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Abstract: The share of cooling is rising in the energy balance of buildings. The reason is for increasing
occupants’ comfort needs, which is accentuated by the fact that the number and the amplitude of
heat waves are increasing. The comfortable and healthy indoor environment should to be realized
with the minimum amount of energy and fossil fuels. In order to meet this goal, designers should
know the effect of different parameters on the buildings’ energy consumption. The energy need for
cooling is mainly influenced by the glazed ratio and orientation of the facades, the quality of glazing
and shading. In this paper the heat load analysis was done by assuming different types of summer
days and surface cooling, depending on the glazing ratio, shading factor and solar factor of glazing.
It was proven that, for a certain parameter, the sensitivity of the heat load depends on the orientation
and chosen summer day. If the glazing area is doubled, the heat load increases with about 30%.
Decreasing the glazed area to 50%, the heat load decreases with about 10%. The heat load decreases
with about 3% if the g factor is lowered with 25% or the shading factor is reduced with 60%.
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1. Introduction

Mitigation of greenhouse gas emissions is a global goal and countries make important efforts
to successfully meet this purpose [1–3]. Increasing the energy efficiency and reducing the energy
demand have a priority in each sector. Significant results might be obtained through the energy
conscious design of buildings. It was already shown that by proper thermal insulation of the buildings’
envelope and rational integration of renewable energy sources important energy savings can be
obtained, see for example [4,5]. However, climate change does not help people in their pursuit of
reducing the energy use in buildings. In countries with continental temperate climate 60–70% of the
total energy consumption of a building was used for heating. In recent decades strict requirements
related to the thermal properties of the buildings’ envelope and energy performance of buildings
were introduced [6–8]. Besides the better thermal properties of the envelope, the warmer winters
lead to the decrease of the heating energy demand. At the same time, because of the thermal comfort
needs, the number of air conditioned buildings increased considerably. The share of energy use for
cooling in the building’s energy balance increased in recent decades [9–12]. This is accentuated by
the fact that, in recent decades, the number and the amplitude of heat waves during summer have
been increasing [13]. By a proper design of thermal mass and heat storage capacity, the heat load of
buildings might be reduced [14–21]. However, special attention has to be paid to the asymmetry of the
solar radiation [22]. Cooling systems has to be chosen and designed in order to assure proper thermal
comfort in closed spaces. In buildings, the required operative temperatures should be provided,
minimizing the energy use and avoiding thermal discomfort. Integration of renewable energy sources
can be efficiently done by low exergy cooling systems [23–27]. By choosing carefully the surface
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temperatures, air temperatures and air velocities in the occupation zone, then draught and asymmetric
radiation can be avoided [28–30]. There are different methods and systems available to remove the heat
load in a closed space [31–34]. However, to properly choose the cooling system, the heat load has to be
determined as precisely as possible. Standard ISO 13790 and standard ISO 52016 give the calculation
algorithm and methodology to determine the heat load of a building [35,36]. In the calculations,
specific meteorological data have to be taken into account. Furthermore, the building configurations,
the space shapes, the used building materials and energy performance requirements are specific for
a region or country. In this paper the parametric analysis of building’s heat load was done taking
into account solar radiation and temperature data from recent years registered in Debrecen, Hungary.
It was decided to focus our study on the transparent area of the façade (glazing ratio, orientation, solar
factor and shading ratio). Previously, it was demonstrated that the effect of windows U value on the
buildings’ summer heat load is negligible in comparison to the effects of other physical properties
of the glazing [37]. Furthermore, the heat gains through the opaque elements are negligible as well,
if the envelope is properly insulated, even though there is an ageing process of the insulation material,
which has to be taken into account [38].

2. Objectives and Hypothesis

Buildings’ heat load is influenced by a series of parameters. Some of these parameters are building
dependent; others depend on the climate. The main goal of our research was to analyze the heat load
variation in function of glazed ratio of the facades, orientation of glazing, solar factor of glazing and
shading type. It was assumed that the sensitivity of the heat load in function of a certain building
parameter is the highest for the South orientation of the facade.

