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Abstract: The design and parameter selection of low-ripple and fast-response direct current (DC)
filters are discussed in this study with the aim of alleviating the influence of a DC-side low-frequency
voltage pulsation on a sensitive load in a DC distribution network. A method for determining the
DC filter parameters by using a mofatching most flat response algorithm is presented. The voltage
transfer function of the DC-side filter in the DC distribution network is deduced to analyze its voltage
transfer characteristics. The resonance peak value of the filter network is an important factor affecting
the transfer speed of a filter. A pole-circle-based parameter optimization method is proposed to move
the poles of the filter transfer function down and to the left of pole plane for finding the appropriate
capacitance, inductance, and damping parameters. This approach effectively restricts the resonance
peak value, accelerates the transfer speed, and maintains steady filtering results. Simulation and
test results verify that the filter has low resonance value, rapid convergence ability, and an excellent
filtering effect.

Keywords: DC distribution network; DC filter; low-frequency pulsation; voltage quality; flat
response filter

1. Introduction

Considering the increasing use of distributed generation, electric vehicles, energy storage, and
energy efficient loads that generate or consume direct current (DC) power, DC distribution networks
offer a promising alternative to their alternating current (AC) counterpart [1–4]. The improved
compatibility between DC devices and a DC power backbone reduces and simplifies the power
conversion steps, thereby reducing power conversion losses and increasing the component-level
reliability [5–8]. However, similar to the AC distribution network, DC distribution networks with
intermittent renewable energy sources (RES) and variable load demands cause power imbalances
and subsequently generate a voltage variation in the DC bus [7–10]. A large variation in the DC link
voltage can lead to the efficiency and performance degradation of its downstream converters [11],
and increased voltage stresses of the system [12] and interference between the DC and AC utilities due
to the coupling effect. For specific applications, this variation can also generate undesirable flickers in
light emitting diode (LED) lighting [13], decrease the operating lifetime of batteries [14], and diminish
the power efficiency of photovoltaic (PV) panels [15]. A large voltage ripple across the electrolytic
capacitor (E-cap) leads to a massive capacitor current ripple, increasing the internal resistive loss and
temperature inside the E-Cap [16].

In view of these challenges, there is a growing interest in using DC filtering approaches to
stabilizing the DC-link voltage [17,18]. DC filtering research for DC distribution networks has aimed
to diminish the DC voltage modulation harmonics and suppress the possible low-frequency pulsation
in the system. Currently, the available DC filtering methods for DC distribution networks are divided
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into two categories: active power filtering (APF) [19–23] and passive power filtering (PPF) [24–29].
APF can eliminate DC voltage fluctuation dynamically by paralleling the voltage converter on the
DC side. For example, Wang et al. [20] proposed eliminating harmonics in the DC bus voltage with
a DC electric spring. This approach adjusts the consumption power of a non-critical load to make
it follow the power variation of renewable energy. However, the ability of this method to eliminate
voltage harmonics is limited considering the restricted power of non-critical loads. In Li et al. [19],
a pluggable voltage pulsation suppression device was designed to realize flexible control of the voltage
ripple in an AC/DC hybrid distribution network. However, adding a device at each node evidently
increased the cost of investment. Lee et al. [21] suggested suppressing DC voltage pulsation using
an energy storage device in the DC distribution network and controlling the converters. However,
the control method is complex and the operation and maintenance costs of the energy storage device
are high. In Li et al. [23], a ripple eliminator, which is a bidirectional buck-boost converter terminated
with an auxiliary capacitor, was adopted to replace bulky capacitors in DC systems. Although the
APF is effective at eliminating voltage harmonics, designing and controlling DC APF is complex
and costly [22]. In addition, APF is rarely used in DC distribution networks with large capacity and
high voltage given its limitations. The DC passive filter design is simple without the additional of a
controller, acting as the main DC voltage filter in the DC distribution network. DC passive filters are
mainly divided into tuned and low-pass filters. The former has a large occupational area and minimal
flexibility [27]. The latter can filter the harmonics after a cut-off frequency. However, the particularly
small cut-off frequency enlarges the parameters of inductance and capacitance, thereby affecting the
dynamic response characteristics of the DC distribution system and limiting the power transmission
capacity [24]. Thus, Beres et al. [24] designed a bidirectional low-ripple and fast-response low-pass
filter using the Chebyshev algorithm to diminish the value of the DC-side smoothing reactor and
increase transmission capacity. However, the designed five-order Chebyshev filter (CBSF) required
highly accurate element parameters, which could not be matched in practice. To solve this problem,
Kang et al. [28] designed a four-order flat response filter (FRF) with standard element values and
optimized the element parameters of the filter with the evolutionary algorithm, thereby diminishing the
deviation between the designed and the actual element parameters of the filter; however, the parameter
selection process was complex and increased the response time of the DC voltage.

