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Abstract: To control multiple series units of distributed power flow controller (DPFC), a hierarchical
control method is proposed. This coordination control system consists of a coordination controller
and multiple series unit controllers. According to the demand of power flow ordered by a dispatch
center, the corresponding series-compensated voltage is calculated by a high-level controller and
transferred to each series unit controller. Comparing the targeted compensated voltage with actual
injected voltage, the modulation signal of the converter will be modified to change the power
flow accurately. The DPFC system model is built in Power Systems Computer Aided Design/
Electromagnetic Transients including DC (PSCAD/EMTDC). The simulation result indicates that the
proposed hierarchical control method is effective and can be considered as an option for practical
engineering applications in the future.

Keywords: AC transmission; distributed power flow controller; hierarchical coordination control;
series compensated voltage

1. Introduction

The mechanically controlled AC power transmission systems, including the use of high-power
electronics, advanced control centers, and communication links, were proposed in 1986 by N.G.
Hingorani from American Electric Power Research Institute (EPRI) [1–3]. For a simple flexible AC
transmission system (FACTS) parallel device or a simple FACTS series device, only the reactive power
can be exchanged if the energy storage unit is not disposed on the DC capacitor side within the FACTS
device. That is, its effect is equivalent to a tunable inductor or an adjustable capacitor. As a consequence,
it is limited and not flexible enough for regulating the power flow of the transmission line.

The conception of a unified power-flow controller (UPFC) was proposed in 1991 by Dr. L.
Gyugyi [4,5] and has been extensively studied to date [6–11]. The UPFC can be regarded as the
combination of shunt and series FACTS linked by a common DC. Generally, the shunt device is a static
synchronous compensator (STATCOM), while the series device is an example of a static synchronous
series compensator (SSSC). Bidirectional active power can flow between the parallel and series units
via the DC-bus capacitor to realize ‘four quadric’ power-flow regulation. Additionally, the active
power flow and reactive power flow of the transmission line can be controlled independently, which
matches its “universal” mind for control. However, the parallel and series units of UPFC are installed
centrally; as a consequence, many land resources are required for the installation. The series side
is integrated into one unit, which causes a large fold line change in the voltage distribution of the
transmission line. Besides this, the requirement for the insulation is high due to the direct electrical
connection of the parallel and series units. The aforementioned factors have led research workers to
rethink UPFC from the aspects of project cost, ease of operation and maintenance.
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Prof. Deepak Divan proposes the concept of distributed FACTS (D-FACTS) [12–14]. As a member
of the DFACTS family, the distributed static series compensator (DSSC) has been studied widely [15–19].
Multiple DSSCs are sparsely hung onto the transmission line through a single-turn transformer (STT).
As a single-phase inverter with small capacity, the DSSC can be designed into a simple structured
device with low insulation cost and easy installation. The control principle of DSSC is similar to that of
SSSC, both of which control the power flow effectively by changing the line reactance flexibly.

The idea of a distributed power flow controller (DPFC) was proposed in 2007, as a new component
within the FACTS family by Zhihui Yuan from Delft University of Technology [20–22]. DPFC is derived
from UPFC. DPFC can be considered as a UPFC without a common DC link between the shunt and
series converters. A parallel unit of the DPFC is installed in a central area while the series units of
DPFC employ multiple distributed series units similar to DSSC. In UPFC, the active power support
of the series unit is transported by a common DC link. In DPFC, however, the DC power channel is
removed and replaced by the transmission power line. Due to the lower impedance characteristic of
the third harmonic compared with higher-frequency harmonics, the third harmonic active power is
chosen as an energy conversion medium. The parallel unit absorbs the base-frequency active power
from the bus line and converts it into third harmonic active power. The third harmonic active power
then is injected to the transmission line and flows along the line. The distributed series units control the
exchange between the 3rd harmonic active power and base-frequency active power. Simultaneously,
the responding voltages will be generated and injected into the transmission line. In our research, we
only care about the base frequency voltage for base frequency power flow control. Thus, later in this
paper, the series-compensated voltage indicates the base-frequency series-compensated voltage.

