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Abstract: Solar energy is one of the most widely used renewable energy sources in the world and
its development and utilization are being integrated into people’s lives. Therefore, accurate solar
radiation data are of great significance for site-selection of photovoltaic (PV) power generation,
design of solar furnaces and energy-efficient buildings. Practically, it is challenging to get accurate
solar radiation data because of scarce and uneven distribution of ground-based observation sites
throughout the country. Many artificial neural network (ANN) estimation models are therefore
developed to estimate solar radiation, but the existing ANN models are mostly based on conventional
meteorological data; clouds, aerosols, and water vapor are rarely considered because of a lack of
instrumental observations at the conventional meteorological stations. Based on clouds, aerosols,
and precipitable water-vapor data from Moderate Resolution Imaging Spectroradiometer (MODIS),
along with conventional meteorological data, back-propagation (BP) neural network method was
developed in this work with Levenberg-Marquardt (LM) algorithm (referred to as LM-BP) to simulate
monthly-mean daily global solar radiation (M-GSR). Comparisons were carried out among three
M-GSR estimates, including the one presented in this study, the multiple linear regression (MLR)
model, and remotely-sensed radiation products by Cloud and the Earth’s radiation energy system
(CERES). The validation results indicate that the accuracy of the ANN model is better than that of the
MLR model and CERES radiation products, with a root mean squared error (RMSE) of 1.34 MJ·m−2

(ANN), 2.46 MJ·m−2 (MLR), 2.11 MJ·m−2 (CERES), respectively. Finally, according to the established
ANN-based method, the M-GSR of 36 conventional meteorological stations for 12 months was
estimated in 2012 in the study area. Solar radiation data based on the LM-BP method of this study
can provide some reference for the utilization of solar and heat energy.
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1. Introduction

Due to the boom in population, urbanization, and industrialization, the energy demand has
increased enormously, which causes rapid depletion of fossil fuel resources and pollution of the
environment [1]. Solar energy is a cleaner and more renewable energy resource, and its development
and utilization can greatly alleviate the negative environmental effects caused by the harmful
substances released by the combustion of fossil fuels, such as air pollution, acid rain, the greenhouse
effect, ecological balance, destruction and so on. Solar radiation is also the main energy source
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and the basic driving force on Earth, providing necessary energy for the water cycle, atmospheric
motions, and biological activities [2]. Meanwhile, it is one of the necessary input parameters in the
crop evapotranspiration model, ecosystem carbon and nitrogen cycle, hydrology, and climate-change
models [3]. Therefore, making full use of solar energy resources has a significant impact on the strategy
of sustainable development [4]. However, worldwide solar radiation observation sites are sparse and
distributed unevenly. Lack of solar radiation data limits research works in relevant fields; thus, it is
important to perform the simulation of solar radiation.

Many efforts have been made to simulate solar radiation in different geographical and climatic
regions of the Earth. Some traditional simulation models such as Angstrom [5], Hargreaves-Samani [6],
Meteorological Radiation Model (MRM V 6.1) [7], Bristow and Campbell [8], Akinoglu and Ecevit [9],
Louche et al. [10] and the radiative transfer model [11] have been used; but these models have many
limitations. First, these models rely on specific input parameters; the Angstrom model and MRM V 6.1
rely on the sunshine duration [7,12], and the Hargreaves-Samani model and Bristow and Campbell
model depend on minimum and the maximum temperatures [6,13]. Second, the simulation process
of these models is more complex. For example, the radiative transfer models need to calculate the
transmittance function, such as Rayleigh scattering transmittance function, solar diffuse radiative
transmittance function, aerosol transmittance function [14], which are difficult to get accurately,
particularly for non-professionals. Therefore, the traditional model cannot be used effectively. In the
past ten years, many scholars [15–20] have begun to use ANN models to simulate solar radiation.
These research can be divided into several categories, including: (1) Comparing the simulation
accuracy of ANNs with different input parameters. Rao et al. [21] used different combinations of
daily minimum temperature (Tmin), daily maximum temperature (Tmax), the difference of daily
maximum and minimum temperature (DT), sunshine duration (S0), theoretical sunshine duration (S)
and extraterrestrial radiation (H0) to train an ANN; six ANN models were developed to estimate mean
daily global solar radiation. The results that the showed a combination of DT and H0 gave the best
prediction of the Relative Root Mean Square Error (RRMSE), being as little as 3.96%; (2) Comparing
neural network models with other models. Teket et al. [22] compared 91 models for simulating solar
radiation; these models can be summarized as linear models, nonlinear models, mixed models, and
neural network models. The percentage errors were 3.62%, 2.50% to 6.93%, 0.14 to 6.93%, and 0.30%,
respectively; (3) comparing the neural network models with different algorithms. For example, based
on the daily air temperature, air pressure, relative humidity, vapor pressure, and sunshine duration,
Wang et al. [23] established the multilayer perceptron (MLP), generalized regression neural network
(GRNN), and radial basis neural network (RBNN) solar radiation estimation models in different climate
zones in China. The results indicated that the MLP and RBNN models are generally more accurate than
the GRNN, with the RMSE values of 2–3.29 MJ·m−2·day−1 for GRNN, 1.94–3.27 MJ·m−2·day−1 for
MLP, and 1.96–3.25 MJ·m−2·day−1 for RBNN models. Moreover, many previous studies have shown
that the simulation of solar radiation based on neural network present relatively high accuracy [24–30].

