be considered as arbitrary continuous functions of x, y, z equal to zero at those points where the values
of the displacement are known.
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Thus, the rate of change strain energy will be in line with δA, where it would be equal to the
work done by all the exterior forces applied to the body in affecting the indicated virtual displacement
(Figure 3). Thus, δA can be written by:

δA = δR1 + δR2 (9)

where δR1 is the virtual work due to the body forces and δR2 is the virtual work done by the surface
forces. The virtual work done by the body forces is equal to:

δR1 =
∫ ∫ ∫ [

F∗ξ δu + F∗η δv + F∗ς δw
]

Ddxdydz (10)

where F∗ξ , F∗η , F∗ζ are the components along the X, Y, Z axes of the force referred to as a unit volume of
the deformed body, dxdydz is the volume element of the unstrained body, and Ddxdydz = (V*/V)dxdydz
is the corresponding volume element of the strained body:

δR2 =
∫ [

f ∗ξ δu + f ∗η δv + f ∗ς δw
]
dΩ′ (11)

where f ∗ξ , f ∗η , f ∗ζ are the components along the X, Y, Z axes of the force acting on a unit area of the
surface of the deformed body, while dΩ’ is the differential of the area in the strained state.
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To calculate δR2 over the surface of the body in its strained state, it would be possible to replace
dΩ’ in terms of dΩ, the differential of surface area in the unstrained state by considering an elementary

rectangular area with sides d
→
a , d

→
b on the bounding elementary rectangle has an area equal to

d
→
Ω = d

→
a × d

→
b and the relevant orientation can be determined by the direction of the unit normal

vector
→
i n = − d

→
a×d

→
b∣∣∣∣d→Ω∣∣∣∣ . Thus, as a result of the deformation, the rectangular area is transformed into

a surface of the deformed body having the form of a parallelogram with sides (1 + Ea)da, (1 + Eb)db.
The cosine of the angle formed by these sides is:

cos(da′, db′) =
→
ε ab

(1 + Ea)(1 + Eb)
=

→
ε ab√

(1 + 2×→ε aa)× (1 + 2×→ε bb)
(12)
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where Ea, Eb are the relative elongations in the directions da, db and εaa, εbb, εab are the corresponding
tangential strain components. Therefore, an element on the surface of the strained body has an area
equal to:

dΩ′ =
√
(1 + 2εaa)(1 + 2εbb)− ε2

abdΩ =
s∗n
sn

dΩ (13)

The coefficient s∗n
sn

which is equal to the ratio of the elements of area in the terminal and initial
states can be expressed in terms of the strain components relative to the X, Y, Z axes and the three
direction cosines of the normal to the surface in the unstrained state. Thus, it is necessary to replace
the strain components εaa, εbb, εab in the formula:

s∗n
sn

=
√
(1 + 2εaa)(1 + 2εbb)− ε2

ab (14)

by their expressions in terms of εxx, . . . , εyz and the direction cosines of da, db and n, then, by considering
the relevant transformations:

s∗n
sn

=
√

γxx cos2(n, x) + γyy cos2(n, y) + γzz cos2(n, z) + γxy cos(n, x) cos(n, y) + γxz cos(n, x) cos(n, z) + γyz cos(n, y) cos(n, z) (15)

where γxx =

(
S∗x
Sx

)2
, γyy =

(S∗y
Sy

)2

, γzz =

(
S∗z
Sz

)2
(16)

1
2

γxy = −εxy + εxzεyz − 2εxyεzz (17)

1
2

γxz = −εxz + εxyεyz − 2εxzεyy (18)

1
2

γyz = −εyz + εxzεxy − 2εyzεxx (19)

and nx̂, nŷ, nẑ are the direction angles of the normal to the bounding surface in the unstrained
state relative to the X, Y, Z axes. The virtual work done by the external surface through the virtual
displacements δu, δv, δω is of the form:

δR2 =
∫ ∫ [

f ∗ξ δu + f ∗η δv + f ∗ζ δw
]S∗n

Sn
dΩ (20)

where
∣∣∣∣d→Ω∣∣∣∣ = ∣∣∣∣d→a × d

→
b
∣∣∣∣ is the area of a surface element in the initial state. Thus, in order to calculate

the value δR2, the integration should be carried out over the surface in the unstrained state. The key
parameters f ∗ξ , f ∗η , f ∗ζ can be also calculated based on the Euler-Bernoulli beam model Ranzi and
Gilbert [14]. An analytical method is developed to evaluate shear stress and strain distributions
between the engaged surfaces throughout different joint layers by considering the beam theory method
in different directions with respect to the different planes, where it can independently calculate shear
forces between the different layers and shear strain as well as the curvature distribution along the
different layers that have been extracted. The main concept to derive the following equations was
extracted from Ranzi and Gilbert [14] and Ranzi et al. [15]. According to Ranzi and Gilbert [14],
the cross-sectional (Figure 4) analysis is based on the assumption of the Euler-Bernoulli beam model.
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The strain distribution across the section can be calculated by ε = εr − y × κ where εr is the strain
at the reference point (which can be determined at any point), y is the distance between the selected
point and location of the neutral axis of the cross-section and κ is the curvature across the section
in different strata layers. A vector can be introduced by K(D) which will be included in the internal
action N (axial forces) and M (internal moment). External loads, which might be due to the effect of the
self-weight of the strata layers as well as the possible applied forces due to the vertical or horizontal
displacement in the different layers, can induce the external axial force Ne, external moment Me and
dA is the differentiate of the engaged surfaces. The relationship between the internal and external
actions can be presented by:

ε =

[
εr

κ

]
(21)

r(ε) =

[
N
M

]
(22)

re =

[
Ne

Me

]
(23)

r(ε) = re, (This is the vector for strain) (24)

By considering the nonlinear interactions, the presented equations can be re-written by:

r
(

ε(i+1)
)
= r
(

ε(i)
)
+ rt

(
ε(i)
)
× ∆ε(i) = re (25)

rt

(
ε(i)
)

rt

(
ε(i)
)
× ∆ε(i) = r(i)R (26)

∂N
(

ε
(i)
r , κ(i)

)
∂εr

× ∆ε
(i)
r +

∂N
(

ε
(i)
r , κ(i)

)
∂κ

× ∆κ = N(i)
R (27)

r(i)R = re − r
(

ε(i)
)

(28)

N(i)
R = Ne − N

(
ε
(i)
r , κ(i)

)
(29)

M(i)
R = Me −M

(
ε
(i)
r , κ(i)

)
(30)
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All the equations can be re-presented in matrix format:

rt

(
ε(i)
)
=

 ∂N
(

ε
(i)
r ,κ(i)

)
∂εr

∂N
(

ε
(i)
r ,κ(i)

)
∂κ

∂M
(

ε
(i)
r ,κ(i)

)
∂εr

∂M
(

ε
(i)
r ,κ(i)

)
∂κ

 (31)

∆ε(i) =

[
∆ε

(i)
r

∆κ(i)

]
, (changing strain and curvature) (32)

The partial derivatives of N and M with respect to εr and κ can be re-arranged in a:

r(i)R =

[
N(i)

R

M(i)
R

]
(33)

more practical form, recalling the definitions of internal actions as:

∂N
(

ε
(i)
r , κ(i)

)
∂εr

=
∫

∂σ

∂εr
dA (34)

∂N
(

ε
(i)
r , κ(i)

)
∂κ

=
∫

∂σ

∂κ
dA (35)

∂M
(

ε
(i)
r , κ(i)

)
∂εr

= −
∫

y
∂σ

∂εr
dA (36)

∂M
(

ε
(i)
r , κ(i)

)
∂κ

= −
∫

y
∂σ

∂κ
dA (37)

where the values of the stress depend on the constitutive models adopted for the materials and on the
magnitude of the strain [14]:

∂N(ε
(i)
r , κ(i))

∂εr
=
∫

∂σ

∂εr
dA =

∫
∂σ

∂ε
× ∂ε

∂εr
dA =

∫
∂σ

∂ε
× ∂(εr − y× κ)

∂εr
dA =

∫
∂σ

∂ε
dA (38)

∂N(ε
(i)
r , κ(i))

