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Abstract: Demand Response (DR) is a fundamental aspect of the smart grid concept, as it refers to the
necessary open and transparent market framework linking energy costs to the actual grid operations.
DR allows consumers to directly or indirectly participate in the markets where energy is being
exchanged. One of the main challenges for engaging in DR is associated with the initial assessment of
the potential rewards and risks under a given pricing scheme. In this paper, a Genetic Algorithm (GA)
optimisation model, using Artificial Neural Network (ANN) power predictions for day-ahead energy
management at the building and district levels, is proposed. Individual building and building group
analysis is conducted to evaluate ANN predictions and GA-generated solutions. ANN-based short
term electric power forecasting is exploited in predicting day-ahead demand, and form a baseline
scenario. GA optimisation is conducted to provide balanced load shifting and cost-of-energy solutions
based on two alternate pricing schemes. Results demonstrate the effectiveness of this approach for
assessing DR load shifting options based on a Time of Use pricing scheme. Through the analysis of
the results, the practical benefits and limitations of the proposed approach are addressed.

Keywords: demand response; artificial neural network; power predictions; energy management;
genetic algorithm; optimisation; microgrid; smart grid

1. Introduction

Preparation for the transition from conventional power grids to next generation, so-called “smart”
grids, is a worldwide trend nowadays. The goal for stakeholders in the domains of operations,
generation, transmission, distribution, and service provision [1] is to offer more and higher quality
services while improving operational capabilities, flexibility, and energy efficiency. In this context,
a higher-level utilisation of smart grid resources is targeted by grid modernisation and enhanced
dispersed dynamic measurements at local, regional, and wider levels. Various forms of communication
equipment and protocols allow smart metering, monitoring, and controls in an interoperable unified
system often described as Advanced Metering Infrastructure (AMI).

Smart metering and AMI are widely recognized as a necessity for the reliable and fast exchange
of data in smart grids [2]. It is expected that nodal analysis of power measurements in the power
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grid will provide valuable information for utilities to control multi-directional flows of energy and
improve dispatching, addressing vulnerabilities and constraints. In this sense, it is foreseen that a
variety of technological solutions will emerge to balance the high volatility and power quality issues
of the miscellaneous intermittent loads and renewable energy sources.

On the market side, reforms are required to leverage innovation in services and new business
models which will upgrade existing operations. In this context, Demand Response constitutes a variety
of services which have transformed the electric grid and energy markets operations during the past
decades. Significant progress has been made in the US, where DR programs have been designed
and implemented for years, and span across the full range of dispatchable (reliability, economic)
and non-dispatchable (time sensitive pricing; ToU, CPP, RTP) demand side management options [3].
Demand side management is a valuable prospect for consumers and utilities—if used properly—for
the use of assets and to decrease losses in transmission and distribution, as well as reducing avoidable
costs. In this context, DR, along with the demand-side management of distributed energy resources,
expand the boundaries for near future scientific and technological advances.

In the European Union, the Energy Efficiency Directive (EED), 2012/27/EU foresees the
elimination of barriers for Demand Response (DR) in balancing and ancillary services markets [4].
Among the EU Member States (MS), considering the progress in DR, Belgium, France, Ireland, and
UK, are in the leading group. Significant steps have also been taken in this direction by Germany,
the Nordic countries, the Netherlands, and Austria. Generally, DR programs are differentiated (a)
explicitly, i.e., where DR participants transact directly in the energy market, and (b) implicitly, i.e.,
where participation through a third party is facilitated [5].

Furthermore, Open Automated Demand Response (OpenADR) is a well-established protocol
defining various deployment scenarios for facilitating DR programs and measures [6]. The overall
framework of smart grids with regards to DR is presented and analyzed by Siano in [7]. Important
aspects are defined, and a description of the possibilities created by DR for utilities and customers are
analyzed. Load curtailment, shifting energy consumption, and using onsite energy generation, thus
reducing the dependence on the main grid, are the main mechanisms for customers to participate in DR.
Customer participation in wholesale markets via intermediaries, such as curtailment service providers
(CSP), aggregators, or retail customers (ARC), demand response providers (DRPs), or local distribution
companies, is documented in [7]. Moreover, a review of DR and smart grids with respect to the
potential benefits and enabling technologies is provided. Considering system operation, contingency
issues can be dealt with through DR implementation, resulting in a reduction of electrical consumption
at critical hours, and avoiding serious impacts due to failure of power services provision. Considering
energy efficiency, it is ascertained that effective management of aggregated loads can lead to a reduction
of the overall cost of energy, due to the reduction and operating-time-shortening of conventional power
generation equipment. Avoiding network upgrades at the local level, or postponing investments in new
capacity, reserves or peaking units at system level, is another important potential benefit linked to high
level implementation of DR. Modelling of incentive-based DR focusing on interruptible/curtailable
service and capacity market programs is investigated by Aalami et al. in [8]. Price elasticity of demand,
and a customer benefit function, are used to develop an economic model. Several scenarios are
simulated and evaluated based on their value according to different strategies and performance with
respect to improvement of the load curve (peak reduction, load factor, peak to valley), benefit of
customers, and reduction of energy consumption.