However, the existing ANN models for estimating solar radiation were mostly based on
conventional meteorological data; the impact of clouds, aerosols, water vapor, and other factors were
rarely considered because of a lack of instrumental observations at the conventional meteorological
stations, as aerosols, clouds, and water vapor have a great impact on solar radiation. Fortunately,
remote sensing (RS) techniques provide us with continuous signals from space and fill the gap of
conventional meteorological stations data. Meanwhile, RS-based retrieval algorithms provide an
alternative method to simulate solar radiation, such as the radiation transfer models, but its physical
mechanism is too complex to be mastered for non-professionals. Moreover, current RS products of
radiation contain coarse spatial resolutions (1◦ or more) [31].

To address these issues, the main objective of this study is to develop a simple and efficient
method of solar radiation simulation, providing some reference data for areas with limited observations.
Under the support of aerosol optical thickness (AOT), cloud fraction (CF), cloud optical thickness (COT),
precipitable water vapor (PWV) from MODIS and conventional meteorological data, including air
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temperatures (T), sunshine duration (S0), air pressure (P), vapor pressure (Pw), and relative humidity
(RH), an LM-BP neural network model was established to estimate M-GSR in Shaanxi Province and its
surrounding areas. Its performance was evaluated against the MLR and remotely-sensed radiation
products by CERES. Further, according to the established LM-BP neural network model, the M-GSR of
36 conventional meteorological stations was estimated in the study area.

The remainder of this paper consists of four sections. The materials and methodology are described
in Section 2. The results and discussion are provided in Section 3, and the conclusion is presented in
Section 4.

2. Materials and Methodology

2.1. Data and Test Area

Monthly-averaged AOT, CF, COT and PWV data were extracted from MOD08-M3 atmospheric
products aggregated to an equal-angle global grid database. The MOD08-M3 dataset were provided
by the earth observing system data and information system (EOSDIS) of the National Aeronautics and
Space Administration (NASA) covering the period from January 2001 to December 2013. The monthly-
mean values of T, S0, P, Pw, RH used as the input parameters of the empirical models [13,32–34]
and observed M-GSR in the same period were provided by the China Meteorological Administration
(CMA). Yet, uncertainties in solar radiation measurements may occur, such as instrument mal-functions
and occasional voltage instability. Thus, quality control of the solar radiation data was conducted
following the work of Tang et al. [35].

After screening remotely sensed data of northwest arid and semi-arid areas of China from 2001 to
2013, we found decent data for Shaanxi and its surrounding areas (Figure 1). So we picked this area as a
test area of this study. The terrain is complex, and the precipitation and temperatures vary significantly
from the south to the north. Air temperature gradually decreases from the south to north, and the
annual average temperature ranges around 7–16 ◦C; the annual average precipitation is 576.9 mm.
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Figure 1. Location of the study area.