∂κ
=
∫

∂σ

∂κ
dA =

∫
∂σ

∂ε
× ∂(εr − y× κ)

∂κ
dA = −

∫
y× ∂σ

∂ε
dA (39)

∂M(ε
(i)
r , κ(i))

∂εr
= −

∫
y× ∂σ

∂εr
dA = −

∫
y× ∂σ

∂ε
× ∂(εr − y× κ)

∂εr
dA = −

∫
y× ∂σ

∂ε
dA (40)

∂M(ε
(i)
r , κ(i))

∂κ
= −

∫
y× ∂σ

∂εr
dA = −

∫
y× ∂σ

∂ε
× ∂(εr − y× κ)

∂κ
dA =

∫
y2 × ∂σ

∂ε
dA (41)

σ = E× ε for |ε| ≤ εp (elastic strain) (42)

σ = fp for |ε| > εp (plastic strain) (43)

∂σ

∂ε
=

∂(E× ε)

∂ε
= E for |ε| ≤ εp (elastic strain) (44)

∂σ

∂ε
=

∂( fp)

∂ε
= 0 for |ε| > εp (plastic strain) (45)

N(ε
(i)
r , κ(i)) =

∫
σdA =

nj

∑
j=1

σ(yj, ε
(i)
r , κ(i))×Aj (46)
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M(ε
(i)
r , κ(i)) = −

∫
yσdA = −

nj

∑
j=1

yj × σ(yj, ε
(i)
r , κ(i))×Aj (47)

∂N(ε
(i)
r , κ(i))

∂εr
=
∫

∂σ

∂ε
dA =

nj

∑
j=1

∂σ(yj, ε
(i)
r , κ(i))

∂ε
×Aj (48)

∂N(ε
(i)
r , κ(i))

∂κ
= −

∫
y× ∂σ

∂εr
dA = −

nj

∑
j=1

yj ×
∂σ(yj, ε

(i)
r , κ(i))

∂ε
×Aj (49)

∂M(ε
(i)
r , κ(i))

∂εr
= −

∫
y× ∂σ

∂εr
dA = −

nj

∑
j=1

yj ×
∂σ(yj, ε

(i)
r , κ(i))

∂ε
×Aj (50)

∂M(ε
(i)
r , κ(i))

∂κ
=
∫

y2 × ∂σ

∂ε
dA =

nj

∑
j=1

y2
j ×

∂σ(yj, ε
(i)
r , κ(i))

∂ε
×Aj (51)

Thus, by calculating stress and strain at the different points at the different layers of the
overburden, the internal axial forces as well as internal moments can be calculated. It was assumed
that strain energy (A) can be calculated by:

A =
∫ ∫ ∫

Φ(a2, a1, a0)dxdydz (52)

δA = δ
∫ ∫ ∫

Φ(a2, a1, a0)dxdydz =
∫ ∫ ∫

δ[Φ(a2, a1, a0)]dxdydz (53)

Furthermore:

δ[Φ(a2, a1, a0)] =
∂Φ

∂εxx
δεxx +

∂Φ
∂εyy

δεyy +
∂Φ
∂εzz

δεzz +
∂Φ

∂εxy
δεxy +

∂Φ
∂εxz

δεxz +
∂Φ
∂εyz

δεyz (54)

where, in accordance with the former equations and substituting for a0, a1 and a2 according to
Equations (4)–(6),

∂Φ
∂εxx

=
∂Φ
∂a2

∂a2

∂εxx
+

∂Φ
∂a1

∂a1

∂εxx
+

∂Φ
∂a0

∂a0

∂εxx
=

∂Φ
∂a2

+
∂Φ
∂a1

(
εyy + εzz

)
+

∂Φ
∂a0

(
εyyεzz −

1
4

ε2
yz

)
(55)

and similarly for εyy and εzz, furthermore:

∂Φ
∂εxy

=
∂Φ
∂a2

∂a2

∂εxy
+

∂Φ
∂a1

∂a1

∂εxy
+

∂Φ
∂a0

∂a0

∂εxy
= −1

2
∂Φ
∂a1

εxy +
1
2

∂Φ
∂a0

(
1
2

εxxεyz − εxyεzz

)
(56)

and similarly for εxz and εyz. Moreover, by taking into account:

δ(εxx) =
(

1 + ∂u
∂x

)
δ
(

∂u
∂x

)
+ ∂v

∂x δ
(

∂v
∂x

)
+ ∂w

∂x δ
(

∂w
∂x

)
= (1 + exx)

∂(δu)
∂x

+
(

1
2 exy + wz

)
∂(δv)

∂x +
(

1
2 exz − wy

)
∂(δw)

∂x

(57)

and similarly for εyy and εzz, furthermore:

δ
(
εxy
)
= ∂u

∂y δ
(

∂u
∂x

)
+
(

1 + ∂v
∂y

)
δ
(

∂v
∂x

)
+
(

∂w
∂y

)
δ
(

∂w
∂x

)
+
(

1 + ∂u
∂x

)
δ
(

∂u
∂y

)
+ ∂v

∂x δ
(

∂v
∂y

)
+ ∂w

∂x δ
(

∂w
∂y

)
=
(

1
2 exy − wz

)
∂(δu)

∂x +
(
1 + eyy

) ∂(δv)
∂x +

(
1
2 eyz + wx

)
∂(δw)

∂x

+(1 + exx)
∂(δu)

∂y +
(

1
2 exy + wz

)
∂(δv)

∂y +
(

1
2 exz − wy

)
∂(δw)

∂y

(58)
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and similarly for εxz and εyz. And by substituting these values of δ(εxx), . . . , δ(εyz):

δ[Φ(a2, a1, a0)] =
∂Φ
∂ux

∂(δu)
∂x + ∂Φ

∂uy

∂(δu)
∂y + ∂Φ

∂uz

∂(δu)
∂z

+ ∂Φ
∂vx

∂(δv)
∂x + ∂Φ

∂vy

∂(δv)
∂y + ∂Φ

∂vz

∂(δv)
∂z + ∂Φ

∂wx

∂(δw)
∂x + ∂Φ

∂wy

∂(δw)
∂y + ∂Φ

∂wz

∂(δw)
∂z

(59)

∂Φ
∂ux

=
∂Φ

∂( ∂u
∂x )

= (1 + exx)
∂Φ

∂εxx
+ (

1
2

exy −ωz)
∂Φ

∂εxy
+ (

1
2

exx + ωy)
∂Φ
∂εxz

(60)

∂Φ
∂vx

=
∂Φ

∂( ∂v
∂x )

= (
1
2

exy + ωz)
∂Φ

∂εxx
+ (1 + eyy)

∂Φ
∂εxy

+ (
1
2

eyz −ωx)
∂Φ
∂εxz

(61)

∂Φ
∂ωx

=
∂Φ

∂( ∂ω
∂x )

= (
1
2

exz −ωy)
∂Φ

∂εxx
+ (

1
2

eyz + ωx)
∂Φ

∂εxy
+ (1 + ezz)

∂Φ
∂εxz

(62)

and similarly for uy, uz; vy, vz and wy, wz. Thus, the strain energy (A) can be calculated by:

A =
1
2
×

y
(σxx × εxx + σyy × εyy + σzz × εzz + σxy × εxy + σxz × εxz + σyz × εyz)dxdydz (63)

where σxx × εxx, . . . , σyz × εyz (Figure 5) can be calculated according to the principal of the virtual
work and virtual deformation δA = δR1 + δR2 when the induced stresses and strains cannot be directly
extracted from the simulated model.
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3. Calculating the Released Energy

Initially, in order to calculate the released energy, an assumption was made based on the principle
of thermodynamics. The accuracy of the assumption is validated in line with the analytical model
validation. Provided that there is an exponential relationship between the changing rate of the released
energy as well as the changing rate of the strain energy and the joint density per unit volume of a



Energies 2018, 11, 285 10 of 16

sample, thus α is the significant coefficient where it can represent the rating of the differences between
the released and strain energy over the changing rate of the strain energy with respect to the total strain:(

εtot =

√(
ε2

xx + ε2
yy + ε2

zz

))
(64)

D = e
α
Ψ (65)

α =

(
∂
(

∆A−∆Ereleased
∆εtot

)
∂εtot

)
∂
(

∆A
∆εtot

)
∂εtot

(66)

It can be represented by:

D = exp

 1
Ψ
×

1−

∂

( Ereleasedi
−Ereleasedi−1
∆εtot

)
∂εtot

∂
( Ai−Ai−1

∆εtot

)
∂εtot


 (67)

where A is the strain energy and Ai, Ai−1 are the strain energy in the different increments,
Ψ is the damping factor (0.1 ≤ Ψ ≤ 0.25) and D is the joint density per unit volume of the
sample. Also, Ereleasedi

and Ereleasedi−1
are the released energy in the different increments.