3. Practical Implications

Proper design of buildings should result in low energy use and high comfort level. To reach
the optimal solutions, complex analysis has to be done. The results of the present research may
help practitioners, giving some insights on the buildings’ heat load sensitivity to different glazing
parameters and on the influence of surface cooling type on the heat load of a conditioned space.

4. Methods

The heat load was determined using the calculation algorithm given by standard ISO 52016.
According to this Standard the hourly values of the heat load are calculated in the following steps [28]:

• At first the installed cooling capacity in the analyzed room (ΦHC,ld,un,ztc,t) is assumed to be zero
(the room is not cooled);

• The operative temperature (θint,op,0,ztc,t) is calculated in the room (the cooling system is not in
operation);

• If the calculated operative temperature exceeds the set point value (θint,op,set,ztc,t) required in the
room, than the cooling load has to be calculated;

• Firstly, the output of the cooling system is assumed to be ten times higher than the useful area
of the room ΦHC,upper,ztc,t = 10 × Ause,ztc. With this theoretical cooling capacity the new operative
temperature is calculated θint,op,upper,ztc,t.

• The output of the cooling system will be:

ΦHC,ld,un,ztc,t = ΦHC,upper,ztc,t·
θint,op,set,ztc,t − θint,op,0,ztc,t

θint,op,upper,ztc,t − θint,op,0,ztc,t
(1)

The operative temperature is calculated as the average of the air temperature of the room and
mean radiant temperature of the building elements (practically, the convective heat transfer coefficient
and radiative heat transfer coefficient are considered to be equal).
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The mean radiant temperature is calculated with Equation (2):

θint,r,mn,ztc,t =
∑eln

eli=1

(
Aeli·θpli=pln,eli,t

)
∑eln

eli=1 Aeli
(2)

where:
θint,r,mn,ztc,t is the mean radiant temperature, in ◦C;
Aeli is the area of building element eli, in m2;
θpli = pln,eli,t is the temperature at node pli = pln of the building element eli, in ◦C

• The indoor air temperature and the internal surface temperatures of the conditioned space are
calculated based on the energy balance of the zone and energy balance of the building elements;

• The energy balance equation of the zone is:[
Cint,ztc

∆t +
eln
∑

eli=1
(Aeli·hci,eli) +

ven
∑
vei

Hve,vei,t + Htr,tb,ztc

]
·θint,a,ztc,t −

eln
∑

eli=1

(
Aeli·hci,eli·θpln,eli,t

)
=

Cint,ztc
∆t ·θint,a,ztc,t−1 +

ven
∑
vei

(
Hve,vei,t·θsup,vei,t

)
+ Htr,tb,ztc·θe,a,t + fint,c

·Φint,ztc,t + fsol,c·Φsol,ztc,t + fH/C,c·ΦHC,ztc,t

(3)

where:
Cint,ztc,t is the internal thermal capacity of the zone, in J/K;
∆t is the length of the time interval, t in s;
θint,a,ztc,t is the internal air temperature, in ◦C
θint,a,ztc,t − 1 is the internal air temperature in the zone at previous time interval (t−∆t), in ◦C;
Aeli is the area of building element eli, in m2;
hci,eli is the internal convective surface heat transfer coefficient of the building element eli,

in W/m2K;
Θpln,eli,t is the internal surface temperature of the building element eli, in ◦C;
Hve,k,t is the overall heat exchange coefficient by ventilation flow element k, in W/K;
Θsup,k,t is the supply temperature of ventilation flow element k, in ◦C;
Θe,a,t is the external air temperature, in ◦C;
Htr,tb,ztc is the overall heat transfer coefficient for thermal bridges, in W/K;
fint,c,ztc is the convective fraction of the internal gains;
fsol,c,ztc is the convective fraction of the solar radiation;
fH/C,c,ztc is the convective fraction of the cooling system;
Φint,ztc,t is the total internal heat gains, in W;
ΦHC,ztc,t is the cooling load (if negative), in calculation zone ztc, at time interval t, depending on

type of application of the calculation, in W;
Φsol,ztc,t is the directly transmitted solar heat gain into the zone, summed over all window wi,

in W;