Wholesale electricity market design considerations with regards to major challenges, aiming at
increasing renewable energy penetration, are explored in [9]. Various dynamic energy pricing models
have been proposed to compensate for market uncertainty and risks [10,11]. A residential DR based on
adaptive consumption pricing is proposed by Haider [12], allowing utilities to manage aggregate load,
and customers to lower their energy consumption. The proposed pricing scheme adapts energy costs
to customers’ consumption levels, thus encouraging active enrolment in the DR program. Cost and
comfort optimisation of load scheduling under different pricing schemes has been investigated using
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various techniques including linear, convex, PSO, MINLP [13]. Furthermore, technology readiness,
opportunities, and requirements for the deployment of DR in buildings and blocks of buildings is
addressed by Crosbie et al. in [14,15].

On the other hand, buildings worldwide are responsible for over 40% of total energy consumption,
gas emissions, and global warming [16]. The role of smart grids for near- and zero-energy building
communities is investigated by researchers to test new approaches, identify critical aspects, and
tackle challenges emerging when dealing with design and operational problems [17,18]. On the
demand side, a wide variety of developed scientific tools influence the dynamics of advances in
energy performance and energy management in buildings [19-22]. Such tools are embedded in data
monitoring applications, such as innovative web-based energy management platforms [23,24] to
enable improved analysis, decision making, and dynamic controls. Moving from Building Energy
Management Systems (BEMS) [25,26] to District Energy Management Systems (DEMS) [27] entails
the dynamic exchange and hierarchical processing of data streams between various components and
systems, as in the Internet of Things (IoT) paradigm [28,29]. Various techniques and tools have been
investigated for dealing with challenges in various fields pertaining to smart grids: smart metering
data analysis and dynamic processing [30], power demand forecasting [31,32], Distributed Energy
Resources (DER) management optimisation [33], users’ engagement [34], etc.

In addition, Hybrid Renewable Energy Systems (HRES) have been implemented in various
configurations to combine two or more renewable and non-renewable sources in order to deal
with the intermittency of renewable energy sources, such as solar or wind. HRES have important
attributes which make them increasingly attractive as alternatives to conventional fossil fuel energy
sources in numerous applications [35-38]. Aligned with HRES, the concept of the microgrid as a
semi-autonomous system of increased flexibility and manageable energy resources, such as renewable
energy generation, storage, backup systems and flexible demand, is of particular importance when
it comes to supporting grid stability and decentralized control [39]. A comprehensive critical review
on the energy management systems of microgrids is conducted by Zia et al. in [40], with reference
to the level of maturity of real world applications. Communication issues, control technologies
and architectures, deployment costs, energy management strategies, optimisation, objectives and
limitations, are addressed. An auto-configuration function using a multi-agent approach is proposed
in [41] to establish automatic connection or disconnection of DER at microgrid level, capable of dealing
with system faults and re-optimising the new configuration as necessary. Unsymmetrical and ground
faults analysis in microgrids distribution systems is proposed by Ou in [42,43]. Hirsch et al. in [44]
surveyed technologies and key drivers of microgrid implementation and research, at international
level. Reported drivers in this context include extreme weather related concerns, cascading outages,
cyber and physical attacks, deferral of infrastructure expansion costs, reduced line losses, efficiency
improvements, savings, responsiveness, balancing loads, RE generation, etc. In [45], the authors
present a residential microgrid day-ahead planning approach to accommodate appliance scheduling
by modelling, among other things, inter-phase delay duration and time preference, in order to take
advantage of shiftable loads and energy storage charging/discharging time. In [46], multi-microgrid
configurations are presented and analyzed by means of the power line technology (AC, DC), layout
(series, parallel, mixed), and interconnection technology (transformer, converter). A comparison of
architectures based on cost, scalability, protection, reliability, stability, communications and business
models is performed. Energy management and DR of multi-microgrids based on hierarchical
multi-agent approach by introducing adjustable power is proposed by Bui et al. in [47]. Different
operation modes are evaluated according to a two-level management cooperative multi-microgrid
MILP-based model for day-ahead scheduling. Towards the application of state of the art, a microgrid
energy management a Genetic Algorithm (GA) approach is applied in [48] to optimize cost strategies
for scheduling distributed energy resources. The Quasi-static Artificial Bee Colony approach is used to
optimize a multi-objective DR problem, based on the cost of energy and peak demand at the building
level [49], including PV, Combined Heat and Power (CHP), batteries, electrical energy from the grid,
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and natural gas. Particle Swarm Optimisation is used in [50] to solve a bi-level problem modelling
the interaction between the retailer and consumers. The energy hub is explored in [51] to develop
a multi-carrier Demand-Side Management Time of Use (DSM ToU) optimization balancing energy
import, conversion, and storage. Furthermore, a GA approach using present and day-ahead data was
tested by Ferrari et al. [52] with respect to the management of loads of an experimental plant case study
in Italy. The analysis involves PV, wind generation, a micro-CHP with a gas boiler, and an absorption
chiller coupled with thermal storage.