In the present study, a low-ripple and fast-response DC filter for DC distribution networks is
designed using a matching most flat response algorithm. This algorithm integrates the parameters
of the filter with the fluctuation characteristics of the DC voltage in the DC distribution network.
In Section 2 the applications, frequency response characteristics, and response speed of all kinds of
filters are analyzed. FRF was selected as the basic prototype to design the filter. Then, the order of
the filter was determined in accordance with the requirements of the dynamic frequency response
characteristics of the filter. The element parameters of the filter were selected using the matching design
algorithm in accordance with the equivalent impedance on both sides of the filter. Section 3 outlines
the derivation of the voltage transfer function of the DC filter network and the further optimization of
the parameters of the filter through a pole-circle-based parameter optimization method. The optimized
filter further restricts the resonant peak value and accelerate transfer speed. Section 4 details the
filtering and response time simulations on the designed filter through bipolar and single-ended radial
DC distribution networks, respectively. Finally, an experimental analysis is conducted on the designed
filter by creating an experimental platform for a radial DC distribution network.

2. Design of DC Filters for DC Distribution Networks

2.1. Basic Prototype Selection of DC Filters

The basic structure of six kinds of filters is illustrated in Figure 1 to clearly demonstrate the
current design status of DC filters. Figure 1a–c depict a double-tuned high-pass filter, C-type filter,
and six-order damping-CBSF, respectively. Figure 1e–g show the basic structure of the APF. The APF
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reduces the volume of the DC-side filter (especially for capacitors) by introducing a full-control device
and adding ripple suppression control to the AC/DC or DC/DC converter. However, the capacity of
the APF is limited for high-voltage DC distribution networks. For high-voltage and large-capacity
applications, PPF design is a focus among researchers. Aleem et al. [30,31] adopted an optimization
algorithm to enhance the parameters of the tuning filter (TF). The designed filter is optimal in terms of
coverage area and filtering effect, but the accuracy of its component parameters could not be achieved
in practice. To increase PV hosting capacity in distorted distribution systems, Sakar et al. [32] designed
a C-type passive filter (Figure 1b) to maximize the harmonic constraint, but the filter design method is
not presented. Ali et al. [33] developed a new multiple-arm passive filter design method on the basis of
a crow search algorithm to minimize the total harmonic current distortion as an objective function for
an industrial plant. Zhang et al. [34] designed a six-order damping-CBSF (Figure 1c), which accelerates
the response speed of the DC filter system, but the design parameters of the filter are numerous and
require high precision. In this study, a two-stage LC filter (LCF) structure is proposed. The parameters
of the filter are designed using the matching most flat response algorithm and optimized on the basis
of the pole-circle-based method, which is different from the traditional LC filtering scheme.
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Figure 1. Basic structure of a DC filter: (a) Double-tuned high-pass filter, (b) C-type filter,  
(c) Six-order damping-CBSF, and (e,f,g) APF. 
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Figure 1. Basic structure of a DC filter: (a) Double-tuned high-pass filter, (b) C-type filter, (c) Six-order
damping-CBSF, and (e,f,g) APF.

Different filters have corresponding applications, advantages, and disadvantages, as summarized
in Table 1. In this table, APF with complex design, control, and high cost has certain limitations in
being applied to DC distribution networks. Passive filters are suitable for DC-side filtering of the
DC distribution network considering the simple principle and low cost. The frequency response
characteristics of four passive filters are displayed in Figure 2a,b. The TF can only filter out a specific
order of harmonics, which is unsuitable for the DC distribution network with substantial spectra in
the DC voltage. LCF has a favorable filtering effect for high-frequency pulsations, but its volume
must be increased for low-frequency pulsation elements, such as the second harmonic, and its lifetime
is affected by the second harmonic content. The curves of the response time and attenuation of
the harmonic content with passbands of CBSF and FRF are presented in Figure 2c,d, respectively,
whose data were obtained through experiments. In these figures, the FRF has a rapid response time
and low harmonic content under the same passband attenuation [1]. Therefore, the FRF was selected
as the basic filter design prototype in this study. On this basis, the FRF parameters were optimized to
suppress low-frequency pulsations and accelerate the transfer speed of the filter.

Table 1. Characteristic comparison of different filters.

Type Application Advantage Disadvantage

APF AC or DC filtering Dynamic compensation of harmonics High cost, complex design and control
TF AC or DC filtering Simple principle and design method Large occupation area

LCF AC or DC filtering Few elements and low cost Large volume and small power density
FRF DC filtering Fast response speed Slow stopband attenuation

CBSF DC filtering Fast attenuation of stopband Slow response speed
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Figure 2. Comparison of different passive filters: (a) LCF, FRF, CBSF; (b) TF; (c) Harmonic content for 
FRF and CBSF, and (d) Response time for FRF and CBSF. 
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the resonance peak value and accelerate the transfer speed. Therefore, applying FRF in a DC 
distribution network has unique advantages. The use of FRF to filter the DC bus voltage in a DC 
distribution network can decrease the volume of the filter capacitor and inductor. The structure and 
installation position of the FRF in the DC distribution network are illustrated in Figure 3. 
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2.2. Design and Characteristic Analysis of DC Filters

The FRF has the most flat frequency response characteristics for the filter passband to restrict the
resonance peak value and accelerate the transfer speed. Therefore, applying FRF in a DC distribution
network has unique advantages. The use of FRF to filter the DC bus voltage in a DC distribution
network can decrease the volume of the filter capacitor and inductor. The structure and installation
position of the FRF in the DC distribution network are illustrated in Figure 3.