The study area includes nine radiation sites and thirty-six conventional meteorological sites.
In this study, six radiation sites (the blue signs in Figure 1), from 2001 to 2013, were used in the
training process and the remaining three radiation sites, (the red signs in Figure 1) from 2008 to 2013,
were applied in the process of validation; the training and validation stations are distributed over
a wide range of latitudes, longitudes, and altitudes in order to ensure a representative estimation
algorithm in this study.
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2.2. ANN Model

ANN is typically composed of interconnected neuron units organized in layers, it can be applied
to recognize patterns, fit a function, and cluster data [36]. In this study, a BP neural network was used
to realize the fitting ability of ANN, which is illustrated in Figure 2. On the left panel of this figure,
the schematic diagram of a neuron unit was displayed and its function can be mathematically expressed as:

y = g
(
∑n

i−1 wixi

)
(1)

where i represents the index, xi is one component of the input vector, wi is the weight for each xi,
g(·) is the transfer function, which can take many function forms, such as log-sigmoid, tan-sigmoid,
and purelin. On the right panel of Figure 2, a BP neural network with three layers containing one
input layer, single hidden layer, and one output layer were illustrated; it is a backward propagation of
errors [37], the data were propagated from the input layer to the output layer through the hidden layer;
while the error was transmitted in the opposite direction, thereby correcting the connection weight
(wnm) of the network. The final error became smaller and smaller. The design of a neural network
consists of a transfer function, a training algorithm, a number of hidden layer and a training/test set.
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2.3. ANN Implementation

As mentioned in Section 2.2, the ANN implementation comprises several stages:

(1) Transfer function: the combination of a sigmoid and linear transfer function achieved great
simulation results [27,39]. In this work, the tan-sigmoid was a transfer function from the input
layer to the hidden layer, and the purelin as transfer function from hidden layer to output layer.

(2) Learning algorithm: The LM algorithm, a combination of a gradient descent method and
Gauss–Newton method [40], were applied in this work. Compared with the Gauss–Newton
method, the LM algorithm presents a fast local convergence feature, and it also has the gradient
descent method to adjust the weight of each layer, greatly improving the convergence rate and
generalization ability of the network. Its learning rule is:

x(k + 1) = x(k) − [J T J = µI]−1 JTe (2)

where e denotes the error vector, J represents the network error of the weights derivative Jacobian
matrix, I is the unit matrix, u is a variable and its value determines that the algorithm is based
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on the Newton’s method or the gradient method. When the coefficient u is zero, the formula
is the Newton method; when the value of u is large, the above equation becomes smaller step
gradient descent.

(3) Training/test set: A total of 504 input/output pairs at 6 stations from 2000 to 2013 were used to
train ANN to build the relationship between solar radiation and the input vector, and 216 pairs
from 2008 to 2013 at the remaining 3 stations (the red points in Figure 1) that were applied in the
process of validation.

(4) Hidden layer: The design of BP neural network should take the number of neurons in the hidden
layer; the number of neurons in the single hidden layer can be calculated by (3).

n =
√

q + v+a (3)

where q is the number of neurons in the input layer, v the number of neurons in the output layer,
a is a the constant, and 1 < a < 10. Different numbers of neurons in the hidden layer were tested
in order to select a relatively optimized network structure. After training, a comparison was
performed between simulated M-GSR and observed ones at the training sites. R, RMSE and MBE
were used as error metrics for comparison; these statistics are defined as follows:

R =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

(4)

RMSE =
√

∑N
i=1 (H e−Hm)2/N (5)

MBE =∑N
i=1(H e−Hm)/N (6)

where He the estimated M-GSR, and Hm the measured M-GSR, and N the number of samples. If
RMSE and MBE are smaller, the simulation precision is higher. The performance of the number of
neurons in hidden layer is shown in Table 1. When the ANN configuration is with 7 neurons in the
hidden layer, the value of RMSE is the smallest and the value of R is optimal (RMSE = 1.34 MJ·m−2,
with R = 0.96). MBE is minimum (equal to 0.12 MJ·m−2) when the ANN configuration with 5
neurons in the hidden layer. It is indicated that the training results were hardly improved further
when the number of neurons in the hidden layer became greater than 7. The more the number of
neurons, the not higher the accuracy. The reason is that the more the number of hidden layers,
the more the nodes, which leads to more weights and errors, hence, the accuracy of the network
drops. From the above consideration, an ANN configuration with 7 neurons was applied.

