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Abstract: We present a method to predict the global horizontal irradiance (GHI) one hour ahead in
one-minute resolution using Artificial Neural Networks (ANNs). A feed-forward neural network
with Levenberg-Marquardt Backpropagation (LM-BP) was used and was trained with four years
of data from all-sky images and measured global irradiance as input. The pictures were recorded
by a hemispheric sky imager at the Institute of Meteorology and Climatology (IMuK) of the Leibniz
Universitdt Hannover, Hannover, Germany (52.23° N, 09.42° E, and 50 m above sea level). The time
series of the global horizontal irradiance was measured using a thermopile pyranometer at the same
site. The new method was validated with a test dataset from the same source. The irradiance is
predicted for the first 10-30 min very well; after this time, the length of which is dependent on
the weather conditions, the agreement between predicted and observed irradiance is reasonable.
Considering the limited range that the camera and the ANN can “see”, this is not surprising.
When comparing the results to the persistence model, we observed that the forecast accuracy of the
new model reduced both the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE)
of the one-hour prediction by approximately 40% compared to the reference persistence model under
various weather conditions, which demonstrates the high capability of the algorithm, especially
within the first minutes.

Keywords: solar energy; all-sky image; solar irradiance prediction; artificial neural networks

1. Introduction

The production of solar energy is subject to strong spatial and temporal fluctuations due to the
dependence on meteorological boundary conditions. This leads to uncertainties in the planning of
energy supplies and, thus, to economic inefficiencies. With a reliable solar performance forecast,
uncertainty is minimized while load and storage management can be optimized. Thus, prediction of
solar irradiation makes an important contribution to efficient and economical applications for many
areas of solar energy use, while high-quality one-minute data series are key to understanding the
dynamic interaction of photovoltaic (PV) systems, loads, and grids [1].

Worldwide, the installed PV power increases by a double-digit percentage per year [2]. This trend
makes photovoltaics an even more important alternative for global power supply. New models for the
forecast of solar energy production can help to reduce the difficulties of integrating PV systems into
existing power supply structures. In order to optimally manage the power supply, electricity producers
are compelled to provide a forecast of the expected delivery quantities [3]. With the help of reliable
predictive models, the market price of the solar energy is then determined by supply and demand.
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Many solar applications such as PV systems and grid regulation depend critically on the ability
to predict cloud movement [4,5]; therefore, sky cover information is a potentially useful input for
improving the prediction accuracy of the energy feed-in of solar power systems [6].

Other techniques for predicting solar irradiation are methodologies employing the temporal
evolution of all-sky images. Most prediction methodologies focus on cloud identification and motion.
Alonso-Montesinos et al. [7] and Marquez and Coimbra [8] achieved this by detecting cloud motion
vectors from all-sky images for forecasting short-term predictions of solar radiation. Sky coverage
information provided by all-sky images has been successfully used for forecasting minutes ahead of
solar irradiance. The results of this investigation showed an accuracy above 17% over the persistence
model [9]. In addition, a study by Chow et al. [10] showed that the maximum possible forecast horizon
with all-sky images was highly dependent on cloud speed.

Wu and Chan [11] compared a linear statistical autoregressive-moving-average (ARMA) model,
a nonlinear artificial neural network (ANN) model, and a hybrid model between both, and they found
that the deviation of the data in the ARMA was higher than that in the ANN. ARMA provided a better
result for linear components, while the ANN showed a smaller deviation for nonlinear components.
ARMA showed better predictions at very low irradiance, while the neural network performed better
at high irradiance. The study by Kamadinata et al. [12] developed and compared two different simple
methodologies utilizing two ANNSs. The first one predicted cloud movement direction, while the
second ANN predicted solar radiation using the output of the first ANN as input.

The persistence model is the most common reference model for short-term forecasting of solar
irradiance [13,14]. This model supposes that the data at x;,1 equals the data at x;. Generally, for solar
irradiation predictions, the persistence model is unreliable for forecasting more than one hour in
advance [15,16].

The study we present here shows that by applying our method, the solar irradiance can be
estimated in one-minute resolution by simulating one hour ahead at the Institute of Meteorology and
Climatology (IMuK), Leibniz Universitit Hannover, Hannover, Germany. In addition, this study does
not require meteorological inputs such as, e.g., humidity, wind speed, or air temperature. Therefore,
in further studies the new algorithm could be applied under diverse weather conditions elsewhere.

2. Methods

We developed a new algorithm to predict future data based on observed data, i.e., time series of
60 one-minute values of the global horizontal irradiance and, as their sum, the total amount of energy
one hour ahead. It was based on a four-year dataset of all-sky images and the respective thermopile
pyranometer measurements that were used as input to machine learning methods.