Energies 2018, 11, x FOR PEER REVIEW  4 of 20 

 

 

100 101 102
–25

–15

–10

–5

0

FRequency(Hz)

A
T

te
nu

at
io

n(
dB

)

–20

LCF FRF CBSF

 
0 500 1000 1500 2000 2500

0

4

8

12

Im
pe

d
an

ce
(Ω

) 

Frequency(Hz)  
(a) (b) 

 

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6  CBSF
 FRF

H
ar

m
on

ic
 c

on
te

nt
(%

)

Passband attenuation(dB)  

 

0 2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

R
es

po
ns

e 
ti

m
e(

s)

Passband attenuation(dB)

 FRF
 CBSF

 
(c) (d) 

Figure 2. Comparison of different passive filters: (a) LCF, FRF, CBSF; (b) TF; (c) Harmonic content for 
FRF and CBSF, and (d) Response time for FRF and CBSF. 

2.2. Design and Characteristic Analysis of DC Filters 

The FRF has the most flat frequency response characteristics for the filter passband to restrict 
the resonance peak value and accelerate the transfer speed. Therefore, applying FRF in a DC 
distribution network has unique advantages. The use of FRF to filter the DC bus voltage in a DC 
distribution network can decrease the volume of the filter capacitor and inductor. The structure and 
installation position of the FRF in the DC distribution network are illustrated in Figure 3. 

M

...

M

AC load
AC/DC DC/AC

DC/DC

ES

DC/DCPV 

DC load

Filter Filter

 
Figure 3. DC distribution network diagram containing FRF. 

The modular square transfer function and attenuation characteristics of the matching most flat 
response algorithm satisfy Equations (1) and (2) [34]: 

2 2 2 21 1 ns

p

H ε ε
 Ω

= + = + Ω  Ω 
 (1) 

Figure 3. DC distribution network diagram containing FRF.

The modular square transfer function and attenuation characteristics of the matching most flat
response algorithm satisfy Equations (1) and (2) [34]:

|H|2 = 1 + ε2
(

Ωs

Ωp

)
= 1 + ε2Ω2n (1)
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α(Ω) = 10lg
1

|H(jΩ)|2
= 10lg(1 + C2Ω2n) (2)

where n is the order of the filter; Ωp and Ωs are the frequencies of the passband and stopband,
respectively; Ω = Ωs/Ωp is the normalized frequency; ε = 1/(ρ−2 − 1)0.5; ρ is the reflection coefficient
of the filter; and C is the auxiliary constant designed by the filter. According to Equations (1) and (2),
the characteristic curve of the attenuation of the FRF passband that varies with the order can be
obtained, as depicted in Figure 4. In this figure, the order of the filter significantly influences the
attenuation characteristics. Thus, determining the order of the filter is necessary.
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The order of the filter is determined by its passband and stopband frequencies and their
attenuation values. A high order of the filter indicates the high accuracy of the element parameters.
Therefore, the order of the filter is as small as possible because the filtering effect is satisfied.
The selected frequency of the passband is 50 Hz, and the selected stopband attenuation (αs) is 20 dB,
given the low-frequency pulsation of the DC voltage given the three-phase unbalance of the AC grid.
Our purpose was to filter the voltage pulsations with the second frequency and above. The calculation
equation of the FRF order is [35]:

n ≥
lg
√
(100.1αs)( 1

ρ2 − 1)

lgΩs
(3)

The aforementioned parameters are substituted to the equation to obtain the order of the designed
filter. In the present study, three parameters were considered. The frequency characteristic curve of the
third-order FRF was drawn in MATLAB (MathWorks, Natick, MA, USA), as demonstrated in Figure 5.
The filter attenuated for 3 dB at 50 Hz and 18 dB at 100 Hz. This process was consistent with the design
intention. After determining the order of the filter, the FRF of the π-type structure was selected, and its
structure is exhibited in Figure 6. In this figure, L1 is the smoothing reactor. The L1 should have a small
value to ensure the dynamic performance of the system. Here, the L1 value was temporarily taken as
20 uH. L2, C1, and C2 were the basic parameters of the π-type FRF; RL1 and RL2 and RC1 and RC2 were
the damping parameters in the inductance and capacitance branches, respectively. The inductance and
capacitance currents were iL1 and iL2 and iC1 and iC2, correspondingly; the input and output voltages
of the port were Ui and Uo, respectively; and the equivalent impedance variables of the input and
output were Ri and Ro, correspondingly.

The matching most flat response algorithm was used to select the element parameters.
This method aimed to balance the equivalent impedance of the connected systems on both filter
sides. According to the matching most flat response algorithm, the normalized element parameter km

of the filter can be calculated using the following equation [35]:

km =
1
C
[2 sin(2m− 1)