In addition, Artificial Neural Networks (ANN)-based short term power forecasting is practiced to
estimate day-ahead loads and renewable energy production. ANN models are designed to imitate
biological nervous system information processing and evolution. They have been used for years in
different areas of engineering, science, and business to deal with highly complex and nonlinear data
sets. The ANN models assimilate the natural bonds of neurons and their high level interconnection
to model complex systems. In the case of short-term predictions, the ANN models can be more
effective compared to statistical, linear, or non-linear programming techniques. They encompass
capabilities such as adaptive learning, self-organization, real time operation, fault tolerance, and
the approximation of complex nonlinear functions. Kalaitzakis et al. in [53] tested advanced neural
network short-term load forecasting using data from the electric power grid of the island of Crete
in Greece. Various structures and configurations were assessed, and a parallel processing approach
for a 24 h-ahead prediction was demonstrated. ANN architectures for forecasting demand in electric
power systems are presented in [54] by Tsekouras et al. A case study of the Greek electric power grid is
used to explore the performance of different ANN configurations and factors, including period length
and inputs for training, confidence interval, and more. Moreover, short term power forecasting is
of particular value for prosumers to model, understand, and predict their consumption profiles, as
well as to apply effective scheduling and control. A framework for district-level energy management
and ANN forecasting at the building level was investigated by Hu et al. in [55], evaluating the
performance for 6 buildings of different occupancy routines. Hybrid Short Term Load Forecasting
ANN combined with techniques such as Fuzzy Logic, GA, and Particle Swarm Optimisation are briefly
discussed in [31]. Furthermore, a 24 h-ahead prediction of excess power at microgrid level is proposed
by Mavrigiannaki et al. [56], testing 3 different configurations with respect to possible exploitation
potentials from an energy management perspective. Finally, an overview of load forecasting, dynamic
pricing, and demand side management techniques in smart grid research applications reveals the
potential for operational cost reductions between 5-25% [57].

The aim of the research work presented here is the development and testing of a DR energy
management GA-based optimisation approach based on day ahead ANN generated prediction models.
The developed GA algorithm incorporates load shifting for the day ahead (24 h period), and evaluates
possible alternatives based on cost and assumptions related to the practicality of the obtained solutions.
The practical benefits of the proposed approach are linked to the development of a valuable tool for
the evaluation of the potential rewards and risks of engagement in DR. In the case study that follows,
a Time of Use pricing scheme is compared to a flat tariff.

The paper is organised as follows. In Section 2, the infrastructure and the applied methodology
are presented. The proposed day-ahead GA approach for cost of energy and load shifting optimization
based on ANN hourly power predictions is analyzed in Section 3. Results and considerations on
ANN power predictions and GA optimisation solutions are provided in Section 4. Finally, in Section 5,
conclusions and recommendations for future work are summarised.