There are different research results about DPFC from different aspects of application. In [23–25],
DPFC was used to improve power quality problems during voltage sag and swell conditions. In [26],
taking the constraints of DPFC, an optimal scheduling model is established to realize wind power
spillage minimization. However, the generation of the reference base-frequency voltage is not clear.
In [27], by introducing an MMC (modular multilevel converter) at the shunt side of the DPFC, a new
topology of DPFC is proposed. References [28,29] proposed a specific power flow control method:
taking the terminal voltage of the transmission line as a reference, this technique requires high-speed
communication links to transfer the real-time waveform of the terminal voltage to multiple series unit
controllers. From the point view of engineering applications, this power flow control method is not
practical and needs to be improved.

To address the above issue, this paper proposes a hierarchical coordination control method for
DPFC series units. Taking advantage of the fact that the DPFC series unit is able to collect the real-time
phase of the transmission line current, the phase difference between the fundamental frequency line
current and the terminal voltage of the transmission line can be reflected by a sine wave generator
within the DPFC series unit. Therefore, the waveform of the real-time phase of the terminal voltage
can be reproduced correctly during a control period. In this way, a high-speed communication link
is not required. In addition, a wide area measurement system (WAMS) is introduced to transfer the
receiving-end voltage of the transmission line back to the upper-level controller.

The rest of paper is structured as follows. The basic principle of DPFC is presented in Section 2.
In Section 3, the coordination control system is discussed. The computation of the reference
series-compensated voltage is introduced in detail, and the lower-level series-unit control scheme is
depicted. In Section 4, simulation results in PSCAD/EMTDC are used to demonstrate the effectiveness
of the proposed coordination control method, and these are compared with the state-of-the-art methods
for DPFC power flow control. In Section 5, conclusions and future work are presented.

2. Basic Principle of the DPFC

A parallel FACTS device and many distributed series FACTS devices constitute a DPFC. The
structure of a DPFC is shown in Figure 1. In the following, the parallel FACTS device is called a parallel
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unit while the series FACTS devices are called series units. The parallel unit is located at the sending
end of the transmission line, and series units are distributed along the transmission line.

Energies 2018, 11, 3406 3 of 15 

 

A parallel FACTS device and many distributed series FACTS devices constitute a DPFC. The 
structure of a DPFC is shown in Figure 1. In the following, the parallel FACTS device is called a 
parallel unit while the series FACTS devices are called series units. The parallel unit is located at the 
sending end of the transmission line, and series units are distributed along the transmission line. 

 
Figure 1. Structure of a distributed power flow controller (DPFC). 

As shown in Figure 1, T1 and T2 are delta-wye grounded transformers The delta side of the 
transformer is blocked for the third harmonic current while the wye grounded side is allowed for 
flowing 3rd harmonic current; thus, the energy channel of third harmonic active power is formed, 
which makes the active power exchange between the parallel unit and series units of the DPFC 
possible. 

The parallel unit of the DPFC is composed of two back-to-back voltage source converters (VSCs). 
VSC1 is a three-phase converter which is responsible for maintaining the bus voltage and keeping 
the DC capacitor voltage stable. VSC2 is a single-phase converter, which is used to generate a constant 
third harmonic current. Thus, the parallel unit of the DPFC plays the role of absorbing the active 
power from the bus, and then converting it to the third harmonic active power. The third harmonic 
active power is injected into the transmission line and taken in by the DPFC series units as active 
power support. After that, the base-frequency active power is generated by the power exchange 
control in the series units. 

In Figure 1, 1V
•

 and 2V
•

 represent the voltage at the sending-end and receiving-end of the 

transmission line, respectively. 3I
•

 is the equivalent third harmonic current. P1, Q1, P2, and Q2 
indicate the power flow at the sending-end and receiving-end of the transmission line, respectively. 

Each DPFC series unit generates a compensated voltage seiV
•

 (i = 1, 2, 3, …, n), and all the seiV
•

 values 

form a final compensated voltage seV
•

. Xline is the equivalent impedance of the transmission line.  

By injecting the compensated voltage seV
•

, the active and reactive power of the transmission line 
can be controlled. The equivalent phasor diagram of the DPFC is expressed in Figure 2. 

Figure 1. Structure of a distributed power flow controller (DPFC).