π

2n
] (4)
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where m is a natural number. When m is odd or even, km is the value of capacitance or inductance,
respectively. In accordance with Equation (4), solving the auxiliary parameter C of the filter is necessary.
The modular square transfer function of the matching most flat response algorithm at the frequencies
of Ωp and Ωs can be obtained using Equation (1), as expressed in Equation (5). C can be obtained using
Equation (6). Thus, the value of C depends on the passband attenuation αp. Generally, αp = 3 dB; thus,
C = 1.
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The voltage and load side impedance of the DC filter directly determines the parameters of the
filter. The fundamental frequency of the AC system was set to fc, and the equivalent impedance
of the grid and load sides were set to Rs and RL, respectively. The benchmark values of resistance,
inductance, and capacitance of the filter were set to R0, L0, and C0, correspondingly. The normalized
parameters of the filter inductance and capacitance are Cm and Lm, respectively, where m is a natural
number. In the matching algorithm, Rs = RL = R0 was satisfied. For analysis convenience, the variables
were temporarily set to 1 Ω. The actual inductance and capacitance values were the product of the
normalized and reference parameters (i.e., Lm = L0Lm and Cm = C0Cm). Thus, the actual parameters
of the 3rd-order FRF are calculated as follows [35]:{

C2Ω2n
p = 10αp/10 − 1

C2Ω2n
s = 10αs/10 − 1

(5)

C2 = 10
αp
10 − 1 (6)

On the basis of the calculation of the normalized element parameter km, when the element is the
capacitor or inductor, km = 1 or km = 2, correspondingly. Generally, the parameters of L1 are selected in
accordance with the continuous current requirement of the DC bus in the DC distribution network.
For the line-commutated converter, the parameters of L1 should satisfy Equation (7), where Ud0 is the
no-load voltage, k0 is 0.064 for the six-pulse converter, α is the trigger angle ω = 314 rad/s, and Idj
is the minimum load current. For a 480 V, 10 kW DC distribution network, the appropriate value of
L1 is 20 mH. According to the results of Equations (7)–(9), the parameter values of the filter could be
obtained as listed in Table 2.

L1 ≥ Ud0k0 sin α/ωIdj (7)

L0 = R0/2π fc (8)
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C0 = 1/R0 · 2π fc (9)

Table 2. Parameters value of filter elements.

Element km Value

C1 1 3.183 mF
L1 - 20 mH
C2 1 3.183 mF
L2 2 6.366 mH

3. Parameter Optimization and Performance Analysis of the Filter Networks

3.1. Optimization of Filter Parameters Based on Pole-Circle

In Equation (1), the n-order matching FRF has 2n poles, which are uniformly distributed on the
circle with the radius of Ω. When the parameters are normalized, Ω = 1. The real and imaginary
parts of the pole in the s-plane are set to σx and Ωx, respectively. Thus, the coordinates of the pole
satisfy Equation (10). Only the n poles on the left half of the s-plane are obtained, that is, p1(σ1, jΩ1),
p2(σ2, jΩ2), . . . , pn(σn, jΩn). The pole distribution of the 3rd-order FRF designed in the present study
is displayed in Figure 7:

σ2
x + Ω2

x = Ω2 (10)

The capacitance branch presented in Figure 6 is connected in series with a damping resistance.
The filter with damping resistance on the capacitance branch is known as a damped FRF (DFRF).
The dissipation factor of the capacitor at the normalized frequency was set to. Thus, the normalized
admittance of the capacitance branch was:

Y(jω) = Cm[jΩ + Ω2d(2d + 1)] = Cm
(

jΩ′ + d′
)

(11)

Given that Ω2 ≥ 0, Ω’ ≤ Ω. Therefore, the damping resistance in the capacitance branch reduced
the passband frequency of the FRF. In Figure 7, the damping resistance enabled the original poles to
shift to the left. For example, the change trajectory of Pole 1 was p1(σ1, jΩ1)→ p12(σ12, jΩ12).

For the DC filter network, the voltage transfer function reflects the variation in voltage with
frequency. According to the filter network structure illustrated in Figure 6, the input and output
voltages satisfy the differential equation, as expressed in Equation (12). The voltage transfer function
of the filter network can be derived from Equation (12), as defined in Equation (13):

Ui = L1
diL1
dt + 1

C1

∫
iC1dt + iL1RL1 + iC1RC1

Uo =
1

C1

∫
iC1dt + iC1RC1 − L2

diL2
dt − iL2RL2

iL1 = iC1 + iL2

iL2 = iC2

(12)

G(s) =
Uo(s)
Ui(s)

=
1

L1L2C1C2s4 + (L1C1 + L2C2 + L1C2)s2 + 1
(13)

When the capacitance and inductance branches in Figure 6 add the damping resistance, the voltage
transfer function is described in Equation (14):

Uo(s)
Ui(s)

=
s2C1C2RC1RC2 + s(C2RC2 + C1RC1) + 1

s4L1L2C1C2 + s3C1C2(L1RC1 + L1RL2 + L2RL1 + L1RC2 + L1RC2) + s(RL1 + RL2)(C1 + C2)

+s2[C1C2(RL1RL2 + RL1RC2 + RL1RC1 + RC1RL2 + RL1RC2) + (L1 + L2)(C1 + C2)]

(14)
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In Equation (13), the FRF network has two resonant points, which were also the poles of the filter.
The resonant frequencies were set to f 1 and f 2, and the resonant peaks were obtained at P1 and P2.
For the first resonance point f 1, s2 = −1/L1C1. At this time, the resonant peak value is:

P1 = |G(j2π f1)| =
C2

C1
(15)

At the second resonant frequency f 2, s2 = −1/L2C2, At this time, the resonance peak value is:

P2 = |G(j2π f2)| =
L1

L2
(16)

According to Equations (15) and (16), the resonant peak value of the filter was related to the ratio
of the passive device parameters. If the parameters of the filter could satisfy C2/C1 < 1 and L1/L2,
the attenuation of the FRF at the resonant point was negative, which was beneficial for restricting
the resonant peak value of the filter. The present study adopted a decreasing L1 and increasing C1

because the current that flows through C1 was much larger than C2 without changing the parameters
of L2 and C2. With the decrease in L1 and the increase in C1, the normalization poles of the filter

moved downward in Figure 7 (Ω =
√
|H|2 − 1/ε, H at Ωp decreased). The pole’s change trajectory

was p1(σ1, jΩ1)→ p11(σ11, jΩ11), thereby indicating a decrease in the radius of the original pole circle.
According to the physical meaning of the radius of the pole circle, namely, the normalized cut-off
frequency, the method eventually diminishes the passband frequency of the FRF and maintains steady
filtering results.
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On the basis of the data discussed above, the passband frequency of the filter can be diminished by
increasing the damping resistance of the capacitance branch and changing the ratio of inductance and
capacitance parameters. The passband frequency would diminish, and the flat response characteristic
of the filter would be constant, if the poles are maintained on the pole circle. Finally, the resonant peak
of the FRF could be restricted. When selecting the damping resistor and configuring the parameters,
the movement of the offset pole p0 (σx + Ω2d)/(1 + Ω2d2), jΩx/(1 + Ω2d2) was downward and to
the left along the pole circle, as depicted in Figure 7, because Equation (10) was satisfied. We named
the filter optimized by this method the damped non-matching FRF (DNMFRF). The parameters of
the filter obtained by the method are listed in Table 3. We found that L1 significantly decreased,
which accelerated the filter’s transfer speed.
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Table 3. Optimized filter elements parameter value.

Element km Value

C1 1.48 4.7 mF
L1 - 2 mH
C2 1 3.183 mF
L2 2 6.366 mH
R1 - 0.1 Ω
R2 - 0.1 Ω

3.2. Sensitivity Analysis of Filter Parameters

The output admittance transfer function of the DC filter network was derived as expressed in
Equation (17), which reflects the relationship between the output current and voltage. In Figure 8,
the resonance peak value of the transfer function for the filter is minimal when the C1, C2, L1, and
L2 branches contain resistance. However, when resistance emerges on the inductance branches, the
output current has a certain attenuation effect on the output DC voltage. When the capacitance
contained resistance, the output current attenuated the output DC voltage less than the inductance
branch, and the resonance peak of the filter network was effectively diminished. Therefore, adding
the damping components to the filter capacitance branch could accelerate the filter response time and
slightly attenuate the DC voltage:

io(s)
Uo(s)

=

s3C1C2(L1RL2 + L1RC1 + L1RC2 + L2RC1 + L2RL1) + s(RL1C2 + RL2C2 + RC2C2 + RC1C1 + RL1C1)

+s4L1L2C1C2 + s2[C1C2(RL1RL2 + RC1RC2 + RC1RL2 + RC1RL1 + RC2RL1) + L1C2 + L2C2 + L1C1] + 1

s4L1L2C1C2 + s3[C1C2(RL2RC2L1 + RC1RC2L2 + RL1RC2L2 + RC1RC2L1) + L1L2C1] + (RL1 + RL2)

s2[C1(RL2L1 + RC1L2 + RL1L2 + RC1L1) + C1C2(RC1RC2RL2 + RL1RL2RC2 + RC1RC2RL1)

s[C1(RC1RL2 + RL1RL2 + RL1RC1) + C2(RL1RC2 + RL2RC2) + L1 + L2] + RC2C2(L1 + L2)]

(17)

The voltage transfer characteristics of the FRF and DFRF were obtained by substituting the
parameters in Table 2 into Equation (13) and Table 3 into Equation (14), as demonstrated in Figure 9.
In this figure, the resonant peak value at the resonant point significantly decreases, and the transfer
speed of the filter theoretically accelerates when the capacitance branch is added to the resistor.
Simultaneously, increasing damping resistance improves the high-frequency characteristics of the filter,
thereby enlarging the slope of the high-frequency section.
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The voltage transfer characteristic can be obtained by changing C1 from 0.1 mF to 5 mF, as 
exhibited in Figure 10a. In this figure, when the capacitance parameter was less than 1 mF (i.e., the 
ratio of C1 and C2 was greater than 3), the stopband attenuation characteristics of the filter were 
particularly poor, especially for low-frequency harmonics. When the ratio of C2 to C1 was smaller 
than 1, the stopband attenuation of the filter significantly improved. When the parameter of C1 was 
5 mF, the harmonic attenuation of the filter for 100 Hz was −30 dB, and the attenuation for 300 Hz 

Figure 8. Frequency response characteristics of output admittance in DC filter networks.