2. Infrastructure and Methods

The proposed novel approach was developed and tested on the basis of data available from the
MyLeaf platform, which monitors and controls the Leaf Community buildings. The Leaf Community
is located in Angeli di Rosora, a small rural area in Marche region of Italy. It hosts industrial facilities
of the Loccioni Group, a firm leading research and innovation activities in energy, environment,
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automotive, aviation, and other sectors. The Leaf community (Figure 1) consists of 5 industrial
buildings (L3-AEA, L4-Leaf Lab, L5-Kite Lab, L6), one office building (L2-Summa), and a building
used mainly for business meetings (Leaf Farm). All buildings (except the Leaf Farm) are equipped
with rooftop photovoltaics (PV) of total power 629.2 kWp, and ground water heat pumps. In addition,
a 2-axis solar tracker of 18 kWp, a 48 kWp micro-hydro plant, a 224 kWh battery storage, and a
523.25 kWh/K thermal storage are connected to the microgrid, which also features electric vehicle
charging stations. Buildings, renewable energy systems (PVs, micro-hydro), and storage systems are
all coupled and connected to the main power grid via a single interconnection line (point of delivery).

7
@ 208

Figure 1. The Leaf Community map.

The buildings in the Leaf Community are highly thermally-insulated, and are equipped with
automations for controlling the HVAC systems, as well as the natural and artificial lighting by means
of adjustable external louvers and luminance sensors. The primary annual energy consumption for
the Leaf Lab, is rated at 35.4 kWh/m? (including the PV power production and subtracting industrial
consumption) [22], based on year-round measurements, while the L6 (new building, not fully operated
yet), is estimated at 46.85 kWh/m?. These ratings prove to be a factual determinant of their near zero
energy performance. Table 1 summarizes the basic components of the building envelopes and systems
installed at the Leaf Community buildings under consideration.

Table 1. Pilot buildings in the Leaf Community.

. Illuminance/ Ground .
Pilot Case Studies .Sky Autor.natlc Presence Light LED  Water Heat  biPV Thermal  Electrical
Windows Shading Storage Storage
Controls Pumps

Leaf Lab—Industrial . . o . . o . .
(6000 m2)
Summa—Offices/ . . . . o
Warehouse (1037 m2)
Kite Lab (3514 m?)—

[ ] L[] [ ] [ ] [ ] L]

Offices, Laboratories

The elaborated methodology comprises several steps, as shown in Figure 2.
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Collection of data: All data from measuring equipment, sensors, and actuators in the
Leaf Community is collected, organized, and made remotely available through the MyLeaf
platform [33]. In this case, the MyLeaf platform is used to collect data on the power demand of
the buildings considered in the analysis.

Development and testing of ANN models: ANN models are developed and exploited to perform
day-ahead predictions of consumption power using Matlab. For the 24 h-ahead prediction of
power consumption, the day of week, the time, and the external temperature are used as inputs,
while the 24 h-ahead electrical power is used as a target. Trials of various combinations for the
ANN model parameterization are performed, considering the structure, algorithm, the number of
hidden layers, and the delays. A Lavemberg-Marquardt algorithm was deployed in a Nonlinear
Autoregressive ANN structure with Exogenous Input (NARX), with 3 hidden layers and a delay
of 1.

GA approach: A genetic algorithm (GA) optimization scheme was developed and tested in
Matlab, in order to provide alternative solutions for load shifting. The GA optimization scheme is
based on the mathematical model analyzed in Section 3. The objective function encounters of the
criteria of energy and load shifting. Market information is used to construct the hourly pricing
profiles used in the optimization process. Weighting coefficients are applied to both normalized
criteria to enable consideration of several alternatives, depending on several priorities, and energy
management capabilities. Weighting coefficients are used to provide a trade-off between cost and
load shift. The role of weighting coefficients is to allow a decision maker to investigate a set of
solutions and obtain solutions which better match his/her preferences. Preferences differ based
on the decision maker’s knowledge and understanding, but may also be influenced by other
factor priorities during the various time periods. For example, cost savings could be considered
to be the “default” priority, but during certain periods, the minimization of load shifting could be
upgraded to become the dominant factor in the optimization process.