• Building elements are divided into three parts: inner side, inside and outer side and the energy
balance equations are to be written for all three nodes;

• The energy balance equation for internal side of a building element (“internal surface node”):

−(hpli−1,eli· θpli−1,eli,t) +

[
κpli,eli

∆t + hci,eli + hri,eli·
eln
∑

elk=1

(
Aelk
Atot

)
+ hpli−1,eli

]
·θpli,eli,t

−hci,eli·Θint,a,zt,t −
eln
∑

elk=1

(
hri,eli· Aelk

Atot
·θpli,elk,t

)
=

κpli,eli
∆t ·θpli,eli,t−1 +

1
Atot

·[(1 − fint,c)·Φint,ztc,t + (1 − fsol,c)·Φsol,ztc,t + (1 − fH/C,c)·ΦHC,ztc,t]

(4)
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where:
Aelk is the area of (this or other) building element elk, in zone ztc, in m2;
Atot is the sum areas Aelk of all building elements elk = 1, . . . ,eln, in m2;
θpli,eli,t is the temperature at node pli, in ◦C;
θpli − 1,eli,t is the temperature at node pli − 1, in ◦C;
θint,a,ztc,t is the internal air temperature in the zone, in ◦C;
hpli − 1,eli,t is the conductance between node pli and node pli − 1, in W/m2K;
κpli,eli is the real heat capacity of node pli, in J/m2K;
hci,eli is the internal convective surface heat transfer coefficient, in W/m2K;
hri,eli is the internal radiative surface heat transfer coefficient, in W/m2K;
θpli,eli,t − 1 is the temperature at node pli, at previous time interval (t − ∆t) in ◦C.

• The energy balance equation inside the building element:

− hpli−1,eli·θpli−1,eli,t +

[
κpli,eli

∆t
+ hpli,eli + hpli−1,eli

]
·θpli,eli,t − hpli,eli·θpli+1,eli,t =

κpli,eli

∆t
·θpli,eli,t−1 (5)

where:
θpli + 1,eli,t is the temperature at node pli + 1, in ◦C;
hpli,eli,t is the conductance between node pli + 1 and node pli, in W/m2K;

• The energy balance equation for the external side of a building element is:(
κpli,eli

∆t + hce,eli +hre,eli + hpli,eli

)
·θpli,eli,t − hpli,eli·θpli+1,eli,t

=
κpli,eli

∆t ·θpli,eli,t−1 + (hce,eli + hre,eli)·θe,t + αsol,pli,eli

·
(

Isol,di f ,eli,t + Isol,dir,eli,t·Fsh,obst,eli,t

)
− θsky,eli,t

(6)

where:
θe,a,t is the temperature of external environment, in ◦C;
hce,eli is the external convective surface heat transfer coefficient, in W/m2K;
hre,eli is the external radiative surface heat transfer coefficient, in W/m2K;
αsol,eli is the solar absorption coefficient at the external surface, in W/m2K;
Isol,dif,eli,t is the diffuse part (including circumsolar) of the solar irradiance on the element with tilt

angle βeli and orientation angle γeli;
Isol,dir,eli,t·is the direct part (excluding circumsolar) of the solar irradiance on the element with tilt

angle βeli and orientation angle γeli;
Fsh,obst,eli,t is the shading reduction factor for external obstacles for the element;
θsky,eli,t is the (extra) thermal radiation to the sky, in W/m2;
βeli is the tilt angle of the element (from horizonal, measured upwards facing), in degrees;
γeli is the orientation angle of the element, in degrees.

