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Abstract: Type-approval driving cycles currently available, such as the Federal Test Procedure (FTP)
and the Worldwide harmonized Light vehicles Test Cycle (WLTC), cannot be used to estimate real
fuel consumption nor emissions from vehicles in a region of interest because they do not describe
its local driving pattern. We defined a driving cycle (DC) as the time series of speeds that when
reproduced by a vehicle, the resulting fuel consumption and emissions are similar to the average
fuel consumption and emissions of all vehicles of the same technology driven in that region. We also
declared that the driving pattern can be described by a set of characteristic parameters (CPs) such
as mean speed, positive kinetic energy and percentage of idling time. Then, we proposed a method
to construct those local DC that use fuel consumption as criterion. We hypothesized that by using
this criterion, the resulting DC describes, implicitly, the driving pattern in that region. Aiming to
demonstrate this hypothesis, we monitored the location, speed, altitude, and fuel consumption of a
fleet of 15 vehicles of similar technology, during 8 months of normal operation, in four regions with
diverse topography, traveling on roads with diverse level of service. In every region, we considered
1000 instances of samples made of m trips, where m varied from 4 to 40. We found that the CPs of the
local driving cycle constructed using the fuel-based method exhibit small relative differences (<15%)
with respect to the CPs that describe the driving patterns in that region. This result demonstrates the
hypothesis that using the fuel based method the resulting local DC exhibits CPs similar to the CPs
that describe the driving pattern of the region under study.
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1. Introduction

Currently, there is a need for local driving cycles. Existing type-approval driving cycles do not
describe correctly the driving patterns of a region of interests causing large differences between the
fuel consumption (FC) observed during every day normal use of the vehicle in that region and the FC
reported by the manufactures [1].

At present, there is not a clear definition for driving patterns. This term is used vaguely to describe
the way drivers drive. Authors describe driving patterns in terms of a set of characteristic parameters
(CPs), also known as performance values (PVs). They are speed-time based variables such as average
speed, percentage of idling time, average positive acceleration, positive kinetic energy, etc. It remains
unclear which set of CPs properly describes a driving pattern but there is an agreement among authors
that driving patterns influence vehicle fuel consumption [2,3].

Driving cycles (DC) are time series of speeds that represent driving patterns [2,4] They have been
constructed in the way that the values of the CPs of the DC are approximately equal to the values of
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the CPs that describe the driving patterns. DCs describe the workloads imposed on the vehicles and
therefore have been used for assessing the environmental impact of traffic [5], and for optimizing new
vehicles’ powertrain configurations and engine control strategies to reduce fuel consumption (FC) [6].
In this manuscript, we distinguish two types of DC: local and type-approval DC.

Presently, the Worldwide harmonized Light vehicles Test Cycle (WLTC) and the Federal Test
Procedure (FTP), are some of the most well-known type-approval DCs [7–9]. These two DCs, as all
type-approval DCs, are mainly used for the determination of vehicles’ fuel consumption and the mass
emission of air pollutants, for comparative and certification processes [10–12] Manufactures report the
measured fuel consumption when the vehicle follows a type-approval DC as part of the introduction
process of a new technology in the vehicles market [13,14]. However, these existing type-approval DCs
do not describe correctly the real-world driving patterns of any particular region.

The key issue relative to local DCs is their representativeness of the real-world local driving
patterns. Researchers look for DCs that provide a synthesized representation of the local driving
patterns [5,15,16].

Two main approaches have been used to construct DCs. The first one is the micro-trips-based
approach in which a large sample of time series of speeds (trips) are divided into micro-segments
(known as micro-trips) which are speed vs. time sections with initial and final speeds equal to zero.
Then, a set of micro-trips are selected “quasi-randomly” and spliced together to form a candidate
representative DC. A clustering step is occasionally applied for gathering micro-trips with similar
speed-acceleration values. The selected DC is the one with CPs values similar to the respective average
values of CPs of the trips collected. LA92, Singapore, Hong Kong and Bangkok DCs were obtained
with this micro-trips approach [12,15,17].