Sensitivity analysis and evaluation of results: Sensitivity analysis is performed by changing the
GA parameters, such as crossover, population size, mutation rate, tolerance etc. Furthermore,
since load shifting is related to changes in the operation of building systems (HVAC, lighting,
etc.) and operations (industrial, office), it also needs to be minimized in order to avoid significant
intervention in the buildings” use. On the other hand, the cost of energy is minimized when
load shifting occurs from hours of high prices to hours of low prices. The solutions are hence
evaluated considering the hourly/daily cost of energy and load shifting preferences.

The developed approach is illustrated with the aid of the flowchart of Figure 3.
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_ Energy Pricing
Scheme

Building power consumption
/ External temperature

Y Y

Data ANN GA Evaluation of
Start > > 5 > - > > End
Processing Prediction Optimisation DR solutions

Figure 3. Flowchart of the developed approach.

3. The Proposed Day-Ahead GA Approach for Cost of Energy/Load Shifting Optimization Based
on ANN Hourly Power Predictions

The GA optimisation scheme is based on the developed mathematical model presented hereafter.
The two criteria, namely the normalised cost of energy and load shifting, form the objective function
as shown in Equation (1):

)

Loadgy,;
f = min (wl Costg Shift )

w2
COSfme LoadShift_mux

At building group level, the cost and load shift terms of the objective function in Equation (1), are
given by Equations (2) and (6) which are further specified by Equations (3)—~(5) and (7)—(9), respectively.

Costp = Costg_pap + CoSte_summa + COStg_ Kite )

Terms in Equation (2) are calculated based on Equations (3)—(5), as shown below:

24
h h
Cost rab = Y, XE_rap * CF_umit ©)
h=1
% h h
COStE?Summu = Z XESW,,W * CE_unit (4)
h=1
24 " "
Coste_kite = ), X kite * CF,, ®)
h=1
Loadspifs = Loadspift rap + Loadspifs summa + Loadspifs kite (6)
where: o
h h
LoadSh,ﬂ_Lﬂh = Z abS(XELub — XELab ) ) (7)
= baseline
24 " b
LoadShiftSumma = h;l abs (XESumma o XES”"”””baseline) (8)
2 h h
Loadgpift_kite = ;;1 abs(Xgy,, = X, ) ©)

The following constraints in Equations (10)—(12) are applied to ensure that there is no deviation
between the total daily energy consumed between baseline and the optimized solutions for
each building:

24 i 24 "
Z XEL”b B Z XEL”bbnseline - 0 (10)
h=1 h=1



Energies 2018, 11, 3012 8 of 22

24 " 24 "
hgl XESumma - hgl XESummabase”m =0 (11)
24 " 24 i
Xe,. — XE,. =0 12
g Exite g EK”Bbaseline ( )
h=1 h=1

Whether the optimization concerns a building or a building group analysis, for the evaluation
of the GA based results, a comparison to baseline consumption, as obtained by the Artificial Neural
Network day-ahead prediction, is conducted. The total cost linked to the genetic algorithm optimized
solution is compared to the total cost of the baseline scenario, as evaluated by Equations (13) and
(14) respectively:

24
_ h I
Costg_opt = 2 XEupt * CEum‘r 13)
h=1
24 I n
COStE?baseline = Z XEbaseline * CEW,” (14)
h=1

4. Results and Discussion

4.1. ANN Based Predictions

The results of ANN-based predictions for the period from 1 May 2017 to 1 August 2017 and from
1 December 2017 to 1 March 2018, for each building, are presented in Figures 4 and 5, respectively.
Day-ahead predicted values for Leaf Lab, Summa, and Kite Lab appear to be, in most cases, very
close to real values, featuring a Pearson’s correlation coefficient R in the range 0.96-0.98 for training,
validation, testing, and overall. Lower R values are observed for Summa during the winter period.

At the left column of Figure 6, predicted versus real values of consumption power for the 3
buildings under study, are presented. At the right column of Figure 6, predicted versus real values of
power are presented for the period from 12 February 2018 to 16 February 2018. Mean Bias Error (MBE)
and Mean Average Percentage Error (MAPE) values, for the ANN predicted versus actual values on 21
July 2017 and 16 February 2018 for Leaf Lab, Summa, and Kite Lab, are presented in Table 2.
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Figure 4. Prediction of electrical consumption power for Leaf Lab, Summa and Kite Lab from 1 May 2017 to 1 August 2017.
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Figure 6. Prediction of electrical consumption power for the Leaf Lab, the Summa and the Kite Lab from 17 July 2017 to 21 July 2017 (left) and from 12 February 2018

to 16 February 2018 (right).
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Table 2. MBE and MAPE for ANN predictions on 21 July 2017 and 16 February 2018.