• For external opaque elements, five calculation nodes were taken into account (one on the internal
side, one on the external and three inside the structure);

• For external transparent elements two calculation nodes were taken into account (one inside and
one on the outer side);

• For internal building elements there are no prescriptions for the number of calculation nodes
(we have calculated with nodes placed between the layers of the structures).

• In the calculation, the heat storage capacity is taken into account depending on the heat storage
class of the building structure:

Class I. (mass concentrated at internal side):

κpl5,eli = κm,eli (7)
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κpl1,eli = κpl2,eli = κpl3,eli = κpl4,eli = 0 (8)

Class E (mass concentrated at external side)

κpl1,eli = κm,eli (9)

κpl2,eli = κpl3,eli = κpl4,eli = κpl5,eli = 0 (10)

Class IE (mass divided over internal and external side)

κpl1,eli = κpl5,eli =
κm,eli

2
(11)

κpl2,eli = κpl3,eli = κpl4,eli = 0 (12)

Class D (equally distributed)

κpl1,eli = κpl5,eli =
κm,eli

8
(13)

κpl2,eli = κpl3,eli = κpl4,eli =
κm,eli

4
(14)

Class M (mass concentrated in side)

κpl3,eli = κm,eli (15)

κpl1,eli = κpl2,eli = κpl4,eli = κpl5,eli = 0 (16)

where: κm,eli is the real heat capacity of opaque element eli, in J/m2K.
It was assumed that surface cooling systems are used in the conditioned room. The convective

ratio (fC,c,ztc) was considered 40% in the case of wall, and 30% in the case of ceiling cooling.

4.1. The Analyzed Room

In order to perform the calculations, a reference room was taken into consideration, and placed
on an intermediate floor an office building (Figure 1).
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Figure 1. Layout of the analyzed room.

The room height is 3.5 m and has suspended ceiling (0.5 m). The slabs structure is: 2.0 cm lime
plastering; 20 cm reinforced concrete, 6 cm concrete 0.6 cm tiles. The internal wall (opposite to the
external wall) has the following structure: 2.0 cm lime plastering, 30 cm brick, 1.5 cm lime plastering.
In the analyzed office, 10 persons are working between 8:00–17:00. Fresh air is 100% outdoor air and it
is introduced in the room without changing its physical parameters. It is assumed that the fresh air
flow is 30 m3/(h·person). The overall heat transfer coefficient of the external wall is 0.24 W/(m2·K),
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while the window has an overall heat transfer coefficient of 1.1 W/(m2·K) (these values are currently
required for a nearly zero energy building in Hungary). The heat storage capacity of the room is:
318110 J/m2K, (Class I). In the reference case, the glazed ratio of the external wall is 40% and the g
value of glazing is 0.67.

4.2. Meteorological Parameters

The incident solar radiation and the outdoor temperature in summer were analyzed for recent
years. It was observed that in contrast with the previously used Hungarian 04140 Standard (which
provides the solar radiation and temperature data for heat load calculation until 2012) the solar
radiation does not show symmetry for East and West orientation. In most cases, the incident solar
radiation intensity and the solar energy yield for East orientation exceeds the data registered for West
orientation. These days were considered asymmetric days [14]. It was decided to analyze the heat
load for one symmetric and two asymmetric days. Two extreme hot days were chosen (one symmetric
and one asymmetric) and one extreme torrid asymmetric day. Those days are considered extreme
hot days, which have an average outdoor temperature in the warmest hour higher than 30 ◦C. If the
mean outdoor temperature in the warmest hour is higher than 35 ◦C, the day is called extreme torrid.
The outdoor temperature variation and the incident solar radiation intensity for the chosen days can
be seen in Figure 2. In Figure 2a the data for the extreme hot symmetric day is presented. Figure 2b
shows the data for the extreme hot asymmetric day and in Figure 3c, the data for the extreme torrid
asymmetric day can be found.

It was decided to analyze the heat load variation depending on the glazed ratio, total solar
transmittance of the glazing and shading factor of glazing (Table 1).

Table 1. Input parameters (“*” denotes reference case data).