The second approach to construct DCs is based on Markov theory and uses the Monte Carlo
technique. Some examples are found in [15,18,19]. In this second approach, speed and acceleration
ranges are discretized into n and m sections, respectively. They configure a matrix of n x m states.
The measured values of speed and acceleration from all the sampled trips are grouped into those states,
forming the speed acceleration frequency distribution (SAFD) or the speed acceleration probability
distribution (SAPD) when the SAFD is normalized. Next, an [(nxm) x (nxm)] probability transition
matrix is computed. Similar to the SAPD, those probabilities are computed by counting the number
the times that vehicles moved from one state to another and then normalizing with respect to the total
number of transitions. Then, the Monte Carlo simulation technique is used to produce a candidate DC.
The process consists of using a random number to select the next state in a manner in which transitions
with the highest probabilities are the most likely to be chosen. The process is repeated until a given
distance is covered or a given trip time has been completed. Finally, as in the micro-trips method,
the representativeness of the candidate Monte Carlo simulated DC is evaluated with respect to a set of
CPs whose average values are obtained from the entire set of sampled trips. Usually, an arbitrarily
established threshold of ~15% defines the degree of similarity or maximum allowed differences [20–22].
Some authors use the SAPD with the same role of a CP and use a threshold of 10−3 as criteria of
similitude between the SAPD of the driving patterns and the SAPD of the candidate local DC. The LA01
driving cycle was constructed using this approach [21]. The major drawback of these two approaches
to construct DCs is that they are based on stochastic processes and therefore, although the methods are
reproducible, they are not repeatable. That is, the resulting DC is different every time the methods
are applied.

Some authors have suggested to express the representativeness of the DC in terms of vehicle FC,
where FC is expressed as the volume of fuel consumed over the distance traveled (L/km) [4,23,24].
However, none of them has evaluated this alternative due to the lack of simultaneous measurements
of FC and vehicle speed.

To advance in this alternative, in this study we propose to redefine a representative DC as the time
series of speeds that when reproduced by a vehicle, the resulting FC is similar to the average FC of all
vehicles of the same technology driven in the same region. In this line of thought, several alternatives
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can be used to construct a representative DC. As first approach, we propose to sample a large set of time
series of speeds (trips), simultaneously with vehicle FC. Then, the trip with the FC closest to the average
value of FC of the entire population of trips sampled is selected as the representative DC. This approach
is repeatable and reproducible. This work aims to demonstrate that by using this fuel-based method to
construct DCs, the representativeness of driving patterns is also implicitly achieved.

2. Material and Methods

As stated before a driving pattern is the way drivers drive their vehicles in a given region. A local DC
is a time series of speeds that represent that pattern. Both, driving patterns and local DCs are described
by a set of CPs, such as average speed and average positive acceleration. Therefore, a local DC represent
a driven pattern when for each CP, the value of that CP for the local DC is similar to the value of that
CP for the driving pattern. For example, when the average speed of the local DC is equal to the average
speed of the drivers in the region of interest. Aiming to demonstrate that by defining representativeness
of the DC in terms of fuel consumption, representativeness in terms of driving patterns is also achieved:

• We monitored, for long periods of time, FC and vehicle speed of a fleet of vehicles of the same
technology, running on regions with diverse characteristics.

• We evaluated the relative differences of the CPs of the selected fuel-based-DC with respect to
the average CPs of the trips sampled. We repeated the process for a large number of subsets of
sampled trips.

Next, we describe the details of each of these tasks.

2.1. Regions of Study

With the goal of providing generality to our work, we looked for regions with different
topographies, located at high altitudes, featuring well-maintained roads and with different level
of services (LoS).

We selected regions open to private companies offering regular passenger and cargo transit
services. We considered four cases (Table 1).

• Urban 1, which corresponds to a flat, densely populated region. We arbitrarily selected a set of
roads covering 11.5 km inside Mexico City (2255 m above sea level (m.a.s.l.)). These roads are
characterized by highly congested traffic (i.e., LoS E or F).