As shown in Figure 1, T1 and T2 are delta-wye grounded transformers The delta side of the
transformer is blocked for the third harmonic current while the wye grounded side is allowed for
flowing 3rd harmonic current; thus, the energy channel of third harmonic active power is formed,
which makes the active power exchange between the parallel unit and series units of the DPFC possible.

The parallel unit of the DPFC is composed of two back-to-back voltage source converters (VSCs).
VSC1 is a three-phase converter which is responsible for maintaining the bus voltage and keeping the
DC capacitor voltage stable. VSC2 is a single-phase converter, which is used to generate a constant
third harmonic current. Thus, the parallel unit of the DPFC plays the role of absorbing the active power
from the bus, and then converting it to the third harmonic active power. The third harmonic active
power is injected into the transmission line and taken in by the DPFC series units as active power
support. After that, the base-frequency active power is generated by the power exchange control in
the series units.

In Figure 1,
•
V1 and

•
V2 represent the voltage at the sending-end and receiving-end of the

transmission line, respectively.
•
I3 is the equivalent third harmonic current. P1, Q1, P2, and Q2

indicate the power flow at the sending-end and receiving-end of the transmission line, respectively.

Each DPFC series unit generates a compensated voltage
•
Vsei (i = 1, 2, 3, . . . , n), and all the

•
Vsei values

form a final compensated voltage
•
Vse. Xline is the equivalent impedance of the transmission line.

By injecting the compensated voltage
•
Vse, the active and reactive power of the transmission line

can be controlled. The equivalent phasor diagram of the DPFC is expressed in Figure 2.
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In Figure 2,
•
Vse represents the integrated compensated voltage, δ represents the phase angle

where
•
V1 surpasses

•
V2, ρ stands for the phase angle where

•
Vse surpasses

•
V1, and (δ + ρ) indicates the
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phase angle where
•
Vse surpasses

•
V2. XΣ = XT1 + Xline + XT2 denotes the total impedance of the AC

transmission power system, where XT1 and XT2 represent the impedance of the transformer T1 and T2,
respectively. Thus, the natural power flow of the transmission line is expressed as

P20 =
V1V2 sin δ

XΣ
(1)

Q20 =
V1V2 cos δ−V2

2

XΣ
(2)

With DPFC series units, the power flow becomes

P2 = Re
[ •

V2
∗
I1

]
=

V1V2 sin δ + Vse ×V2 sin(δ + ρ)

XΣ
(3)

Q2 = Im
[ •

V2
∗
I1

]
=

V1V2 cos δ + Vse ×V2 sin(δ + ρ)−V2
2

XΣ
(4)

•
V1 and

•
V2 can be regarded as constant during a certain period of time in the actual power system

operation, and so the increment of active and reactive power flow at the receiving-end can be written
as follows:

∆P2 =
Vse ×V2 sin(δ + ρ)

XΣ
(5)

∆Q2 =
Vse ×V2 cos(δ + ρ)

XΣ
(6)

Based on the above equations, it is obvious that the power flow of the transmission line can be
controlled efficiently by changing the magnitude value and phase angle of the series-compensated
voltage slightly and flexibly.

3. Coordination Control System of a DPFC

The proposed coordination control system of a DPFC consists of an upper-level controller, a
parallel unit controller and multiple series unit controllers. The schematic diagram of this control
system is depicted in Figure 3.

In Figure 3, Edcsh_ref is the reference value of the DC capacitor voltage in the parallel unit while
I3_ref indicates the referenced third harmonic frequency. The control method for the parallel unit can
be found in [20–22]; thus, the control scheme of the coordination control method for the series unit is
mainly discussed in this research work.
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3.1. The Computation of Reference Compensated Voltage

According to the demand of power flow Pset and Qset ordered by the dispatch center, and the

states of transmission line
•
V1,

•
V2 and

•
I1 attained by WAMS, the corresponding series-compensated

voltage
•
Vse_ref is calculated by an upper-level controller. The calculation process is as follows:

• Setting the number of DPFC series units to be n, the total base-frequency impedance between the
sending-end and receiving-end of the power transmission system is Z0, the short circuit reactance
of each series unit is XTse, and the initial current phasor of transmission line is

•
I 0 =

•
V1 −

•
V2

Z0 + nXTse
(7)

• Corresponding to the target power flow, Iset and α represent the RMS value of
•
I1 and phase angle

that
•
I1 leads

•
V2, respectively.