Changed
Parameter Analyzed Cases

Orientation North East West South
Meteorological

parameters
Extremely warm symmetric

day (standard 04140) Extremely warm asymmetric day (2012.06.30) Extremely hot asymmetric
day (2011.07.10)

Shading No shading (Fobst = 1.0) * Partial shading (Fobst = 0.7) Strong shading (Fobst = 0.4)

Glazing
Triple glazing, Low-e on

both sides (g = 0.5; Uw = 0.82
W/(m2·K))

Double glazing, Low-e on the outer side
(g = 0.67; Uw = 1.1 W/(m2·K)) *

Triple glazing (g = 0.7;
Uw = 1.0 W/(m2·K))

Glazed ratio Gr = 20% Gr = 40% * Gr = 80%

As seen in the first column, the orientation, the meteorological parameters, the shading factor
of the transparent surfaces, the glazing type (U and g values) and the glazed ratio of the facade were
chosen as variables in the parametric study. We have four orientations of the facade, three days with
different meteorological parameters, three types of shading, three types of glazing and three values for
glazing ratio. The calculations were done for each combination of these parameters, so the heat load
was computed for 648 cases (324—wall cooling; 324—ceiling cooling).
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day (data from standard 04140); (b) Extreme hot asymmetric day (2012.06.30) [39]; (c) Extreme torrid
asymmetric day (2011.07.10) [39].
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Figure 3. Box chart of the maximum heat load values.

5. Results

In practice, the cooling equipments are chosen for the maximum value of the heat load. In our
calculus the heat load variation for the whole day was determined, but from practical reasons in
the following the maximum values will be presented and discussed. For the analyzed 648 cases, the
computed maximum values of the daily heat load are presented in Figure 3.

The obtained daily maximum heat load values (324 for wall cooling and 324 for ceiling cooling)
were classified into six classes (Table 2).

Table 2. Heat load classes.

Heat Load Class Wall Cooling Ceiling Cooling

Interval No. of values Interval No. of values
1st class −4971 −4513 18 −4617 −4161 18
2nd class −4512 −4056 24 −4160 −3705 24
3rd class −4055 −3598 85 −3704 −3250 87
4th class −3597 −3140 38 −3249 −2794 36
5th class −3139 −2683 65 −2793 −2338 65
6th class −2682 −2225 94 −2337 −1882 94

It can be observed that 55% of the obtained values are found in the 3rd and 6th classes, both for
wall and ceiling cooling. The maximum values of the indoor operative temperatures can be seen in
Table 3.

Table 3. Maximum indoor operative temperatures [◦C].

Operative Temperature Wall Ceiling

Minimum 25.82 25.80
Maximum 26.26 26.21

Median 26.17 26.14
Mean 26.13 26.10

Standard Deviation 0.102 0.100

The effects of the glazed ration and orientation on the heat load can be seen in Figure 4.
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Figure 4. Interrelation between glazing ratio and the maximum of the daily heat load. (a) North
orientation and wall cooling; (b) North orientation and ceiling cooling; (c) East orientation and wall
cooling; (d) East orientation and ceiling cooling; (e) West orientation and wall cooling; (f) West
orientation and ceiling cooling; (g) South orientation and wall cooling; (h) South orientation and
ceiling cooling.
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The effects of the shading ratio, solar factor and glazing ratio on the heat load for West orientation
of the facade are shown in Figure 5. On the abscissa, the variation of the analyzed parameter can be
observed in [%]. The 0 value on the abscissa corresponds to the reference values of the solar factor,
glazing ratio and shading ratio. It can be observed that the glazing ratio was increased and decreased,
while the solar factor and the shading ratio were only decreased. The reason is that the reference
value of the shading ratio was 1 (no shading), so this value cannot be increased further. Similarly, the
reference value of the solar factor was 0.67 (this value is around the highest, which characterize the
currently used windows).
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It can be observed that the variation of glazing ratio, solar factor and shading ratio lead to a linear
variation of the heat load maximum values if the calculation methodology given by Standard ISO
52016 is used. The variation of the heat load (in comparison to the reference case) for North, East and
South orientation is given in Tables 4–6. In these tables, the heat load variation is shown both for wall
and ceiling cooling. For each variable (Fobst, g-value and Gr) two values are presented. In the reference
case the shading factor is 1. In the tables the heat load variation can be seen if the shading factor
was decreased with 30% and 60% respectively. For solar factor, the reference value was decreased
with 25.37% and increased with 4.48%. The glazing ratio of the facade was decreased with 50% and
increased with 100%. It can be observed that the variation of the glazing ratio has the highest impact
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on the heat load. Furthermore, the highest variations of the heat load were obtained for symmetric
hot day.