• Urban 2, which corresponds to a flat region located on the outskirts of an urban region. We selected
an 18.8 km-long road located on the outskirts of Toluca City (2611 m.a.s.l.), which has four lanes
with a medium traffic flow (i.e., LoS E).

• Mountain, whose topography includes significant altitude changes (>500 m). We selected a
41.3 km-long highway connecting the cities of Toluca and Mexico. This region starts at 2255 m.a.s.l.,
ascends to 3313 m.a.s.l., and then it descends to 2611 m.a.s.l. with a maximum road grade of
approximately 15%. It has four lanes with high traffic (~33,632 daily vehicles, i.e., LoS C).

• General, which is a combination of the previous cases. The selected set of regions spans 71.6 km,
with altitude variations from 2233 to 3313 m.a.s.l. and a maximum road grade of approximately
15%. This set of regions has both urban and suburban sections.
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Table 1. Characteristics of the roads considered in this work.

Parameter Unit Urban 1 Urban 2 Uphill Mountain General

Location - Mexico City TOL - - TOL-MEX
Facility - Local roadway Arterial Freeway Freeway Combined

Level of traffic - High Medium Medium Low-Medium Low-High
LoS * - F E C C-B B-F

Speed limit km/h 60 60 80 110 60–110
Number of lanes - 3 3 4 4 3–4

Length km 11.5 18.8 16.1 41.3 71.6
Ave road grade % 1.4 1.8 6.1 5.6 4.0
Max road grade % 5.2 9.0 15.0 15.0 15.0

Min altitude m.a.s.l. 2255 2611 2255 2233 2233
Max altitude m.a.s.l. 2258 2637 3313 3313 3313

* LoS: Level of service. LoS is the level of quality of a traffic facility and represents a range of operating conditions,
generally in terms of service measures such as speed and travel time, freedom to maneuver, traffic interruptions,
and comfort and convenience. Classification was done according to the US Highway capacity manual [25].

2.2. Vehicles

We looked for vehicles of the same technology with similar maintenance conditions, aiming to
eliminate their effects on our study. Our collaborating company has a fleet of 680 passenger buses,
with 28 express buses that operate in the regions described previously, making no intermediate stops
to pick up or drop off passengers. The fleet of buses used in this study were made between 2012 and
2014. They use diesel-fueled engines (Cummins ISM 425) that deliver 425 HP and 2102 Nm. These busses
have a capacity of 49 passengers and their gross vehicle weight is 13,850 kg. They are 3.6 m tall, 12.85 m
long and 2.6 m wide. They exhibit an aerodynamic drag coefficient of 0.64 and a rolling resistance
coefficient of 0.006 [26].

2.3. Instrumentation

The measurement of instantaneous FC is essential to our work. Automotive diesel technology
controls the amount of fuel injected into the engine combustion chamber by controlling the fuel
injection time. This variable is available in the engine control unit (ECU) and can be read via the
on-board diagnosis (OBD) system. We used the OBD interface provided by the engine manufacturer
to read, report and store the instantaneous engine FC at a 1 Hz sampling period. We verified the
accuracy of the data obtained using this interface by comparing the FC obtained via OBD with results
obtained using an external graduated tank, which is the standard procedure to determine vehicle
FC [27,28]. Based on the determination coefficient (R2 > 0.9) and calibration slopes (m = 1.06) obtained
in a correlation analysis between the results obtained by these two methods, we concluded that the
determination of fuel consumption via OBD produces results comparable to the ones obtained using
the calibrated tank.