21 July 2017 16 February 2018
ANN Prediction
MBE MAPE (%) MBE MAPE (%)
Leaf Lab 1.43 5 -1.75 22.7
Summa —0.01 8.47 —0.40 12
Kite Lab —1.52 17.5 —1.42 4.96

4.2. Genetic Algorithm Optimization Results

In this section, the GA optimization results for 21 July 2017 and 16 February 2018 are presented
and analyzed for the weighting coefficient values w1 = w, = 0.5. For the baseline scenario, a flat tariff
at 0.07 €/kWh is used. The optimized scenario is calculated taking into account a 2-zone tariff pricing
scheme of 0.0675 €/kWh from 8 a.m. to 6 p.m., and 0.0525 € /kWh from 6 p.m. to 8 a.m. (Figure 7).

0.08

)

o
o
N

0.06
0.05
0.04
0.03
0.02
0.01

energy price (€/kWh

00.00-01.00
01.00-02.00
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19.00-20.00
20.00-21.00
21.00-22.00
22.00-23.00
23.00-00.00

time(h)

e haseline scenario optimised scenario

Figure 7. Energy pricing profiles used in the baseline and optimised scenarios.

In Figures 8 and 9, the results of the developed GA optimization approach are presented.
The charts on the left columns of these figures illustrate the ANN-based power forecast as a baseline
scenario. In the same charts, the GA optimized power profiles demonstrate load-shifting solutions.
The related costs are depicted in the right columns of the Figures. The baseline costs are calculated
based on the flat tariff of Figure 7, while the GA optimized costs are based on the 2-zone tariff of the
same figure.

With respect to the Leaf Lab, it is observed in Figure 8 that load shifting occurs from the high-price
to low-price hours. This is also reflected, in terms of the cost profile, on the day which accounts for a
reduction of 15.77% from €174.97 to €147.37. Likewise, the load in Summa is shifted outside the high
price region, with the baseline daily cost of €20.55 being decreased down to €17.80, a relevant reduction
of 13.38%. Similarly, the load shifting in Kite Lab occurs from the high tariff zone towards the morning
and the evening hours, without a reduction in total power consumption. In this case, the baseline cost
is €101.89, and the optimized total cost is €87.40, achieving a reduction percentage of 14.22%.
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Figure 8. GA optimisation power and cost results for the Leaf Lab, the Summa and the Kite Lab on 21 July 2017.
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Figure 9. GA optimisation power and cost results for the Leaf Lab, the Summa and the Kite Lab during 16 February 2018.
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The analysis of the winter results is displayed in Figure 9. The shift for the Leaf Lab power profile
leads to a cost reduction of 10.23% from €48.21 in the baseline scenario down to €43.27.

Load shifting throughout the 24 h occurs in Summa in a way that changes the overall power
profile to the early hours of the day. This transition of loads corresponds to 18.59% of costs savings,
reflecting also the differences between the flat and the 2-zone tariff pricing scheme.

With respect to the daily power in Kite Lab during the winter, changes between baseline and
optimized scenarios appear to take place in a harmonic way from high to low price hours. In this case,
a 14.97% cost saving is achieved, since the baseline daily cost is €118.1, compared to the optimized
daily cost of €100.42.

In Figure 10, the total power consumption of the 3 buildings is illustrated. In the first case, the
high power consumption according to the baseline power is shifted from working hours towards early
morning and late evening hours. In terms of cost, the total baseline cost at district level is 293.95 €, and
the total optimized cost is €251.30, corresponding to a 14.51% reduction.

With respect to the winter period, the hourly-district level GA-optimized power values for equal
weighting coefficients undergo a smooth differentiation to the left of the graph with respect to the
baseline. The district-level total baseline cost is €195.27, and the total optimized cost is €167, achieving
a reduction percentage of 14.47%.