Table 1. Training results for different configurations in the hidden layer.

n
Transfer Function

Training Function R
RMSE/

MJ·m−2
MBE/

MJ·m−2
Hidden Layer Output Layer

4 tan-sigmoid purelin trainlm 0.94 1.59 0.13
5 tan-sigmoid purelin trainlm 0.93 1.66 0.12
6 tan-sigmoid purelin trainlm 0.94 1.60 0.44
7 tan-sigmoid purelin trainlm 0.96 1.34 0.21
8 tan-sigmoid purelin trainlm 0.93 1.65 0.27
9 tan-sigmoid purelin trainlm 0.92 2.12 1.15
10 tan-sigmoid purelin trainlm 0.94 1.66 0.52
11 tan-sigmoid purelin trainlm 0.90 1.99 0.42
12 tan-sigmoid purelin trainlm 0.92 1.76 0.19
13 tan-sigmoid purelin trainlm 0.93 1.73 0.20
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2.4. Contribution Assessment

In this study, a multiple regression analysis was used to assess the contribution of input variables
to the output [41]. The proportion of one variable’s regression coefficient accounts for the sum of all
variables’ regression coefficients and represents the relative contribution of the changes of the variable
to solar radiation:

y = m1x1+m2x2+m3x3+ . . . (7)

s1 =
|m1|

|m1|+ |m2|+ . . .+
∣∣mj
∣∣ (8)

where y is the M-GSR, x1, x2, x3 . . . are the values of first, second, third . . . meteorological factors, m1,
m2, m3 are the regression coefficients for first, second, third . . . meteorological factors, and s1 is the
relative contribution of the variation of x1 to M-GSR. According to Figure 3, of the 10 variables, CF has
the greatest contribution to solar radiation in Shaanxi Province and its surrounding areas, followed
by AOT, PWV. Other variables have less influence on solar radiation. Peng et al. [42] analyzed the
variation of solar radiation and its impact factors of Xi’an city, Shaanxi province in recent 50 years,
they pointed out that clouds and aerosols play a major role in reducing solar radiation reaching
the surface. In this study, clouds, aerosols and predictable water vapor were considered first. Then,
the meteorological variables (P, T, Pw, RH and S0) as the first group (hereafter ‘ANN1’); at the same
time, CF, AOT, PWV and PWV along with the meteorological variables as the second group of input
parameters to simulate solar radiation (hereafter ‘ANN2’). From results, the estimated value of ANN2
was found to be closer to the observations (Figure 4). Table 2 gives out different statistics for ANN1 and
ANN2. The statistical results show that the ANN2 model outperforms significantly ANN1 (Table 2).
It demonstrates that clouds, aerosols, and precipitation water vapor are the most important factors
affecting solar radiation changes in Shaanxi and its surrounding areas.

Table 2. Comparison of ANN1 and ANN2.

ANN with Different Inputs RMSE/MJ·m−2 MBE/MJ·m−2 R

ANN1 2.31 −1.13 0.89
ANN2 1.34 0.15 0.96
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3. Results and Discussion

3.1. Performances of ANN Model

The ANN method should be evaluated at sites where solar radiation data were not used in the
training process. Moreover, the ANN-based solar radiation model also needed a comparison with
estimation methods and existing satellite products. So estimates derived from the MLR model and the
CERES monthly-mean daily solar radiation product with a spatial resolution of 1◦ were chosen in this
study. The reason for choosing the MLR and CERES radiation products was: The use of the same input
parameters in the MLR and ANN-based models, thereby avoiding inconsistencies in input parameters,
while CERES has been currently considered to be relatively highly accurate [43]. Figure 5 shows the
comparison between measured and estimated M-GSR from the ANN model, the MLR method and the
CRERS radiation product; correlation coefficient (R) for ANN-based model is 0.96, while that for the
MLR method and CRERS radiation product is 0.89 and 0.92, respectively; and the values of RMSE were
1.34 MJ·m−2, 2.46 MJ·m−2, 2.11 MJ·m−2, respectively. It shows that the ANN-based and the MLR models
have better ability of simulation, and the CRERS radiation product has a relatively high accuarcy.