High precision GPSs (Table 2) were used to monitor position, altitude and speed of the vehicles
as functions of time. Algorithms were developed to identify events where data were missing or had
atypical values. Trips with less than 90% of data availability were disregarded. It was observed that the
speed values reported by GPS were equivalent to those reported by the OBD system. The GPS altitude
was compared with manual measurements of altimetry. An additional algorithm was developed to
correct frequent errors in the GPS-reported altitude.
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Table 2. Technical characteristics of the instruments used in this study

Variable Instrument/Trademark Technical Characteristics

Position: latitude, longitude
and altitude

Speed and time
GPS/Garmin 16x

Position: 3–5 m, 95% typical
Frequency: 1 Hz

Speed: 0.05 m/s RMS steady state
PPS time: 1 microsecond at rising edge of PPS pulse

Instantaneous fuel consumption - Estimated through the injection time
Reported by ECU through OBD2

GPS: global position system; OBD2: on-board diagnostic system, second generation; ECU: engine control unit.

2.4. Data Collection

Four monitoring campaigns were carried out to obtain real on-road driving data. One monitoring
campaign was performed per region as described in Table 1 (Urban 1, Urban 2, Mountain and General).
Each region was measured in both directions using the instrumented buses described in the previous
section. Buses were driven by the company’s regular drivers, and the buses were in service while
we monitored the driving variables (speed and time) along with altitude and instantaneous FC at a
frequency of 1 Hz, minimizing any disruption to regular vehicle operation. The monitoring campaigns
included trips during different hours of the day, different days of the week, including weekends,
and different seasons of the year. The data quality was verified. Trips with less than 90% of data
availability were disregarded. After QA/QC analyses, 46 trips per region were left with simultaneous
measurements of position, altitude, speed, and FC.

2.5. Assessment Methodology

To gain generality in our conclusions, we studied the effects of the number of trips sampled on
our results by randomly selecting sub-samples of trips out of the 46 trips sampled per region. The size
of the sub-samples varied between 4 and 40. For each sample size, we repeated the sub-sampling
process 1000 times.

At each instance, we applied the fuel-based method. This is, we selected the trip j with the FC
closest to the mean value for the FC of the sub-sample (FC in Equation (1)):

DC = Arg
{

minj
∣∣FCj −

(
FC

)∣∣} (1)

Statistically speaking, the average FC calculated from the sub-sample is an estimation of the
true mean FC of the whole population of busses monitored in each region. As we will show later,
the FC in every region followed a normal distribution (Figure 1) and therefore, the average value of
the sub-sample is a good descriptor the true mean FC.

We hypothesized that by using the fuel-based method, implicitly, the obtained DC represents the
driving patterns. I.e., the characteristic parameter i of the obtained local DC (CPi

*) will be close to
the average value obtained for that parameter from the sampled trips (CPi). To test this hypothesis,
we calculated the relative difference of CPi

* with respect to CPi at each iteration of the analysis described
previously. Then, for each of the CPi listed in Table 3, we reported the average relative differences (ARDi)
obtained for each sample size after n =1000 iterations (Equation (2)):

ARDi =
n

∑
j=1

(
CPi

∗ − CPi
)

nCPi
(2)

Additionally, we used the quality of fit (QoF) metric (Equation (3)), [29] to evaluate the degree
of similarity of the speed-acceleration probability distribution (SAPD) of the selected fuel-based DC
to the SAPD of the subset of sampled trips. In Equation (3), Pi,j

* is the probability that the vehicle
travels within the bin i, j of speeds and accelerations, in the states matrix obtained for the selected
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DC. Pij is the corresponding average probability obtained for the sub-sample of trips. This metric is
independent of the number of bins used in the discretization of the speed and acceleration ranges and
has a maximum value of 2:

QoF =
n

∑
i=1

m

∑
j=1

(P∗
i,j − Pij)

2 (3)

3. Results and Discussion

3.1. Description of Driving Patterns

As stated before, driving patterns are described by CPs but currently it is unknown which set
of CPs fully describe them. It is feasible that some CPs could be no good descriptors of the driving
pattern and that some CPs could be redundant (linearly dependent of others). Furthermore, it is also
feasible that additional CPs or metrics are needed to fully describe those patterns. This could be the
case of driving patterns in mountain regions where metrics that directly influence FC, such as average
road grade, should be added to the set of CPs.