According to Table 3, regarding the Leaf Lab, the results for each case prove that the optimization
is successful, bearing in mind that the baseline cost is €174.90 and the optimized values range from
€142.24 to €153.97, a maximum operational costs percentage reduction of 18.67%. For Summa, as for
the Leaf Lab, the optimized cost for each pair of weights is lower than the baseline cost of €20, and
varies between €17.80 and €17.12. The percentage reduction in this case reaches 14.4% Furthermore,
the optimization for the Kite Lab revealed that the GA produces better results compared to the baseline
cost of €101.9 for all pairs of weights ranging from €87.62 down to €85.78. The percentage reduction in
this case is up to 15.82%. The last column of the table represents the optimized cost for the group of
buildings, which is lower than the baseline cost of €293 for all pairs of weighting coefficients varying
from €253.91 to €247.89. The maximum percentage reduction in this case is 15.39%.

Table 3. Results of the optimization on 21 July 2017 during the summer period.

w1 W) Leaf Lab Cost (€) Summa Cost (€)  Kite Lab Cost (€)  District Level Cost (€)
0 1 153.97 17.40 86.48 252.09
0.1 0.9 149.80 17.467 87.07 250.76
0.2 0.8 152.15 17.742 86.76 253.91
0.3 0.7 145.71 17.517 87.60 251.91
0.4 0.6 148.44 17.21 87.34 253.70
0.5 0.5 147.37 17.80 87.46 251.30
0.6 0.4 151.51 17.784 87.62 252.24
0.7 0.3 152.21 17.39 87.23 251.38
0.8 0.2 149.69 17.457 86.92 247.89
0.9 0.1 144.40 17.466 85.78 251.77

1 0 142.24 17.12 86.62 251.78
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Figure 10. GA optimisation power and cost results for the total power on 21 July 2017 (up) and 16 February 2018 (down).
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Table 4 includes the results of optimization for each pair of weighting coefficients at both the
building and district levels for the winter period. The results for the Leaf Lab depict the optimized cost
for all weights combinations. As shown, in all cases, the optimized cost varies between €43.48 to €42.81,
which is lower than the baseline cost of €48 in this case, and accounts for a percentage reduction of up
to 10.81%. Moreover, the optimization for the Summa building revealed genetic algorithm solutions
with costs from €23.58 to €23.27, a percentage reduction of 16.89% compared to the baseline cost of
€28 in this building. Subsequently, in the Kite Lab, the optimized cost is from €102.06 down to €99.85,
equal to a percentage reduction of up to 15.38% lower than the baseline cost of €118. The last column
represents the optimized cost in the group of buildings during the winter, varying from €168.19 to
€166.53, leading to a percentage reduction of 14.6% compared to the baseline cost of €195.

Table 4. Results of the optimization on 16 February 2018 during the winter period.

w1 W) Leaf Lab Cost (€) Summa Cost (€)  Kite Lab Cost (€)  District Level Cost (€)
0 1 42.87 23.34 101.04 167.40
0.1 0.9 42.81 23.36 101.04 167.33
0.2 0.8 4294 23.43 99.85 167.97
0.3 0.7 43.48 23.40 101.19 167.66
0.4 0.6 43.18 23.56 102.06 168.19
0.5 0.5 43.28 23.58 100.42 167.01
0.6 0.4 43.05 23.52 101.25 166.53
0.7 0.3 43.29 23.39 101.81 167.94
0.8 0.2 43.07 23.33 100.43 167.45
0.9 0.1 43.04 23.49 100.49 167.43
1 0 42.92 23.27 101.07 166.67

4.3. Limitations of the Adopted Two-Level Model

The proposed approach entails some level of abstraction with respect to the load shift which
is achievable within the capacity of individual systems and components. Evaluating load shift in
conjunction with a pricing scheme requires deep knowledge, and depends on the specificities of each
case study. In this respect, load shift is determined by technical factors, i.e., installed systems technical
characteristics, control scheme, etc., as well as organisational factors, i.e., the potential shift of the
industrial operations within each building. A detailed knowledge of the operation of each system in a
building, along with data, i.e., power consumption profile, is not available in most cases. This logic
can be applied to some extent by using constraints to ensure that a specific percentage of the power
at any time remains unchanged. Consequently, optimisation can be conducted based on the flexible
share of the consumption power for every hour.

Also, the proposed approach is linked to the accuracy of the prediction, which may vary according
to the building under study, and other factors, e.g., type of loads, industrial operations, season, etc.
Therefore, it is important to evaluate the risk associated with different prediction error levels according
to the examined pricing scheme. Although this risk is low in a two zone pricing scheme, it may become
significant when considering dynamic pricing profiles.