The algorithm consisted of three main steps. The first part comprised the data preparation for an
image processing program and the creation of a program to export pyranometer measurements for the
input parameters (Section 2.1). Figure 1 shows the forecast process of the global horizontal irradiance
(GHI) with all-sky images and an ANN.

The second part of the study was the creation of three different ANN programs. The Cloud
Locating and Cloud Movement Program (Section 2.2), the AllPicture Program, and the RingPicture Program
(Section 2.3). The third part consisted of the validation of the new model (Section 2.4). Table 1 shows
the preparation and methodology of these three steps.
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Figure 1. Process of the forecast of the global horizontal irradiance (GHI) with all-sky images and an
artificial neural network (ANN).

Table 1. Summary of data preparation and methodology. Step I-selected inputs and the Cloud

Movement program. Step II-two different ANNSs with their respective inputs and output parameters.

Step IlI-comparison of the neural network and the persistence model. The sun zenith angle (SZA) is

the angle between the zenith and the centre of the sun’s disc.

Step

Task

Input Output

Step 1 (a)

Extraction of parameters from all-sky images as
input for next steps.

Extraction of two extra inputs for next steps

RGB channel statistics

Average

Mode

Median

Standard deviation

O OO0

Sky cover (%)
Clouds in the sky (%)

GHIMea
SZA

Step 1 (b)

Cloud Locating and Cloud Movement program
(works with an ANN)

All-sky images
Current position of
the clouds

Cloud position one
minute ahead
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Table 1. Cont.

Step Task Input Output

For each image:

e  RGB channel statistics

Average
Mode

Median
Creation of the AllPicture program Standard deviation

Step 2 (a) (preconditioning for seasonal and diurnal GHIgim,
variations) Sky cover (%)

Clouds in the sky (%)

GHIpea

SZA

Cloud position one

minute ahead

O OO0

For each ring:

e  RGB channel statistics

O Average
O Mode
O Median

. R O Standard deviation
Step2 (b)  Creation of the RingPicture program GHlgimFinal

Sky cover (%)
Clouds in the sky (%)
GHIgjm,

SZA

Cloud position one
minute ahead

. 60 one-minute values
Hourly sum
. Deviations

e ANN model output

Step 3 Validation e  Persistence model output

2.1. Setup of the ANN

Different numbers of neurons for the input parameters for the three ANN programs were used; see
Table 2. The Cloud Locating and Cloud Movement program used eight inputs and one output, while the
AllPicture and the RingPicture programs each used nine inputs and one output.

Finally, two hidden layers with varying numbers of neurons were necessary for each network.
The number of hidden neurons in a single hidden layer was calculated by Equation (1):

m=vn+Il+a, 1)

where n is the number of input parameters and ! is the number of output neurons; « is a constant
ranging between 1 and 10.

In an ANN, the connection between input, hidden, and output neurons was established by
synaptic weights and transfer Equation (2). The input information x; flows through connections that
multiply its strength by a weight w; ; to reach a product w; jx;. This product is the argument for
a transfer function f that gives the output y;.

vi = f()_ wijx;) )
=

The activation function f defines the output of a neuron in terms of the induction of the linear
field y;. The activation function calculates the state of activation of a neuron, transforming the global
input into a state of activation.
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The Levenberg-Marquardt (LM) algorithm, a combination of the Grade and the Gauss—Newton
method, was used as learning algorithm. It was used as it is less time consuming and also has the local
convergence of the Gauss-Newton method and the complete properties of the Grade method [17].

Table 2. The neural network structure used to carry out this investigation.

ANN Programs No. of Input No. of Hidden No. of Neurons in the No. of Neurons in the No. of Output
Parameters Layers First Hidden Layer Second Hidden Layer Neurons
Cloud Locating and
Cloud Movement 8 2 4 2 1
program
AllPicture program 9 2 7 5 1
RingPicture program 9 2 7 5 1

2.2. Image Acquisitition and Data

The results of Toshing et al., 2013 [18] demonstrated the development of a camera system at
IMuK, where the projection of the camera system was found to be nearly equidistant. The pictures for
this study were recorded with both a Canon G10 and a Canon EOS 700D, using an exposure time of
1000/s. The Hemispherical Sky Imager (HSI), installed on the roof of IMuK, comprises commercial
compact CCD (charge-coupled device) cameras equipped with a fish-eye lens providing a 183° field
of view. The maximum image size is 4416 x 3312 pixels, corresponding to 3.5 million pixels for the
hemispherical image with a radius of 1060 pixels. In addition, the global irradiance was measured
simultaneously using a CMP11 pyranometer (Kipp & Zonen, Delft, The Netherlands), [19].