As the primary objective of this work is not to determinate the CPs or metrics required to fully
describe a driving pattern, we selected the CPs most used in the literature. Table 3 lists those CPs.
It also includes their average values obtained from the 46 trips sampled during the monitoring campaign
and their confidence intervals with confidence level of 95%. Additionally, for comparison purposes,
we included the values of these CPs for the heavy duty urban dynamometer driving schedule (HD UDDS).
As expected, the resulting values depend on the local conditions and therefore their inter-comparison
is meaningless.

Table 3. Characteristic parameters (CPs) that describe the driving patterns followed by drivers during
the monitoring campaigns at every region considered in this study.

CP Unit
Regions

General Urban 1 Urban 2 Mountain HD UDDS

Dynamics
RMS m/s2 0.39 ± 0.01 0.41 ± 0.02 0.43 ± 0.02 0.35 ± 0.02 0.47
PKE m/s2 0.25 ± 0.01 0.34 ± 0.02 0.34 ± 0.02 0.19 ± 0.01 0.27

Accelerations per kilometre km−1 7.9 ± 0.8 11.8 ± 2.5 8.5 ± 0.8 6.6 ± 0.8 10.7

Operation modes

Percentage idling % 14.7 ± 1.7 21.9 ± 3.9 20.3 ± 2.7 2.6 ± 0.9 33.3
Percentage acceleration % 27.6 ± 1.0 27.6 ± 1.9 28.8 ± 1.7 27.3 ± 1.4 22.2
Percentage deceleration % 24.6 ± 0.8 25.9 ± 1.5 25.0 ± 1.7 24.3 ± 1.2 20.2

Percentage cruising % 33.1 ± 1.5 24.6 ± 1.8 25.9 ± 1.8 45.7 ± 2.6 24.3

Speed
Average speed m/s 10.5 ± 0.7 6.8 ± 0.9 7.9 ± 0.7 16.6 ± 1.2 8.4

SD speed m/s 9.0 ± 0.2 6.2 ± 0.5 7.3 ± 0.2 8.6 ± 0.6 8.9
Maximum speed m/s 28.6 ± 0.5 21.9 ± 1.0 26.5 ± 0.6 28.5 ± 0.5 25.9

Acceleration

Average acceleration m/s2 0.43 ± 0.01 0.46 ± 0.01 0.46 ± 0.02 0.37 ± 0.01 0.57
Average deceleration m/s2 −0.48 ± 0.01 −0.49± 0.02 −0.52± 0.02 −0.43± 0.02 −0.64

SD acceleration m/s2 0.24 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.21 ± 0.01 0.37
SD deceleration m/s2 0.35 ± 0.02 0.35 ± 0.01 0.39 ± 0.02 0.31 ± 0.02 0.40

Maximum acceleration m/s2 1.51 ± 0.07 1.37 ± 0.08 1.41 ± 0.06 1.31 ± 0.08 1.96
Maximum deceleration m/s2 −2.29 ± 0.15 −1.96± 0.10 −2.13± 0.14 −2.05± 0.16 −2.07

SD: standard deviation, RMS: root mean square, HD UDDS: heavy duty urban dynamometer driving schedule,

PKE: positive kinetic energy. PKE = 1
L

n
∑

i=2
vi

2 − vi−1
2 , for vi > vi−1, otherwise PKE = 0. L is the distance traveled

and vi is vehicle speed at second i.

3.2. The SFC Distribution

As described in Section 2.5, we first needed a criterion to describe the mean FC of the subset of
sampled trips. Classical statistics recommends the use of average values for this purpose, but this
parameter is limited to cases in which the data exhibit a normal frequency distribution.