Pset = Re
[ •

V2
•

Iset

∗]
= V2 Iset cos α (8)

Qset = Im
[ •

V2
•

Iset

∗]
= V2 Iset sin α (9)
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where
•

Iset

∗
denotes the conjugate complex of the targeted current line

•
Iset.

Supposing that the voltage phasors at the sending-end and receiving-end of the transmission
system are unchanged during one control cycle, then we have

Iset =
Pset

V2 cos α
(10)

α = arctan(Qset/Pset) (11)

• The corresponding series-compensated voltage generated by each DPFC series unit is
•
Vse_ref =

Mse_ref∠θse_ref, where Mse_ref is the RMS value of the
•
Vse_ref and θse_ref is the phase angle that

•
Vse_ref surpasses the voltage phasor

•
V2. From the view of the total system, the effect of

•
Vse_ref can

be regarded as an equivalent series impedance Zset injected by each series unit. Then, another
expression of the transmission line is

•
I set =

•
V1 −

•
V2

Z0 + nZset
(12)

According to the obvious assumption and analysis, the series-compensated voltage is

•
Vse_ref = Zset

•
Iset=

•
V1 −

•
V2 − Z0

•
I set

n
= Mse_ref∠θse_ref (13)

• At the initial stable state t = t0, the phase angle that
•
I 1 surpasses

•
V2 is ϕ, and all these

measurements are saved in the upper-level controller.
• The RMS value and phase angle of the corresponding series-compensated voltage Mse_ref,

θse_ref and the phase angle ϕ are transferred to each series unit via a power line carrier
communication link.

3.2. The Control Scheme of DPFC Series Units

The structure of the DPFC series unit is shown in Figure 4.
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Figure 4. The structure of the DPFC series unit.

The series unit of the DPFC consists of a single-turn transformer (STT), a single-phase inverter,
an associated controller, and a built-in communication model. The SST uses the transmission line
as the secondary winding, inserting compensated voltage into the power line. Each unit of DPFC is
controlled by power line carrier communication.
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The DPFC series unit has the task of maintaining the DC capacitor voltage and responding to the
reference signal effectively. The control scheme for the DPFC series unit including the single-phase
locked loop (SPLL), DC capacitor voltage control and power flow control loop is depicted in Figure 5.
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The reference value of the compensated voltage Mse_ref and θse_ref are transferred to the DPFC
series unit via power line carrier (PLC) communication link. In a phase reproducer, the real-time
phase of the reference voltage θref will be generated, leveraging the advantage that the real-time
phase of the transmission line base-frequency current can be captured by series units. The actual
value of the compensated voltages Mse and θse are acquired and converted to a digital signal by the
analog-to-digital converter (ADC) unit. By comparing the real-time reference values Mse_ref and θref
with actual values Mse and θse, the proportional-integral (PI) controller within the power flow control
loop will generate a compensated phase and a magnitude correction factor to modify the modulation
signal vmod1 of the base-frequency compensated voltage.

Based on the comparison of the actual value with the reference value of the DC capacitor voltage
in the DPFC series unit, the DC-voltage control loop will generate the modulation signal vmod3 to
maintain the DC capacitor voltage. Consequently, the output of the AC/DC converter equals the
mutual control effects of vmod1 and vmod3.

3.2.1. The Single-Phase Locked Loop (SPLL)

The adopted phase locked loop method is based on the literature [30]. However, the literature [30]
directly integrates the angular frequency to obtain the phase-locked output, which easily leads to
the saturation of the integral link. Therefore, the above method is improved in this paper, which can
effectively prevent the integral saturation phenomenon.