2.3. Images Preprocessing

A software program capable of identifying the area of the sky covered by clouds was developed
and used at IMuK. The work of Yamashita et al. [20] permitted the calculations of the sky index from
an original picture. However, in this study we calculated the Haze Index (Equation (3)), as stated by
Schrempf [21], to improve the cloud identification on the basis of the sky index. An example of the
haze index is displayed in Figure 2c.

Countyeg - COUNtbue _ oyt e

®)

Haze Index =

count,edJE(zounthlue + Countgreen

The Sun Zenith Angle (SZA) algorithm (a free Matlab (Matlab_R2016b) code sample [22]) was
extended at IMuK for this study. The output of this program was one-minute solar position values for
the location at IMuK. The SZA was the most important input parameter for training the network and
for delivering the output parameters in the simulation phase.

2.4. Cloud Locating and Cloud Movement Program

To obtain two new input parameters for the next steps, it was necessary to create an algorithm
capable of detecting clouds and predicting their movements. A cloud detection algorithm was used
to determine the percentage of clouds in the sky. This method provided automated cloud detection
operating in the red and blue channels [23] using super-pixel segmentation [24].

The total sky and cloud area were calculated followed by the percentage of clouds present,
i.e., with help of the Haze Index. The cloud pixels were then identified as they were needed to find
the cloud locations. If cloud pixels were high, the algorithm drew a contour around the cloud area
until the density decreased in the side areas. At low cloud pixels, the algorithm recognized this as
a boundary of the cloud.

In our system, as the output parameter, the ANN learned to predict the position of the clouds one
minute ahead by combining the movement between Figure 2d,e. The idea was to predict when the
clouds would appear in front of the sun, as shown in Figure 2d. The algorithm follows the clouds from
the horizon to the center of the sun, taking information from each ring.
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(d) (e)

Figure 2. (a) Original image. (b) Cropped black area of the picture and coverage of the sun. (c) Haze Index
image. (d) The picture from the Cloud Locating and Cloud Movement program. In addition, the black
contour around the clouds show the possible clouds that could appear over the sun in the next minutes.
(e) The picture shows the circles from the center of the sun with uniform distance to the horizon.

Accordingly, the input parameters for the Cloud Locating and Cloud Movement program were
the SZA; measured global horizontal irradiance (GHlpe,); current cloud position (derived from the
actual image as described before); percentage of clear sky; percentage of clouds in the sky; and the
mathematical average, mode, median, and standard deviation of the RGB channels. The output
parameter was the cloud position for the next minute. This output parameter was introduced as an
input parameter for the next ANN. The statistical information of each channel and the percentage of
clear sky and cloud cover were obtained without taking into consideration the sun’s circumference to
avoid oversaturation of the pixels (Figure 2b). In addition, the extraction of the statistical information
from the pictures was limited to the time from sunrise to sunset.

2.5. Creation and Training of the AllPicture Program and RingPicture Program

In this step, we created two new ANNs with respective training and simulation processes.
A comparison between the different models in terms of training time and prediction deviation indicated
that the LM algorithm was the most efficient prediction model. The selection of this learning algorithm
was especially important for the training and simulation time processes. The input datasets were
divided into 36 months for the training phase and 6 months for the validation.

The simulation of the AllPicture program was preconditioned with training runs on whole images.
The input parameters of this ANN were SZA; GHIyj,; percentage of clear sky; percentage of cloud
cover; average, mode, median, and standard deviation of the RGB channels; and cloud position for
the next minute. The output of this ANN was the GHIs;,, and it was used as input to the next ANN,
the RingPicture program. Since no time-based information was used in this algorithm, the aim of this
ANN preconditioning was to allow it to learn the seasonal and diurnal variations of the solar irradiance.

The second step was the simulation of the RingPicture program, where the actual simulation of the
60 one-minute values takes place. The input parameters of this ANN were SZA; GHIg;,; percentage
of clear sky; percentage of cloud cover; average, mode, median, and standard deviation of the RGB
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channels; and cloud position for the next minute. The training target and, hence, the most important
output of the algorithm was the hourly GHlg;mFina1, calculated as the sum of the 60 one-minute values.
Thus, while the AllPicture program worked over the whole picture, the RingPicture program worked
over each ring of the picture, i.e., the program considered each ring as a picture (see Figure 2e).

For the simulation of the 60 one-minute values and the resulting hourly GHIg;,pina1, only one image
was needed. The image was subdivided into concentric rings around the sun (Figure 2e). The rings had
a temporal resolution of one minute; the width depended on the distance from the horizon due to the
equidistant projection. For each ring, the same statistical information from the first step was extracted,
while the SZA was also adjusted according to the progress in time that the ring represents. With these
inputs and the GHIg;, of the whole image from the first step of Part 2, the ANN simulated the GHI of each
ring. Ring after ring was simulated subsequently, starting from the center of the sun and moving to the
horizon. The number of simulated minutes, n, depended on the cloud position and the position of the sun.