Table 4. Variation of the heat load for North orientation of the facade [%].

Day Type Wall Cooling Ceiling Cooling
∆Fobst [%] ∆g [%] ∆Gr [%] ∆Fobst [%] ∆g [%] ∆Gr [%]

−30 −60 −25.37 4.48 −50 100 −30 −60 −25.37 4.48 −50 100
SHD −0.1 −0.3 −2.9 0.4 −9.2 21.1 −0.1 −0.3 −3.3 0.5 −10.5 24.1
AHD 0.0 0.0 −2.2 0.2 −7.7 18.6 0.0 0.0 −2.5 0.2 −8.7 20.8
ATD −0.2 −0.4 −2.1 0.1 −5.9 13.6 −0.2 −0.4 −2.3 0.1 −6.4 14.7

Table 5. Variation of the heat load for East orientation of the facade [%].

Day Type Wall Cooling Ceiling Cooling
∆Fobst [%] ∆g [%] ∆Gr [%] ∆Fobst [%] ∆g [%] ∆Gr [%]

−30 −60 −25.37 4.48 −50 100 −30 −60 −25.37 4.48 −50 100
SHD −1.2 −2.5 −3.8 0.5 −10.4 21.8 −1.5 −2.9 −4.3 0.6 −11.8 24.8
AHD −0.8 −1.6 −2.8 0.3 −8.5 18.0 −0.9 −1.8 −3.2 0.4 −9.6 20.1
ATD −1.2 −2.3 −2.8 0.2 −7.0 18.3 −1.3 −2.6 −3.1 0.2 −7.6 20.8

Table 6. Variation of the heat load for South orientation of the facade [%].

Day Type Wall Cooling Ceiling Cooling
∆Fobst [%] ∆g [%] ∆Gr [%] ∆Fobst [%] ∆g [%] ∆Gr [%]

−30 −60 −25.37 4.48 −50 100 −30 −60 −25.37 4.48 −50 100
SHD −3.6 −7.3 −5.8 0.9 −14.9 36.3 −4.1 −8.3 −6.6 1.1 −16.9 41.0
AHD −2.1 −3.5 −3.9 0.5 −10.3 29.2 −2.4 −4.1 −4.4 0.6 −11.6 32.7
ATD −1.6 −3.2 −3.2 0.3 −8.2 21.4 −1.8 −3.5 −3.5 0.3 −9.0 23.1

6. Discussion

The variation of the heat load depending on the glazing ratio, solar factor and shading is linear
and can be characterized by the angle between the line of the heat load and horizontal axis. The higher
angle means higher sensitivity. The angle values calculated for chosen days and each orientation are
presented in Table 7.

It can be seen that in all cases, the heat load shows the highest angle (sensitivity) depending on the
glazing ratio. Furthermore, it can be observed that for a certain orientation of the façade the sensitivity
of the heat load is higher in case of ceiling cooling in comparison with the wall cooling. For all analyzed
parameters, the highest sensitivity was obtained for symmetric hot day. The asymmetric hot day shows
higher sensitivity than the asymmetric torrid day. For a certain parameter, day and surface cooling
type the highest sensitivity is observed for West orientation. However, in the case of asymmetric days
the sensitivity of the heat load for West and South orientation are almost similar.