Besides, εtot =

√(
ε2

xx + ε2
yy + ε2

zz

)
where it is the strain component in all of the directions.

Thus, we have:

ln(D) =

 1
Ψ
×

1−

∂

( Ereleasedi
−Ereleasedi−1
∆εtot

)
∂εtot

∂
( Ai−Ai−1

∆εtot

)
∂εtot


 (68)

Furthermore, it is clear that:

∂(Ereleased)
∂εtot

=

(
Ereleasedi

−Ereleasedi−1

)
∆εtot

and ∂(A)
∂εtot

= (Ai−Ai−1)
∆εtot

if ∆εtot → 0
(69)

ln(D) =
1
Ψ
×

1−
∂2Ereleased

∂ε2
tot

∂2 A
∂ε2

tot

 (70)

ln(D)×Ψ× ∂2 A
∂ε2

tot
=

∂2 A
∂ε2

tot
− ∂2Ereleased

∂ε2
tot

(71)

∫
ln(D)×Ψ× ∂2 A

∂ε2
tot

dεtot =
∫

∂2 A
∂ε2

tot
dεtot −

∫
∂2Ereleased

∂ε2
tot

dεtot (72)

ln(D)×Ψ× ∂A
∂εtot

+ C1 =
∂A

∂εtot
− ∂Ereleased

∂εtot
+ C2 (73)

Provided that we assume that the constant values are C1 = 0, C2 = 0 based on the initial conditions:

ln(D)×Ψ× ∂A
∂εtot

=
∂A

∂εtot
− ∂Ereleased

∂εtot
(74)
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By integrating in both parts of the equations:

ln(D)×Ψ×
∫

∂A
∂εtot

dεtot =
∫

∂A
∂εtot

dεtot −
∫

∂Ereleased
∂εtot

dεtot (75)

Therefore, ln(D)×Ψ× A + C3 = A− Ereleased + C4 (76)

Provided that we assume that the constant values are C3 = 0, C4 = 0 based on the initial:

ln(D)×Ψ× A = A− Ereleased or
Ereleased

A
= (1−Ψ× ln(D)) (77)

Equation (77) is the significant equation to calculate the amount of the released energy based
on the value of the strain energy. The suggested equation can indicate the relationship between the
released energy as well as the strain energy due to different joint density per unit volume of a sample
as well as the damping coefficient. Developing the current equation is the major contribution of the
paper. It can also help calculate the amount of the released/dissipated energy as well as help determine
zones of high risk of coal bursts.

4. Validation of the Suggested Analytical Approach

A discrete element method, using commercial package 3DEC, has been developed to validate the
proposed analytical method. A number of coal samples of different sizes (a cubic coal sample ranging
from 1 m × 1 m × 1 m to 15 m × 15 m × 15 m) as well as different joint and cleat density have been
numerically examined. A Mohr-Coulomb (MC) material that presents a constant strength after failure
and a Mohr-Coulomb strain-softening material that can reach the peak strength and then decrease to a
residual strength have been considered. A Coulomb Slip (CS) joint interface property was considered
to simulate the interface properties between the engaged surfaces. Table 1 presents the available coal
as well as the developed joint properties.

Table 1. Coal and joint properties.