The single-phase locked loop here is designed to track the frequency and phase of the

base-frequency current
•
I 1 and third harmonic current

•
I3. The measured value of the line current

phase is obtained by current transformer (CT). As shown in Figure 6, the third harmonic current
•
I3

and base-frequency current
•
I 1 are separated by the filter, and then their phases are locked by the

single-phase locked loop (SPLL) in the DPFC series unit. The outputs of SPLL for the base-frequency
current and SPLL for third harmonic current are expressed as follows:

θpll = ωt + θpll0 (14)

θpll3 = ω3t + θpll30 (15)
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3.2.2. The Reproduced Real-Time Phase for Reference Series-Compensated Voltage

The time when the program of the phase locked loop of the line current is started is marked as
t = 0. Recording a certain zero-crossing point of the fundamental frequency current phasor of the
transmission line as t1, at this time, the phase of the line current is measured as ϕi, and then the phase

of
•
V2 at time t = t1 is

ϕu = ϕi − ϕ (16)

The real-time phase of
•
V2 can be attained by

βu = ϕu +
∫ t

t1

ωdt (17)

Then, the real-time phase of the reference series-compensated voltage
•
Vse_ref can be denoted as

θref = βu + θse_ref = ϕu +
∫ t

t1

ωdt+θse_ref (18)

Considering that DPFC series units have the advantage of capturing the real-time phase of
the transmission line current, the waveform of the real-time phase of the terminal voltage can be
reproduced during a control period, which is very practical for engineering applications.

3.2.3. The DC Capacitor Voltage Control

The DC capacitor voltage control loop is shown in Figure 6. By comparing the actual DC capacitor
voltage Edc with the reference DC capacitor voltage Edcsh_ref, the PI controller will generate the
magnitude value of the modulation signal vmod3. To simulate the dynamic characteristics of the
converter, a first-order inertial loop is introduced for DC capacitor voltage control. To avoid causing
extra voltage changes or power loss, the series unit is required to exchange only the active power of
the third harmonic with the transmission line. Hence, the modulation signal vmod3 should be the same
or inverse to the phase of the third harmonic current of the transmission line.

Thus, the DC-voltage control loop generates the modulation signal vmod3 for the third harmonic
frequency voltage. The third harmonic active power generated by the parallel unit can change
according to the demand for active power of the DC side to maintain the voltage of the DC capacitor
in series units.
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3.2.4. The Power Flow Control

SPWM (sinusoidal PWM) control is adopted by the series unit. The relationship between the RMS
value (root-mean-square) of the inverter output voltage and the DC capacitor voltage is

Vse =

√
2

2
ksemseEdc (19)

where kse represents the ratio of STT, mse is the fundamental frequency voltage modulation ratio, and
Edc is the DC capacitor voltage.

In fact, the phase of the control reference voltage signal of the series unit port will be shifted
after passing through the inductor-capacitor (LC) filter. In addition, due to the active power loss, the
amplitude of the series fundamental frequency voltage actually injected into the transmission line
is smaller than the reference value. This will lead to deviations in the flow control. Therefore, it is
necessary to correct the fundamental frequency compensation voltage modulation signal by taking the
measurement of the mean value correction and the phase compensation.

The target and actual value of the compensated voltage are sent to the comparison module after
being conversed and processed in the ADC unit. Then, the PI controller generates the compensated
phase and magnitude correction factor to modify the modulation signal vmod1. The modulating signal
for compensated base-frequency voltage is modified as follows:

vmod1 = kMemse_ref sin(θref − e) (20)

where kMe is the magnitude modified factor and e represents the correction for the phase. mse_ref
denotes the modulation ratio of the fundamental frequency voltage.

According to the above analysis, integrating the four control modules together, the detailed
scheme for the DPFC series unit can be depicted in Figure 6, where ω f f represents the rated angular
frequency for fundamental-frequency components, and ω f f 3 represents the rated angular frequency
for third harmonic components. Fcn1, Fcn2, Fcn3, Fcn5and Fcn7 are PI controllers. Fcn4, Fcn6 and
Fcn8 are first-order inertia blocks. G, G1 and G2 represent the gain of the first-order inertia blocks.

4. The Simulation and Analysis of the DPFC Coordination Control System

4.1. Simulation of the DPFC Control System

The model of the transmission system including DPFCs is shown in Figure 7. It is built by the
software tool PSCAD/EMTDC 4.2.1. The parallel unit is equivalent to the third harmonic current
source and the series units of DPFC are built as detailed models.
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4.1.1. Test Case 1

The device parameters of the DPFC are listed in Table 1.
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Table 1. DPFC device parameters.