The voltage transfer characteristic can be obtained by changing C1 from 0.1 mF to 5 mF, as exhibited
in Figure 10a. In this figure, when the capacitance parameter was less than 1 mF (i.e., the ratio of C1

and C2 was greater than 3), the stopband attenuation characteristics of the filter were particularly poor,
especially for low-frequency harmonics. When the ratio of C2 to C1 was smaller than 1, the stopband



Energies 2018, 11, 3128 10 of 20

attenuation of the filter significantly improved. When the parameter of C1 was 5 mF, the harmonic
attenuation of the filter for 100 Hz was −30 dB, and the attenuation for 300 Hz was 70 dB. The voltage
transfer characteristics can be obtained by changing L1 from 0 mH to 20 mH, as displayed in Figure 10b.
In this figure, if the inductance parameter is set to 0 mH, then the attenuation value of the filter
to high-frequency harmonics finally approaches a constant, which is nonconducive to removing
high-frequency harmonics. A large inductance parameter implies a large attenuation of the filter for
the same frequency voltage harmonics. However, increasing L1 is bound to increase the response
time of the filter simultaneously, and the design parameters should not increase the parameters of L1,
as much as possible.
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Figure 10. Effect of filter parameters on voltage transfer characteristics: (a) C1 change and (b) L1 
change. 
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output voltage. In MATLAB, a three-dimensional (3D) diagram of the variation of the second harmonic
content with C1 and L1 was drawn, as presented in Figure 11a. In this figure, under the same L2 and C2

parameters, a large L1 and C1 indicate a small second harmonic content. This result was consistent with
the results of the previous analysis. When the parameters of C2 increased, the second harmonic content
decreased. In practical applications, their parameters should be reasonably selected in accordance with
the capacity of the DC distribution system. The relationship between the second harmonic content
and the C1/C2 is illustrated in Figure 11b. Evidently, the second harmonic content decreased with
increases in C1, C2, and L2.

Similarly, the relationship between the second harmonic content and the C2/C1 and L2/L1 was
obtained, as depicted in Figure 11c. In this figure, small C2/C1 and L2/L1 denote a small content
harmonic content. Moreover, C1 + C2 and L1 + L2 must satisfy certain conditions, and their value
should be within a reasonable range. In addition, the response speed of the filter should be considered.
Therefore, the values of L1, L2, C1, and C2 could not be too large because a small value is favorable
when the filtering requirements are satisfied.
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3.3. Dynamic Performance Analysis of the Filter

The root locus and Nyquist curves for the voltage transfer function of the filter were drawn in
MATLAB using Equation (13), as demonstrated in Figure 12. In this figure, all closed-loop poles are
located in the left-half plane, and Nyquist curves do not pass through (−1, j0), thus indicating that
the filtering system is stable. The closed-loop poles of the voltage transfer function were close to the
imaginary axis when the value of L1 changed from 2 mH to 20 mH. Based on the theory of control
system, this approach extends the response time of the filter.
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The step response of the filter was obtained by changing the parameters of the filter, as exhibited in
Figure 6. Notably, only one component parameter was changed at a time, and changing the parameters
of the filter should make the cut-off frequency of the filter only slightly different. The results are
displayed in Figure 13. The response time of the filter and the overshoot increased with the increase
of L1 from 2 mH to 20 mH, as presented in Figure 13a. In Figure 13b, C1 changes from 0.318 mF
to 3.183 mF. In this figure, the change in C1 slightly affects the filter’s response time and overshoot.
The inductance L2 changes from 0.6366 mH to 6.366 mH. The increase in L2 augmented the overshoot
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of the filter but only slightly affected the response time of the filter. In Figure 13d, the increase in C2

evidently augmented the response time of the filter, but the change in overshoot was particularly small.
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Further analysis of the effect of the component parameters on the filter response time and
overshoot is illustrated in Figure 14. In this figure, the filter response time, overshoot, and variation
trend in different component parameters are presented.
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The response time and overshoot of the filter were relatively small under the designed parameters
of the filter, and the variation of the response time ranged from 0.2 to 1.2 ms. In addition, the overshoot
did not exceed 0.4. Therefore, the designed parameters of the filter demonstrated a favorable dynamic
performance and could resist the influence of the inaccuracy of parameters in practical engineering.
According to the abovementioned analysis, C1 slightly affected the filter’s response time and overshoot,
and its parameter selection is relatively flexible. The values of L1 and C2 significantly affected the
filter’s response time, and the parameters of these two components should be increased in the design
as little as possible. The increase in L2 would magnify the overshoot of the filter, thereby possibly
negatively affecting the design.

4. Simulation Study

4.1. Simulation of Filtering Effect in Bipolar DC Distribution Networks

The bipolar DC distribution network, a common structure in the DC distribution network, can
provide three voltage interfaces on the DC side to realize the flexible access of the DC load [11]. The FRF
was used to create the DC filter network. The network structure and its basic parameters are exhibited
in Figure 15 and Table 4, respectively. For the sake of simplicity, only one measurement point of the
voltage waveform was set in the bipolar DC distribution network. The location of the measurement
point is displayed in Figure 12.

Table 4. Parameters of the bipolar double-ended DC distribution model.