Figure 1 shows the FC frequency distribution obtained for all the buses in the regions considered in
this study. We performed Anderson-Darling goodness-of-fit tests to evaluate if the FC of the vehicles
were normally distributed and found p-values greater than 0.12 for all regions. This result indicates that,
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with a probability of 95%, those distributions fit a normal distribution. The 16 t buses monitored in this
study showed a FC of 0.41 ± 0.04 L/km in the region with high traffic (Urban 1), and of 0.37 ± 0.02 L/km
in the region with medium level of vehicular traffic (Urban 2), which represent an FC with relative
differences of less than 11% with respect to the combined region (0.37 ± 0.03 L/km). Unexpectedly,
the minimum FC was obtained in mountainous regions with an average of 0.36 ± 0.04 L/km. For the
purposes of possible future comparisons, these vehicles showed an SFC of 0.62 ± 0.03 L/km when they
were travelling uphill on an average road grade of 6.1% and at an average speed of 66.6 km/h.
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3.3. Similitude of CPs and SAFDs

As stated before, we aimed to demonstrate that the fuel-based DC exhibit CPs (CPi
*) close to the

respective average CPs of the sampled trips (CPi). Figure 2 shows the average relative differences
(ARDi), as function of sample size, for some common CPs used to describe driving patterns.

Figure 2a shows the ARDs for the case of positive kinetic energy (PKE), which is a CP that directly
influences FC. It shows that for all the regions, these differences are on average <10% after considering
1000 potential cases. These ARDs tend to decrease with the number of trips sampled, reaching a value
of approximately 1.0% for a sample size of 40.

The same behavior was observed for the case of average speed (Figure 2b) and average acceleration
(Figure 2c) but the ARDs were <20%. These percentage of relative differences continue being small,
especially considering they could range from cero to infinity and that they were obtained after
considering 1000 possible cases.

Figure 2d shows the results of the ARDs for case of the percentage of idling time. It shows that
the ARDs exhibit the same behavior as in previous cases but these differences on average are smaller
than 40%, except for the mountain region. In this last region, the obtained ARD can be high (<80%),
and it does not always decrease with an increase in the number of trips sampled. Table 3 shows that in
this region, the percentage of idling time is small (2.6%) and therefore small absolute variations on
idling time make the relative difference (ARDs) high. Idling time is a CP that weakly influence FC.
It could be considered as an external factor or a non-related-human-factor, in consideration that when
travelling, drivers naturally do not stop unless external factors force them to stop.

Other CPs are shown in Appendix A. For all CPs, the ARDs obtained are smaller than 20% except
for the mountain region that in some cases reached ARDs of up to 40%.
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Figure 2. Average relative differences (ARD) of common characteristic parameters (CPs) used to
describe driving cycles (DC) as a function of the number of trips sampled and the type of regions used
in this study. (a) positive kinetic energy (PKE); (b) average speed; (c) percentage of time with positive
acceleration; (d) percentage of idling time.

Several authors also use the speed-acceleration probability distribution (SAPD) as an alternative
to describe DCs [4,11,17]. The SAPD can be thought of as a two-dimensional CP. We evaluated the
level of closeness of the obtained SAPD for the selected fuel-based DC and the SAPD for the trips
sampled, following the methodology described in Section 2.5.

Figure 3 shows (as an example) the SAPD obtained for a sample of 10 trips in the Urban 1
region (Figure 3a) and the corresponding SAPD obtained for the obtained fuel-based DC (Figure 3b).
Qualitatively, they look similar. We used the quality of fit metric (QoF, Equation (3)) to quantify the level
of similarity. Figure 3c shows the QoF metric as a function of the numbers of trips sampled. It shows that
the QoF in all cases is smaller than 0.05, and those differences in probabilities expressed by the QoF tend
to decrease with sample size, except for the case of the Mountain region. These values are negligible
compared with the maximum value that this metric can assume (QoF = 2). Additionally, these values
are also comparable to the ones found by Günther et al. [29] for the case of two similar DCs (QoF~10−3).
These observations confirm that the SAPD of the DC with the FC closest to the average measured FC
of the sample is similar to the SAPD of the sampled trips.

These results confirm that by using FC as the criterion of representativeness for a DC, the fuel
consumption, CPs and SAPD of the fuel-based DCs are close to the measured fuel consumption,
CPs and SAPD in flat regions.