Items Parameter

System fundamental frequency 50 Hz

Magnitude of third harmonic current
•
I3 6 A

Number of series units 10

Magnitude of
•
V1 and

•
V2 380 V

Phase angle of voltage at sending-end δ 8.92◦

Phase angle of voltage at receiving-end 0◦

Transformer T1 380 V/380 V, 1 kVA, 0.1 p.u, ∆-YN

Transformer T2 380 V/380 V, 1 kVA, 0.1 p.u, YN-∆

Single-turn transformer of series unit 20 V/100 V, 0.5 kVA, 0.1 p.u

Reference value of DC capacitor voltage 20 V

Value of DC capacitor of VSC in series unit 2200 µF

LC filter of VSC in series unit 1.33 mH, 100 µF

Switch frequency of Insulated-gate bipolar transistor (IGBT) 2100 Hz

Zline Rline = 0.279 Ω, Lline = 0.0127 H

Initial phase angle ϕ 5.03◦

Starting time for the breaker of series unit 0.5 s

Starting time for the power flow control 2.5 s

Targeted power flow t = 2.5–5.0 s Pset1 = 800 W, Qset1 = −100 Var

t = 5.0–10.0 s Pset2 = 1000 W, Qset2 = −100 Var

The corresponding parameters for the control loops of DPFC series unit are shown in Table 2.

Table 2. Tuning parameters for the control loops.

Fcn1 Fcn2 Fcn3 Fcn4

kp = 5 kp1 = 5 kp2 = 10 G = 0.1
kI = 5 × 10ˆ−5 s kI1 = 5 × 10ˆ−5 s kI2 = 0.2 s T = 0.02 s

Fcn5 Fcn6 Fcn7 Fcn8

kp3 = 10 G1 = 0.2 kp4 = 0.95 G2 = 1
kI3 = 0.005 s T1 = 0.02 s kI4 = 0.5 s T2 = 0.02 s

The simulation results of the DPFC coordination control system are depicted in Figure 8.
Figure 8a shows the power flow at the receiving-end of the transmission system by employing

the proposed control method. At time t = 3.5 s, Pr and Qr are stable at 799.83 W and −100.66 Var,
respectively. At time t = 6.0 s, Pr and Qr are at a new stable state at 999.978 W and −98.25 Var,
respectively. Considering the setting value given in Table 2, the power flow control is effective.

Figure 8a also shows the power flow at the receiving end of the transmission system by using
the state of art (SOA). At time t = 3.5 s, SOAPr and SOAQr are stable at 800.14 W and −98.11 Var,
respectively. At time t = 6.0 s, SOAPr and SOAQr are at a new stable state 1000.42 W and −99.998 Var,
respectively. Considering the setting value given in Table 2, the power flow control is effective.

Comparing the proposed method with the SOA according to the simulation results of the
independent active power flow control, it is indicated that both are effective and the control effects
are similar.
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Figure 8. The simulation results of the DPFC control system. (a) Three-phase power flow at the 
receiving-end; (b) exchange of active power flow in the series unit; (c) DC capacitor voltage of each 
series unit; (d) magnitude of voltage of the single-turn transformer (STT); (e) SPLL result of the base-
frequency line current by fast Fourier transform (FFT) component extraction; (f) SPLL result of the 
third harmonic current by FFT component extraction; (g) the magnitude of compensated voltage for 
each series unit; (h) the phase angle of compensated voltage for each series unit. 
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the proposed control method. At time t = 3.5 s, Pr and Qr are stable at 799.83 W and −100.66 Var, 
respectively. At time t = 6.0 s, Pr and Qr are at a new stable state at 999.978 W and −98.25 Var, 
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Figure 8b displays the exchange of the third harmonic active power flow Pse3 and base-frequency 
active power flow Pse1 for each series unit. It is worth noting that Pse3 ≠ Pse1 for the reason that active 
power loss of VSC at the third harmonic and base frequency are not equal. Combining this power 
exchange process with the DC capacitor voltage in Figure 8c, it is verified that the third harmonic 
frequency active power is used for building and maintaining the voltage of the DC capacitor.  