Material
Young’s

Modulus (GPa)

Cohesion (MPa) Friction Angle (◦)

Plastic
Strain

Material

Peak Residual Peak ResidualCoal

Poisson’s Ratio

Coal 2.5 0.3 1.1 0.1 25 12 0.012

Joint Properties Normal stiffness = 100 GPa/m, Shear stiffness = 50 GPa/m
Cohesion = 0.5 MPa, Internal friction angle = 30◦

A quasi-static loading as a velocity was applied on the top and bottom of the model. The velocity
slowly applied to the model to represent a relatively loading system to promote a model of a coal
failure that progresses gradually. Simulating the acceptable loading condition is significantly important
to soundly obtain a better understanding of the structural performance of a single coal mass the
quasi-static loading conditions. No boundary and restrain conditions were applied around the lateral
sides of the simulated cubes. Figure 6 illustrates a typical coal cubic sample with different density
(a cubic coal sample ranging from 1 m × 1 m × 1 m to 15 m × 15 m × 15 m). As the number of the
crossed joint sets increases, the role of the joint properties becomes more critical.
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Figure 6. Simulated coal samples with the different joint densities. (a) joint spacing 0.225 m, 1 m × 1 
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5. Discussion of the Results 
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good agreement between the numerical and analytical solutions. As the number of joints increases, 
the amount of the released energy in the simulated coal samples significantly decreases. This is due 
to the effect of the physical and damping interaction between the engaged surfaces of the joints which 
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Figure 6. Simulated coal samples with the different joint densities. (a) joint spacing 0.225 m,
1 m × 1 m × 1 m; (b) joint spacing 0.227 m, 5 m × 5 m × 5 m; (c) joint spacing 0.285 m,
10 m × 10 m × 10 m; (d) joint spacing 0.155 m, 15 m × 15 m × 15 m; (e) joint spacing 1.88 m,
10 m × 10 m × 10 m, Crossed joint sets; (f) joint spacing 0.165 m, 15 m × 15 m × 15 m, Crossed
joint sets.

5. Discussion of the Results

Figure 7 presents the estimated amount of released energy in different coal samples with different
joint densities using both the analytical and numerical methods. As illustrated, there is a good
agreement between the numerical and analytical solutions. As the number of joints increases,
the amount of the released energy in the simulated coal samples significantly decreases. This is
due to the effect of the physical and damping interaction between the engaged surfaces of the joints
which creates an internal released energy. It is also found that by increasing the number of joints, the
global integrity of the simulated samples is considerably reduced, which may lead to reducing the
amount of released energy in the coal.
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joints and faults is essential for understanding slip-type coal bursts. One important aspect of the 
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Figure 7. The amount of the released energy in the different coal sample with the different
joint densities.

Existing rock and coal discontinuities can seriously affect the mechanical properties of coal
materials. Research on the behaviour of coal discontinuities has been carried out in line with studies
of the behaviour of coal properties. Knowledge of the behaviour of geological discontinuities such
as joints and faults is essential for understanding slip-type coal bursts. One important aspect of the
behaviour of a joint is its deformability. The discussed approach can lead to a sound understanding
of the impact of coal local mechanical properties on energy released or absorbed. Figure 8 presents a
comparison between the suggested analytical solution and the numerical simulation while considering
different crossed joint set densities.

Energies 2018, 11, x FOR PEER REVIEW  13 of 16 

 

integrity of the simulated samples is considerably reduced, which may lead to reducing the amount 
of released energy in the coal. 

 
Figure 7. The amount of the released energy in the different coal sample with the different joint 
densities. 

Existing rock and coal discontinuities can seriously affect the mechanical properties of coal 
materials. Research on the behaviour of coal discontinuities has been carried out in line with studies 
of the behaviour of coal properties. Knowledge of the behaviour of geological discontinuities such as 
joints and faults is essential for understanding slip-type coal bursts. One important aspect of the 
behaviour of a joint is its deformability. The discussed approach can lead to a sound understanding 
of the impact of coal local mechanical properties on energy released or absorbed. Figure 8 presents a 
comparison between the suggested analytical solution and the numerical simulation while 
considering different crossed joint set densities. 

 

Figure 8. The amount of the released energy in different coal samples due to the different the crossed
joint sets densities.