Our experimental result for ARDs and QoFs also suggest that samples of 10 to 20 trips are sufficient
to describe the driving patterns in flat regions. However, we highlight that this result is valid for a
single vehicle technology used with a single purpose, which is the scope of our work reported in
this manuscript.
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Figure 3. Comparison of the speed-acceleration probability distribution (SAPD) obtained for:
(a) The sampled trips and; (b) The SFC closest to the average measured SFC of the sampled trips;
(c) QoF as a function of the number of sampled trips.

4. Conclusions

Large differences currently observed in fuel consumption (FC) with respect to the FC reported by
manufactures are mainly due to the lack of representativeness of the local driven conditions contained
in the type-approval driving cycles used by manufactures during the introduction process of new
vehicle technologies in the market.

A driving cycle (DC) represents the typical driving pattern of a given region when its characteristic
parameters (CP*s) exhibit similar values to the average CPs that describe the driving pattern in that
region. Current alternatives to construct DC are repeatable but no reproducible, and there is no
evidence that the resulting DC reproduce real vehicle fuel consumption (FC).

To address these two issues we followed the suggestion of several author of using FC as criteria
to construct those DCs. We hypothesized that by re-defining a DC as the time series of speeds that
when followed by a vehicle, its FC is similar to the average FC of all vehicles of similar technology
operating in the same region, implicitly, the resulting DC describes the driving patterns in that region.
Thus, we proposed to sample a large set of time series of speeds (trips), simultaneously with vehicle FC.
Then, the trip with the FC closest to the average value of FC of the entire population of trips sampled
is selected as the representative DC.

To demonstrate this hypothesis, we simultaneously monitored at a frequency of 1 Hz, for 8 months,
the location, speed, altitude, and FC of a fleet of 15 vehicles of similar technology operating under
normal conditions of use, in four regions of diverse topography and on roads of diverse level of service
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(LoS). We observed the average relative difference (ARD) between the CP*s of the selected fuel-based
DC and the CPs of the monitored driving pattern.

For the flat regions considered in this study, we obtained differences smaller than 15% for the
CPs related to speed and acceleration that are directly influenced by the driver´s decisions, such as
average speed, positive kinetic energy, and average positive acceleration. We also observed that the
speed-acceleration probability distribution (SAPD) of the selected fuel-based DC is similar to the
SAPD of the sampled trips (QoF ≤ 0.05). Furthermore, the level of similarity between CPs and SAPDs
increased with the number of trips sampled.

These results confirmed our hypothesis. However, the percentage of idling time that could
be considered an external factor (not a descriptor of driver patterns) showed the highest relative
differences (up to 80% for the case of mountain regions). These differences could still be considered
acceptable taking into consideration that: (1) this variable range from 0 to infinity; (2) we obtained
those results after considering 1000 possible cases and (3) for the case of the mountain region the
time spent by vehicles idling was short and therefore any small absolute difference has a large value
when expressed as relative difference. Nevertheless, additional work is required to confirm the results
described in this manuscript for several other vehicles technologies, and to establish the methodology
to implement the resulting DC in a chassis dynamometer, specially, for the case of mountain regions.
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Nomenclature

Symbol Description Unit

ARD Average Relative Difference %
R2 Coefficient of determination -
CP Characteristic Parameter -
DC Driving Cycle -
ECU Engine Computer Unit -
FC Fuel Consumption L/km
GPS Global position system -
LoS Level of Service -
m.a.s.l. Meters above sea level m
OBD On board diagnosis system -
PKE Positive kinetic energy per distance traveled m/s2

QoF Quality of Fit -
SAPD Speed acceleration probability distribution -
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Figure A1. Average relative differences (ARD) of characteristic parameters (CPs) commonly used to
describe driving cycles (DC) as a function of the number of trips sampled and the type of regions
used in this study. (a) maximum speed; (b) percentage of time in cruising; (c) percentage of time with
positive acceleration; (d) average deceleration; (e) number of accelerations per kilometer; (f) root mean
square and (g) percentage of time in deceleration.
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