The calculations were done assuming 70% heat exchange through radiation in the case of ceiling
cooling and 60% in the case of wall cooling. In Figure 6. the sensitivity variation is presented for
asymmetric extreme torrid day and West orientation of the faced for all analyzed parameters, taking
into account other values for the radiation ratio (1296 simulations were done in total). For a certain
parameter, (shading ratio, solar factor or glazing ratio) it can be seen that the highest sensitivity of the
heat load is given by the ideal case (100% heat exchange by radiation). Decreasing the radiation ratio,
the sensitivity shows lower values. If the glazing area is doubled, then the heat load increases with
about 30%. Decreasing the glazed area to half, the heat load decreases with about 10%. The sensitivity
of the heat load is almost similar in the case of solar factor and shading ratio. For real values of the
radiation ratio the heat load decreases with about 3% if the g factor is lowered with 25% or the shading
factor is reduced with 60%.
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Table 7. Angle of the heat load variation [◦].

Analyzed Day Cooling Type Orientation Gr g Fobst

SHD

Ceiling cooling

N 13.0 7.2 0.3
E 13.7 9.4 2.8
W 25.9 18.6 12.8
S 21.1 14.3 7.9

Wall cooling

N 11.4 6.2 0.3
E 12.1 8.2 2.4
W 23.5 16.7 11.4
S 18.8 12.7 6.9

AHD

Ceiling cooling

N 11.1 5.3 0.0
E 11.2 6.8 1.7
W 17.0 10.3 5.8
S 16.4 9.6 3.9

Wall cooling

N 9.9 4.6 0.0
E 10.0 6.0 1.5
W 15.3 9.2 5.1
S 14.7 8.5 3.4

ATD

Ceiling cooling

N 8.0 4.5 0.4
E 10.7 6.4 2.4
W 12.1 7.3 3.4
S 12.1 7.3 3.3

Wall cooling

N 7.4 4.1 0.4
E 9.6 5.8 2.2
W 11.2 6.7 3.2
S 11.2 6.7 3.0
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The limitations of our research are as follows:

• We have taken into account windows which can be found on the market. The U and g values are
specific for these products;

• It was assumed an office with certain geometry and the number of occupants was set to 10. So,
the internal heat loads were constant during the working hours;

• The used global radiation and temperature values were measured in Debrecen, Hungary;
• Surface cooling systems were taken into account. It was assumed that the fresh air (100% outdoor

air) is provided in the conditioned room without changing its temperature and relative humidity.

7. Conclusions

In summer, the indoor thermal comfort in buildings is provided using air conditioning systems.
The all-air cooling systems usually are using refrigerants and compressors and these systems are
operating using electricity. By moving the cold air in the rooms, draught may lead to discomfort.
Wall and ceiling cooling systems may avoid draught and the operation temperatures allow for the
utilization of renewable energies. In order to obtain the highest performance of the cooling systems,
the heat load ought to be determined as accurately as possible. The analysis performed clearly shows
that the glazing ratio has the biggest influence on the heat load of a closed space. Considering windows
widely used in practice (real values of the shading ratio and solar factor) the sensitivity of the heat
load depending on these parameters is lower than 10% in the case of asymmetric days. The highest
sensitivity values were obtained for symmetric days (rarely met in practice, but widely used for heat
load calculations). The West and South orientations of the glazing leads to highest sensitivity values.
The differences between the heat loads sensitivities obtained for different orientations were minimal in
the case of asymmetric torrid days. The sensitivity of the maximum values of the heat load shows a
linear variation depending on the analyzed parameters (glazing ratio, solar factor and shading ratio).
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Nomenclature