In order to further investigate the performance of the ANN algorithm in this study, the solar
radiation data serve for each validation site was plotted and error metrics were provided. As seen in
Figure 6, the estimates of the three methods are consistent with the overall trend of the observations,
but the performance is different at each of the 3 validation sites, that is possibility because of the
heterogeneity over the rugged terrain [14,44]. Jinghe is located in the Guanzhong plain, Xifeng Town is
located in the gully region of the Loess Plateau, and Yan’an is within hilly and gully region of the Loess
Plateau. The annual error of the 3 methods for the 3 sites were calculated, as shown in Table 3. The RMSE
values of the ANN-based model and the MLR method are 0.56~2.35 MJ·m−2 and 1.05~3.03 MJ·m−2 at
the 3 sites, respectively; the MBE values are −1.06~1.36 MJ·m−2 and −0.36~2.88 MJ·m−2; the R values
are 0.93~0.99 and 0.76~0.99, respectively. Compared to the ANN-based model, the CERES retrieval
radiation products have a slightly lower precision (the RMSE values are from 0.9 to 3.99 MJ·m−2;
the MBE values are from −1.04 to 2.76 MJ·m−2; the R values between 0.65 and 0.99), probably due to
some uncertainties influencing the accuracy of the CERES radiation products, such as the error of remote
sensor, the error of the algorithm itself, and the error of parameter estimation in the algorithm [45].
In summary, The ANN-based method has a relatively high estimation accuracy and stability.
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2009 2.88 1.42 2.51 2.22 0.96 −0.24 0.92 0.99 0.86
2010 3.09 1.48 2.32 2.76 1.20 2.01 0.90 0.96 0.94
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Jinghe

2008 1.38 1.56 2.06 −1.04 −0.80 0.31 0.98 0.97 0.89
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3.2. Comparison with Models from the Literature

In order to verify the effectiveness of the M-GSR prediction model of our study with AOT, CF,
COT, PWV parameters, we made a comparison with other published M-GSR models, as shown in
Table 4. The comparison was carried out in terms of statistical performance metrics namely R, MBE,
and RMSE. All the ANN-based models had a good performace. But the performance of the ANN
models, with different input parameters, was unequal as reported in Table 4. Qin et al. [46] considered
the land surface temperature (LST), the DT, the precipitation, the Enhanced Vegetation Index (EVI),
the day of the year (DOY), the transmissivity (τ), and had better results (R ranged between 0.89 and
0.99). In a Meenal article [47], S0 and T were used as input to predict M-GSR; the results showed that
when the two were combined as input parameters, the simulation accuracy was the highest (R ranged
from 0.94 to 0.99). Although Abedin et al. [1] considered CF when simulating solar radiation, the value
of R was only 0.83. The possible reason was that the effects of AOT and PWV were not considered
at the same time. It can be clearly noticed that the LM-BP model developed in our study with AOT,
CF, COT, PWV parameters achieved better outcomes (RMSE and MBE of 1.34 MJ·m−2, 0.15 MJ·m−2,
respectively) than the other ANN models listed in the literature [1,19,46–49]. With reference to Table 4,
it can be seen that all empirical models [13,33,34] use temperature and sunshine hours as the main
input parameters to estimate M-GSR. These empirical models have low performance compared with
our MLR model, especially the Hargreaves-Samani model with Tmin and Tmax as the main parameters.
Hence, it is demonstrated that the influencing parametets namely aerosols, clouds and perceptible
water vapor play a major role in obtaining a good prediction accuracy of M-GSR. Also, the ANN with
the LM-BP algorithm, and with input parameters of AOT, CF, COT, PWV, can be applied to estimate
solar radiation on the surface efficiently and effectively.

Table 4. Comparison between various monthly mean daily global solar radiation models.