Figure 8c indicates the DC capacitor voltage dcE  of VSC. dcE  grows dramatically and then 
remains stable at the reference value 20 V, which verifies the validity of DC-voltage control. 
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Figure 8. The simulation results of the DPFC control system. (a) Three-phase power flow at the
receiving-end; (b) exchange of active power flow in the series unit; (c) DC capacitor voltage of each
series unit; (d) magnitude of voltage of the single-turn transformer (STT); (e) SPLL result of the
base-frequency line current by fast Fourier transform (FFT) component extraction; (f) SPLL result of
the third harmonic current by FFT component extraction; (g) the magnitude of compensated voltage
for each series unit; (h) the phase angle of compensated voltage for each series unit.

Figure 8b displays the exchange of the third harmonic active power flow Pse3 and base-frequency
active power flow Pse1 for each series unit. It is worth noting that Pse3 6= Pse1 for the reason that active
power loss of VSC at the third harmonic and base frequency are not equal. Combining this power
exchange process with the DC capacitor voltage in Figure 8c, it is verified that the third harmonic
frequency active power is used for building and maintaining the voltage of the DC capacitor.

Figure 8c indicates the DC capacitor voltage Edc of VSC. Edc grows dramatically and then remains
stable at the reference value 20 V, which verifies the validity of DC-voltage control.

Figure 8d represents the magnitudes of the base-frequency voltage at the primary side and
secondary side of STT. Et1 is the primary-side voltage while Ese1 is the secondary-side voltage. At t =
3.5 s, Et1 = 3.606 V and Ese1 = 0.626 V. At t = 6.0 s, Et1 = 8.643 V and Ese1 = 1.607 V. The ratio of STT is
20:100 (secondary side to primary side); however, the ratio between the actual voltage Ese1 and Et1 is
not strictly equal to 1:5. Therefore, a modification for the modulation signal vmod1 is needed.



Energies 2018, 11, 3406 12 of 15

Figure 8e,f display the SPLL results of the line current by FFT (fast Fourier transform) component
extraction. Both the phases of base-frequency and the third harmonic line current can be locked quickly
and accurately.

Figure 8g,h indicate the magnitude and phase angle of the base-frequency series-compensated
voltage for each DPFC series unit. At t = 3.5 s, the actual values are Mse = 0.626 V and θse = −42.365◦

while the setting values are Mse_ref = 0.627 V and θse_ref = −42.502◦. At t = 6.5 s, the actual values are
Mse = 1.607 V and θse = −54.068◦ while the setting values are Mse_ref = 1.607 V and θse_ref = −53.665◦.
Thus, the control of the base-frequency series-compensated voltage is effective.

4.1.2. Test Case 2

The target power flows are changed to Pset3 = 800 W and Qset3 = −100 Var from t = 2.5 to 7.0 s
while these are Pset4 = 800 W and Qset4 = −50 Var from t = 7.0 to 10.0 s. The simulation results are
shown in Figure 9.
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Figure 9. The simulation results of the DPFC control system. (a) Three-phase power flow at the 
receiving-end; (b) exchange of active power flow in the series unit; (c) DC capacitor voltage of each 
series unit; (d) magnitude of voltage of STT; (e) SPLL result of base-frequency line current; (f) SPLL 
result of third harmonic current; (g) the magnitude of compensated voltage; (h) the phase angle of 
compensated voltage. 
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Figure 9. The simulation results of the DPFC control system. (a) Three-phase power flow at the
receiving-end; (b) exchange of active power flow in the series unit; (c) DC capacitor voltage of each
series unit; (d) magnitude of voltage of STT; (e) SPLL result of base-frequency line current; (f) SPLL
result of third harmonic current; (g) the magnitude of compensated voltage; (h) the phase angle of
compensated voltage.
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Figure 9a shows the power flow at the receiving end of the transmission system by employing
the proposed control method. At time t = 3.5 s, Pr and Qr are stable at 802.59 W and −101.81 Var,
respectively. At time t = 8.0 s, Pr and Qr are at a new stable state of 802.86 W and −50.43 Var,
respectively. Considering the given setting value, the power flow control is effective.

Figure 9a also indicates the power flow at the receiving-end of the transmission system by using
the state of art (SOA). At time t = 3.5 s, SOAPr and SOAQr are stable at 800.14 W and −98.11 Var,
respectively. At time t = 8.0 s, SOAPr and SOAQr are at a new stable state of 800.01 W and −49.997 Var,
respectively. Considering the given setting value, the power flow control is effective.