• SHD—symmetric extreme hot day;
• AHD—asymmetric extreme hot day;
• ATD—asymmetric extreme torrid day;
• N—North;
• E—East;
• W—West;
• S—South;
• QHL—heat load of the room, [W];
• te—outdoor temperature, [◦C];
• SRI—solar radiation intensity, [W/m2];
• Gr—glazing ratio of the façade, [%];
• Uw—overall heat transfer coefficient of windows, [W/m2·K];
• g—solar factor of glazing, [-];
• Fobst—shading factor, [-];
• ∆Gr—variation of the glazed ratio of the facade, [%];
• ∆g—variation of the solar factor of glazing, [%];
• ∆Fobst—variation of the shading factor, [%];
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• θint,r,mn,ztc,t is the mean radiant temperature, in ◦C;
• Aeli is the area of building element eli, in m2;
• θpli = pln,eli,t is the temperature at node pli = pln of the building element eli, in ◦C
• Cint,ztc,t is the internal thermal capacity of the zone, in J/K;
• ∆t is the length of the time interval, t in s;
• θint,a,ztc,t is the internal air temperature, in ◦C
• θint,a,ztc,t − 1 is the internal air temperature in the zone at previous time interval (t−∆t), in ◦C;
• Aeli is the area of building element eli, in m2;
• hci,eli is the internal convective surface heat transfer coefficient of the building element eli, in W/m2K;
• Θpln,eli,t is the internal surface temperature of the building element eli, in ◦C;
• Hve,k,t is the overall heat exchange coefficient by ventilation flow element k, in W/K;
• Θsup,k,t is the supply temperature of ventilation flow element k, in ◦C;
• Θe,a,t is the external air temperature, in ◦C;
• Htr,tb,ztc is the overall heat transfer coefficient for thermal bridges, in W/K;
• fint,c,ztc is the convective fraction of the internal gains;
• fsol,c,ztc is the convective fraction of the solar radiation;
• fH/C,c,ztc is the convective fraction of the cooling system;
• Φint,ztc,t is the total internal heat gains, in W;
• ΦHC,ztc,t is the cooling load (if negative), in calculation zone ztc, at time interval t, depending on type of

application of the calculation, in W;
• Φsol,ztc,t is the directly transmitted solar heat gain into the zone, summed over all window wi, in W;
• Aelk is the area of (this or other) building element elk, in zone ztc, in m2;
• Atot is the sum areas Aelk of all building elements elk = 1, . . . ,eln, in m2;
• θpli,eli,t is the temperature at node pli, in ◦C;
• θpli − 1,eli,t is the temperature at node pli − 1, in ◦C;
• θint,a,ztc,t is the internal air temperature in the zone, in ◦C;
• hpli − 1,eli,t is the conductance between node pli and node pli − 1, in W/m2K;

• κpli,eli is the real heat capacity of node pli, in J/m2K;

• hci,eli is the internal convective surface heat transfer coefficient, in W/m2K;
• hri,eli is the internal radiative surface heat transfer coefficient, in W/m2K;
• θpli,eli,t − 1 is the temperature at node pli, at previous time interval (t − ∆t) in ◦C.
• θpli + 1,eli,t is the temperature at node pli + 1, in ◦C;

• hpli,eli,t is the conductance between node pli + 1 and node pli, in W/m2K;
• θe,a,t is the temperature of external environment, in ◦C;
• hce,eli is the external convective surface heat transfer coefficient, in W/m2K;
• hre,eli is the external radiative surface heat transfer coefficient, in W/m2K;
• αsol,eli is the solar absorption coefficient at the external surface, in W/m2K;
• Isol,dif,eli,t is the diffuse part (including circumsolar) of the solar irradiance on the element with tilt angle βeli

and orientation angle γeli;
• Isol,dir,eli,t·is the direct part (excluding circumsolar) of the solar irradiance on the element with tilt angle βeli

and orientation angle γeli;
• Fsh,obst,eli,t is the shading reduction factor for external obstacles for the element;
• θsky,eli,t is the (extra) thermal radiation to the sky, in W/m2;
• βeli is the tilt angle of the element (from horizonal, measured upwards facing), in degrees;
• γeli is the orientation angle of the element, in degrees.
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