Model Input Parameters Location Author/Ref. R MBE/
MJ·m−2

RMSE/
MJ·m−2

ANN

LST, DT, Precipitation, EVI, DOY, τ Tibetan plateau/
China Qin [46] 0.89~0.99 - 0.86~1.85

ANN-S: S0, day length
ANN-T: Tmax, Tmin

ANN-ST: S0, day length, Tmax, Tmin

Tamil Nadu,
India Meenal [47]

0.92~0.98
0.77~0.93
0.94~0.98

0.02~0.66
−0.14~0.33
−0.03~0.48

0.75~1.45
0.89~2.22
0.58~1.18

T, Precipitation, RH, P, S0, Tmax,
Tmin, Latitude, Longitude, Altitude

Southeast/
China Zou [48] 0.93~0.97 - -

Latitude, Longitude, Altitude, Year,
Month, T, P, Wind speed, RH Munbai, India Premalatha [49] - - 3.65

LST, Latitude, Longitude,
Altitude, Months Austrlia Deo [19] 0.90~0.98 - 0.93~1.85

Month, Latitude, Longitude,
Altitude, Tmin, RH, Tmax, Bright

Sunshine, Wind Speed, CF
Bangladesh Abedin [1] 0.83 - -

LM-BP: AOT, CF, COT, PWV, T, S0, P,
Pw, RH Shaanxi/China Our study 0.93~0.99 0.15 1.34

Empirical
model

Hargreaves-Samani: Tmax, Tmin Mexico Rivero [13] 0.57~0.77 - 2.86~3.63

Empirical model: S, S0, H0 China Chen [32] - 1.98~2.7 -

Bristow and Campbell: Tmax, Tmin China Chen [33] - 1.51 -

Abdalla model: H0, S0, RH, T Turkey Citakoglu [34] 0.91 43.95 -

MLR: AOT, CF, COT, PWV, T, S0, P,
Pw, RH Shaanxi/China Our study 0.76~0.99 1.31 2.46

3.3. Receiving Regional Monthly Mean Solar Radiation

According to the established ANN-based method, the M-GSR at 36 conventional meteorological
stations for 12 months, was estimated in 2012 in Shaanxi Province and its surrounding regions. Then,
spatial distribution of the solar radiation was obtained with the simulated values and observations,
with a spatial resolution of 1 km (Figure 7a). As seen, these images thoroughly exhibit the spatial
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patterns of solar radiation over Shaanxi Province and its surrounding regions. The solar radiation
values in the north are much larger than those in the south. This is mainly because the southern
Shaanxi Province belongs to the Qinba Mountain area, the vegetation coverage is high and the air is
relatively humid. The absorption of solar radiation is stronger in these areas, and, therefore, the solar
radiation on the surface is relatively low. To the contrary, the northern Shaanxi Province belongs to the
Loess Plateau, where the situation is just the opposite of the south; the solar radiation on the surface is
relatively high. At the same time, comparing the interpolated solar radiation with the CERES product
(spatial resolution of 1◦), shows that the spatial distribution of solar radiation, obtained by the two
methods, is similar, but the ANN-based solar radiation is finer (Figure 7).
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4. Conclusions

In this work, the BP neural network based on the LM algorithm, having been developed namely
cloud, aerosol, and perceptible water vapor data from MODIS along with conventional meteorological
data, was applied to estimate the monthly-mean daily global solar radiation in Shaanxi Province
and its surroundings. This work took neural network into consideration, and showed that the ANN
configuration with seven neurons in the hidden layer was excellent. The contribution assessment
demonstrated that the cloud, aerosol, and precipitation water vapor are the most important factors
affecting solar radiation changes in Shaanxi and its surrounding areas. Comparisons were carried out
among the ANN-based model, the MLR model, and the remotely-sensed radiation products by CERES,
and showed that this ANN-based method can obtain monthly-mean daily global solar radiation with
high accuracy (R = 0.96, RMSE = 1.34 MJ·m−2, MBE = 0.15 MJ·m−2) and good stability.

In summary, the following findings were obtained in this work. First, the ANN-based model with
clouds, aerosols, and precipitable water vapor was accurate and effective to predict the monthly-mean
daily solar radiation for the locations where there are limited observations. Second, clouds, aerosols,
and precipitation water vapor play a very important role in obtaining highly accurate results of solar
radiation. In the future, the LM-BP neural network method presented in this study can be used to obtain
the daily scale and even higher time resolution spatial solar radiation to allow people to make full use
of solar energy resources. Additionally, the components of global solar radiation, that is, scattered
radiation and direct radiation, are closely related to clouds, aerosols, and water vapor. In future work,
the estimation method in this study developed with clouds, aerosols, and water vapor can couple
with other datasets to estimate scattered radiation and direct radiation to get more accurate global
solar radiation.
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