Parameter Value Parameter Value

Three-phase voltage unbalance factor (%) 0–2% DC line resistance (Ω) 0.2
AC voltage (V) 220 DC bus current (A) 20

DC bus voltage (V) 640 DC load power (kW) 1 × 10
Modulation ratio (pu) 0.7 AC load power (kW) 2 × 1.4

The LCF and FRF were installed at the DC side. The LCF parameters were C = 4700 uF and
L = 200 uH, and those of the FRF were the same as the data summarized in Table 1. The three-phase
voltage unbalance factor on the AC side was 2%, and the simulation results of the DC bus voltage are
presented in Figure 16.
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Figure 15. Schematic of a double-ended distribution model.
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Figure 16. Simulation results for different filters: (a) LCF and (b) FRF.
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The voltage fluctuation ranges of the LCF and FRF output waveforms were ±7.5 and ±3.5 V,
respectively, indicating that the FRF slightly suppressed the DC voltage pulsation. The TF was installed
on the DC side, and its simulation results are illustrated in Figure 17a,b. Evidently, the TF would
generate a large resonance peak, thereby resulting in a rise in the filter response time. In addition,
the filtering effect was poor, and the total harmonic distortion rate reached 4.8%. The parameters of the
FRF listed in Table 1 were adopted to compare the filtering effects with the DNMFRF. The parameters
of the DNMFRF are listed in Table 3, and the simulation results are demonstrated in Figure 17c,d.
Evidently, the ability of the FRF in suppressing the resonance peak and accelerating the transfer speed
of the filter was worse than the DNMFRF.
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4.2. Simulation Result of Single-Ended Radial DC Distribution Networks

The single-ended radial DC distribution network developed in the present study was connected
to an AC network through a six-pulse rectifier. The DC side was connected to the AC and DC loads,
and photovoltaics through DC/AC or DC/DC converters. The basic structure and parameters of the
network are displayed in Figure 18 and Table 5, respectively. The characteristic harmonics on the DC
side were 6k (k = 1, 2, 3, . . . , n) order and contained the modulated harmonics of switching frequency
whose frequency was N + 1 (N = 0, 1, 2, . . . , n) times of the switching frequency.

As shown in Figure 19a,b, the TF had a poor filtering effect in this model. The total harmonic
distortion rate of the output voltage on the DC side reached 5.14%. When the three-phase unbalance
factor of the AC voltage was 2%, the filtering effect of the FRF and LCF were compared. The total
harmonic distortion rate of the output voltage of the LCF reached 1.15% (Figure 19c,d), whereas the
rate was 0.28% for FRF and DNMFRF (Figure 19e,f). The results showed that the FRF demonstrates
an improved effect in suppressing the low-frequency pulsation caused by three-phase unbalance
compared to the LCF. Moreover, when the DNMFRF was installed in the DC-side of the DC distribution
network, it had the same filtering effects as the FRF and could restrict the resonance peak value,
accelerate the transfer speed, and maintain the steady filtering result.

Table 5. Parameter of the single-ended radial DC distribution network.

Parameter Value Parameter Value

AC Voltage (V) 220 AC Load Power (kW) 8 × 1
DC Bus Voltage (V) 500 DC Load Power (kW) 8 × 1

Trigger Angle (◦) 10 Switching Frequency (Hz) 1000
DC Line Resistance (Ω) 0.1 DC Current (A) 20
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Figure 19. Comparison of the filtering performances for different filters. (a,b) TF; (c,d) FRF; (e,f) 
DNMFRF. 

Resistance was added to the inductance branch, and the simulation results for various cases 
are presented in Figure 20a. In this figure, the filter had the shortest response time when the 
capacitance and inductance branches contained damping resistances. However, the damping 
resistance in the inductance branch had a certain attenuation for the DC voltage, whereas the 
resistance in the capacitance branch had a small attenuation on the DC voltage. The load type of the 
DC distribution network was changed, and the situation in which the DC distribution network 
contains 100% and 50% constant-power and constant-resistive loads. The simulation results are 
illustrated in Figure 20b. In this figure, when all the loads in the DC distribution network were 
constant-resistive load, the DC voltage had the smallest resonance peak and fastest response time. 
When the load of the DC distribution network was all constant-power load, the situation was the 
opposite. Evidently, the filtering effect of the filter is also related to the type of DC load, and the 
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(e,f) DNMFRF.

Resistance was added to the inductance branch, and the simulation results for various cases
are presented in Figure 20a. In this figure, the filter had the shortest response time when the
capacitance and inductance branches contained damping resistances. However, the damping resistance
in the inductance branch had a certain attenuation for the DC voltage, whereas the resistance
in the capacitance branch had a small attenuation on the DC voltage. The load type of the DC
distribution network was changed, and the situation in which the DC distribution network contains
100% and 50% constant-power and constant-resistive loads. The simulation results are illustrated in
Figure 20b. In this figure, when all the loads in the DC distribution network were constant-resistive
load, the DC voltage had the smallest resonance peak and fastest response time. When the load of
the DC distribution network was all constant-power load, the situation was the opposite. Evidently,
the filtering effect of the filter is also related to the type of DC load, and the constant-power load
requires high filtering performance.
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located in different branches of the filter and (b) Various types of DC loads.