Therefore, it is verified that both the proposed method and SOA method are effective for the
independent reactive power flow control. Additionally, the effects of these two methods are similar.

Figure 9b displays the exchange of the third harmonic active power flow Pse3 with base-frequency
active power flow Pse1 for each series unit. It is worth to noting that the power exchange process
is consistent with the tendency of the DC capacitor voltage in Figure 9c; hence, it is indicated that
the third harmonic frequency active power is used for building and maintaining the voltage of the
DC capacitor.

Figure 9c indicates the DC capacitor voltage Edc of VSC. Edc can still stay stable at 20 V when the
target power flow changes, which verifies the validity of the DC capacitor voltage control.

Figure 9d represents the magnitudes of the base-frequency voltage at the primary side and
secondary side of STT. Et1 is the primary-side voltage while Ese1 is the secondary-side voltage. At t =
3.5 s, Et1 = 3.691 V and Ese1 = 0.641 V. At t = 8.0 s, Et1 = 3.545 V and Ese1 = 0.612 V. The ratio of STT is
20:100 (secondary side: primary side); however, the ratio between the actual voltage Ese1 and Et1 is not
strictly equal to 1:5. Therefore, a correction for the modulation signal vmod1 is necessary.

Figure 9e,f display the SPLL results of the line current extracted by FFT. It is verified that both the
phases of the base-frequency and third harmonic line current can be locked quickly with high precision.

Figure 9g,h indicate the magnitude and phase angle of the base-frequency series-compensated
voltage generated by each DPFC series unit. At t = 3.5 s, the actual values are Mse = 0.641 V and θse =
−42.271◦ while the setting values are Mse_ref = 0.642 V and θse_ref = −42.401◦. At t = 8.0 s, the actual
values are Mse = 0.612 V and θse = −65.776◦ while the setting values are Mse_ref = 0.612 V and θse_ref =
−65.281◦. The control of the base-frequency series-compensated voltage is verified to be effective.

4.2. Comparison of the Proposed Method with the State-of-the-Art

Comparing the proposed method with the SOA in [28] based on the simulation results of power
flow control in Figures 8a and 9a in Section 4.1, it is indicated that the control effect of the proposed
and existing method are similar in independent active and reactive power flow control.

It should be mentioned that the starting time of the simulation in PSCAD/EMTDC for the phasors
of terminal voltage and line current are the same; thus, both the initial phases of the terminal voltage
and line current are measurable. In the actual operation system, however, there is no way to acquire
the initial phase angle of the terminal voltage except for the phase difference between two phasors.

The SOA takes the real-time phase of the terminal voltage as the input angle of the inverse Park’s
transformation and generates corresponding reference values of the series-compensated voltage. Thus,
the real-time phase of the terminal voltage must be provided for power flow control in multiple series
units by high-speed communication link, which is not practical for the actual transmission system.

Using the proposed real-time phase reproducer of the terminal voltage, only the initial difference
between the terminal voltage and line current is needed by leveraging the real-time phase of line
current locally at the lower control scheme. Hence, the proposed method is much more suitable
for practical engineering applications due to the limitations of communication speed, which is not
considered in the existing method.
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5. Conclusions

A coordination control method for DPFC series units has been proposed and verified in this paper.
The waveform of the real-time phase of the terminal voltage can be reproduced correctly during a
control period within the DPFC series units, and so a high-speed communication link is not required
for the real-time power flow control. Hence, it is much more practical for engineering applications. To
control the series-compensated voltage exactly, measures to modify the magnitude and angle of the
modulation signal through PI control loops have been taken. The control parameters of each series
unit are the same to avoid the interaction’s inverse impact on multiple series unit. Simulation results
from PSCAD/EMTDC have indicated that the proposed power flow control method is effective. By
comparing the proposed method with the SOA in simulation and considering the speed limitations
of the communication link in an actual transmission system, it can be concluded that the proposed
method is more suitable for practical engineering applications with an equivalent control effect to
the SOA. In future research work, experimental testing will be carried out to verify the proposed
method further.
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