5. Conclusions

The main contribution of this work is related to linking ANN short-term electric forecasting and
GA multi-objective optimization as a tool for generating and evaluating alternative day-ahead load
shifting solutions. The first step of the proposed approach is exploiting Artificial Neural Network
modelling for the prediction of the power consumption in a period of 24 h ahead. Predictions of
hourly-consumption power levels using day of week, time of day, and external temperature as inputs
were obtained for each of the 3 buildings of the Leaf Community (Leaf Lab, Summa, and Kite Lab).
The results proved that a close correlation between predicted and actual values exists during the
studied summer and winter periods, as evaluated based on correlation coefficient R for the whole
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period, as well as Mean Bias Error (MBE) and Mean Average Predicted Error (MAPE) for the specific
days used in the optimization process.

The second step was to create an optimization function to include energy cost and load shifting
using appropriate variables and constraints. The objective function was minimized using a Genetic
Algorithm to obtain solutions at individual building and building group levels. Results demonstrated
the effectiveness of this approach in considering alternative pricing schemes and load shifting
possibilities as a way to examine cost savings. Cost savings of between 10.81% and 18.67% at the
building level were associated with significant load shifting solutions obtained by the GA scheme in
the considered two-zone ToU pricing scheme. At the district level, cost savings in the range of 13.34%
and 15.39% were obtained.

Future steps in this work may involve: (i) extending research activities to include renewable
energy generation and storage capabilities, (ii) reforming the GA obtained solutions so as to take into
consideration actual loads (base, fixed, flexible), renewable energy production, and storage, and (iii)
exploiting the potential for improvements in power predictions using ANN models.
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Abbreviations

AC Alternated Current

ADR Automated Demand Response

AMI Advanced Metering Infrastructure
ANN Artificial Neural Network

ARC Aggregators or Retail Customers
BEMs Building Energy Management Systems
CHP Cogeneration of Heat and Power

CprpP Critical Peak Pricing

CSspP Curtailment Service Providers

DC Direct Current

DEMs District Energy Management Systems
DER Distributed Energy Resources

DR Demand Response

DRP Demand Response Provider

DSM Demand Side Management

EED Energy Efficiency Directive

GA Genetic Algorithm

HVAC Heating, Ventilation, Air Conditioning
HRES Hybrid Renewable Energy Systems
IoT Internet of Things

MINLP Mixed Integer Non Linear Programming
PV Photovoltaic

PSO Particle Swarm Optimisation

RTP Real Time Pricing

ToU Time of Use
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Nomenclature

Costg district daily energy operating costs (€)

Costg,_ normalisation factor of cost criterion (€)

Coste 1ap daily energy operating costs of Leaf Lab (L4) building (€)

CostE_summa

daily energy operating costs of Summa (L2) building (€)

Costg_kite daily energy operating costs of Kite (L5) building (€)

CZ'Jmit day-ahead hourly unit cost of energy in each building (€/kWh)
Coste paseline total cost of the baseline scenario

Costg_opt total cost of the genetic algorithm optimised solution

Loadsy,i daily load shift (kWh)

Load Shift_max
Loadspi_rap
Loadshift_Summa
Loadspip_xite
wq

normalisation factor of load shift criterion (kWh)
daily load shift of Leaf Lab (L4) building (kWh)
daily load shift of Summa (L2) building (kWh)
daily load shift of Kite (L5) building (kWh)
Weighting coefficient of cost criterion [0-1]

wy Weighting coefficient of load shift criterion [0-1]

Xg hourly value of total energy consumption in each building (kWh)

Xgm hourly value of total energy consumption in Leaf Lab (L4) building (kWh)

X Baseline (predicted) hourly value of total energy consumption in Leaf Lab (L4) building
EL‘lblmsclinc (kWh)

XIESWW hourly value of total energy consumption in Summa (L2) building (kWh)

X baseline (predicted) hourly value of total energy consumption in Summa (L2) building

Summapagseine

(kWh)

Xg, Kite hourly value of total energy consumption in Kite (L5) building (kWh)

Xﬁmmm baseline (predicted) hourly value of total energy consumption in Kite (L5) building (kWh)
X’gw GA optimised hourly electrical energy (kWh) at building or building group level

ngnsﬂm baseline hourly electrical energy (kWh) based on day-ahead Neural Network predictions
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