4.3. Simulation of the Power Transmission Efficiency in Single-Ended Radial DC Distribution Network

The fluctuation magnitude of the DC bus current affects the voltage drop on the smoothing
reactor and the DC transmission line. Evidently, the straight voltage waveform affects the power
transmission efficiency of the DC distribution network. Based on the simulation filtering results in the
single-ended radial DC distribution network, the voltage across the smoothing reactor was analyzed
using FFT. The DC component of the voltage drop waveform on the smoothing reactor using DNMFRF
is depicted in Figure 21a, where in the DC component was approximately 1 V, whereas that on the
LCF was approximately 3 V, as demonstrated in Figure 21b. Accordingly, the DNMFRF filter reduced
the transmission voltage loss.
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Figure 21. Voltage drop on the smoothing reactor: (a) DNMFRF and (b) LCF.

The load frequently changed in the DC distribution network, which promoted the current in
the DC transmission line to change regularly. The load was changed in the single-ended distribution
simulation model to further analyze the power transmission efficiency of the filter. The input and
output powers of the rectifier and inverter, respectively, were measured to compare the transmission
efficiency of the DNMFRF and LCF. The transmission efficiency was defined as the ratio of the total
output power of the inverter to the total input power of the rectifier. The results are exhibited in
Figure 22. In this figure, the power transmission efficiency was worse in the LCF than in the DNMFRF
in the DC distribution network. When the load changed, the transmission efficiency of the designed
filter was minimally affected by the load fluctuation.
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5. Experimental Study

An experimental platform for a single-ended radial DC distribution network was created to
further verify the advantages of FRF in improving the DC voltage quality in the DC distribution
network, as displayed in Figure 23. The parameters of the test platform were as follows: Chroma 61845
Programmable AC power source (Chroma Systems Solutions, Inc., Foothill Ranch, CA, USA) was
used to supply the DC power. The effective voltage value of the AC line was set to 20 V, and two
groups of adjustable DC loads were supplied by the six-pulse rectifier bridge. The initial trigger angle
of the 6-pulse rectifier bridge was 15◦, and the rated voltage on the DC side was 45 V. The original
current was 4 A. Furthermore, the smoothing reactor took 2 mH, and a resistance of 0.1 Ω was replaced
by two copper bars. A total of 2500 points on the waveform before filtering, and those of LCF and
FRF, were programmed by MATLAB to obtain the Fourier analysis results of the three groups of data.
The obtained waveforms are presented in Figure 24a–d. The experimental results show that the total
harmonic distortion rate is 5.63% before filtering, and 2.6% and 0.59% for LCF and FRF, respectively).
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the DC side, which waited until the stage of Loads 1 and 2, as shown in the figure. The power of the 
DC load (the DC bus current for light and heavy loads were 10 and 30 A, respectively) was changed, 
and the voltage of each node was measured. The experimental results are illustrated in Figure 25. In 
this figure, the DC voltage attenuation using FRF filtering was small under a heavy load because the 
ripple in the DC current had a voltage drop when smoothing the reactor and DC transmission line. 
Moreover, the DC voltage attenuation was small for the FRF case because the FRF inhibited the DC 
ripple to a small degree. 
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DC load (the DC bus current for light and heavy loads were 10 and 30 A, respectively) was changed, 
and the voltage of each node was measured. The experimental results are illustrated in Figure 25. In 
this figure, the DC voltage attenuation using FRF filtering was small under a heavy load because the 
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Moreover, the DC voltage attenuation was small for the FRF case because the FRF inhibited the DC 
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Figure 24. Filtering experiment results: (a,b) LCF and (c,d) FRF.

The power supply voltage of programmable AC power supply was changed to 600 V to obtain a
500 V DC voltage from the DC side, and the number of DC loads was simultaneously increased to 4.
The total current of the DC bus was 20 A. The DC voltage of the LC filter and FRF were installed at
the DC side, which waited until the stage of Loads 1 and 2, as shown in the figure. The power of the
DC load (the DC bus current for light and heavy loads were 10 and 30 A, respectively) was changed,
and the voltage of each node was measured. The experimental results are illustrated in Figure 25.
In this figure, the DC voltage attenuation using FRF filtering was small under a heavy load because
the ripple in the DC current had a voltage drop when smoothing the reactor and DC transmission line.
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Moreover, the DC voltage attenuation was small for the FRF case because the FRF inhibited the DC
ripple to a small degree.Energies 2018, 11, x FOR PEER REVIEW  18 of 20 
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6. Conclusions 

In this study, a low-ripple and fast-response filter was designed to improve the DC voltage 
quality of a DC distribution network, called DNMFRF. Simulations and experimental results 
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thereby verifying the suitability of the designed filter for DC-side filtering of DC distribution 
networks. 
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6. Conclusions

In this study, a low-ripple and fast-response filter was designed to improve the DC voltage quality
of a DC distribution network, called DNMFRF. Simulations and experimental results confirmed that
the filter has a low resonance value, rapid conversion ability, and excellent filtering effect. The designed
filter can diminish the loss of smoothing reactor and DC transmission line during the transmission
of DC voltage over TF and LCF, indicating its high power transmission efficiency. The parameter
optimization method based on the pole-circle restricts the resonant peak value of the resonant point
and accelerates the transfer speed of the filter. From the perspectives of investment cost, occupational
area, filtering effect, and response speed, the filter designed in this study can improve the voltage
quality in a DC distribution network compared to other filters, thereby verifying the suitability of the
designed filter for DC-side filtering of DC distribution networks.
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