Energies 2018, 11, 285 14 of 16

Based on the observed results from Figure 6, a proper agreement can be found between the
discussed analytical solution and the numerical simulation. More realistic and complex conditions,
such as multiple, intersecting coal discontinuities under the influence of sequential mining operations,
can also be studied based on the established methodologies and validated numerical program.
By comparing the single joint results against crossed joints, it is shown that the developed analytical
model has better prediction for the crossed joints condition. As the density of the joints increases in
multiple directions, the condition in the numerical models comes close to the proposed assumption in
the suggested closed form solution. According to the inductive approach, it proves the reliability of the
initial hypothesis where there is an exponential relationship between the changing rate of the released
energy as well as the changing rate of the strain energy and the joint density per unit volume of a
sample. The current research developed a number of innovative analytical and numerical techniques
and has advanced the current knowledge of energy calculations applied to coal bursts. In general,
energy release in coal mining can occur passively in the form of heat and sound or dynamically in
the form of coal bursts. The sudden energy release values are related to the energy changes in the
materials that take place between mining steps. For the vast majority of elements, energy changes
are associated with changes in the element’s stress and deformation state while staying on the same
material curve.

It was also hypothesised that energy calculations may provide a strong extrapolative capability
to determine the possible location and timing of a coal burst. However, from past experiences
documented in the literature, it appears that coal burst prediction based on energy calculations
has practical limitations due to the extreme sensitivity of the energy calculations to the value of
uncertain input parameters. This sensitivity of the calculated energy results to the input properties
of the geologic material may reflect the true situation underground where small anomalies in
geology or rock properties may ultimately determine the precise location and timing of coal burst.
Nevertheless, this sensitivity of the energy calculations to uncertain material properties appears to be
a practical limitation to forecasting coal bursts using calculated energy values. Obtaining sufficient
geological data, such as properties of roof and floor strata, stress fields and properties and locations of
existing rock discontinuities, can improve the quality of analyses of unstable failures in underground
mining. Due to the lack of relevant geological data, performing an analytical and a numerical
simulation can be classified as a good tool to improve the understanding of rock and coal mass
behaviour against possible abnormal loading. The established methodologies can be extended in more
detail in three-dimensional modelling. With three-dimensional models, back analyses of unstable
failures in historical cases can be performed to calibrate the parameters in the models. The calibrated
models may be able to provide useful information about possible locations and intensities of unstable
failures in future mining operations and prevent serious coal bursts from occurring. Different coal
burst proneness indexes were suggested by different researchers [16]. Xie et al. [16] indicated that
dissipated and released energy can play a significant role. A sudden release of the strain energy
may lead to a catastrophic failure, which clearly indicates a certain condition where the coal mass
collapses. Based on the failure mechanism, the fracture procedure of a coal mass might be started from
a partial fracture which would be followed by local damage. This procedure will be finally resulting in
collapsing the mining structures. The failure process is thermodynamically permanent, which includes
released and dissipated energy. By calculating released energy, it is possible to calculate the amount of
dissipated energy which can help calculate different energy index impact factors. This is a significant
step towards forecasting coal burst-prone zones and reducing threats to safety and production.

6. Conclusions

This paper has analytically assessed the effect of joint densities on consistently predicting the
energy released and dissipated in a coal mass. A precise closed form solution was developed to
analytically determine the key aspects to calculate the released energy in a coal sample due to a
possible applied high stress condition. The developed analytical approach was validated by comparing
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the simulated results from the discrete element code using three-dimensional modelling. The suggested
analytical model to calculate the released energy is a function of the strain energy and damping as
well as the joint density per volume of the coal sample. A two-dimensional closed form solution
was also developed to calculate the in-plane shear stress and strain between the different joint layers.
A comprehensive three-dimensional analytical method was suggested to calculate strain energy based
on the virtual work. The suggested analytical solution to calculate strain energy is independent of
access to stress and strain in different increments. The major contribution of the current research
is to combine two different analytical methods to calculate the released energy in a coal mass due
to the different joint density per unit of volume. Analytical methods are an important part of coal
burst evaluation and forecasting. Identifying coal burst-prone zones in underground excavations is
important to properly estimate the in situ stress state of the rock mass and the mining-induced stress
changes, as well as released and dissipated energy. Analytical forecasting methods, either alone or
combined with numerical simulations, can be used to estimate both in situ stress and induced stress,
which leads to the prediction of failure-prone areas and calculation of critical values of the energies.
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