After the last ring was processed, the calculation method changed in order to calculate the missing
one-minute values from # to 60. The statistical information of the last ring was taken and searched for in
the database of recorded images. The image that best matched the statistical information was selected,
taking into consideration the sun position, time of year, and time of day. To simulate GHlg;ypina at 72 + 1,
the image was processed. This process was repeated until all 60 values had been generated.

The total GHIg;,Fina for one hour was calculated as the sum of the 60 one-minute values and
compared to the measured GHIyje, value. The deviation was fed back to the ANN until the deviation
reached a defined minimum threshold.

2.6. Validation of the New Model

The persistence model assumes that the global irradiation data at x; is similar to the global
irradiation data at x; 54, This model was very useful for benchmarking other methods [25]. We assumed
that an average of seven days was sufficient to predict the irradiance with the persistence model.
When considering only one day, the persistence model would be influenced too much by the current
variability. When considering more than seven days, the simulation did not improve any further.

Figure 3 shows the persistence model’s forecast for two days in more detail. This model processed
the information to the end time of the desired simulation. On the day of the simulation, the persistence
model processed the information just until the simulation began, thus delivering the simulated hour.

Forecast on September 18th 2014
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Figure 3. Prediction from the reference persistence model for two different days: (a) 18 September
2014 from 14:01 to 15:00. (b) 14 August 2015 from 12:01 to 13:00. The red dots on the lower part
of both images indicate the simulated time. The blue dots indicate that the data employed for the

simulation was one hour previous to this from the last seven days. The upper part shows a zoom of
the simulation day:.

3. Results

The following days were selected for validating the new algorithm: 18 September 2014;
and 10 January, 14 August and 21 August, 2015. The selected days represented different weather
conditions with high solar irradiance variability. The root-mean-square error (RMSE) (Equation (4)),
mean absolute error (MAE) (Equation (5)), and the coefficient of determination (R%) (Equation (6))
were used to evaluate the performance of the new model for these four days. In addition, 17 July 2015
was selected to simulate 13 h from 05:01 to 18:00. Definitions are expressed as follows:

Rvise - [y 1 len, @
_ Zﬁﬂyi - xi|
MAE = S ®)
1/2
R =Y N i) — 0/ (T, i — ) (e (i =02, ©)

where y; is the forecast value, x; is the measured value, and N is the number of samples. Additionally,
¥=YN, x;and 7 = LN, y;. Finally, to validate our model, i.e., for knowing how many simulations
we had to carry out for the validation of the new model, statistical sampling (Equation (7)) was utilized,

and the results are presented as a boxplot. The definition of the statistical sampling is expressed
as follows:

x= (22Npq)/ (N -1)Z%pg), )

where N is the total of the set, p = 0.95, g = 0.05, and Z = 1.96 (this value corresponds to the confidence
level of 95%).
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3.1. Analysis of One-Hour-Ahead Results

Figure 4 shows the forecasts of one-hour-ahead simulation for four days using the new algorithm
and the persistence model. These values were compared with the measured data. The results show that
the forecast values of the ANN model closely matched the measured values, and both the RMSE and
the MAE were smaller in the new ANN model than in the persistence model for the entire simulated
hour (see Tables 3 and 4).

Result of the simulation on September 18th 2014
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Figure 4. Cont.
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Result of the simulation on August 21st 2015
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50

40

Irradiance [W/mz]
W
o

N
o

10

—&— Simulation —&— Persi Observation

0 1 Il Il 1 1 1 Il Il Il 1
10:01 10:06 10:11 10:16 10:21 10:26 10:31 10:36 10:41 10:46 10:51 10:56 11:00
Time [hh:mm]

(d)

Figure 4. Comparison of new ANN model and persistence model for one-hour-ahead simulation.
The vertical black lines in the graphs represent the border of minutes of future information from the
last taken picture. (a) shows a good prediction of the total amount of energy with R? = 0.92. (b) shows
a good prediction especially for the first minutes of simulation. (c) shows a good prediction for the first
32 min of simulation. (d) shows a very important deviation with respect to the measured data; R? = 38.
However, irradiance values of under 80 W/m? are of minor importance for the overall energy forecast.

The new algorithm was able to produce forecasts of higher quality compared to the reference
persistence model, even when it stopped receiving information from the last picture. The last pictures
were taken at 14:00 on 18 September 2014, at 12:00 on 14 August 2015, at 16:00 on 21 August 2015
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and at 10:00 on 10 January 2015 and provided the algorithm with 11, 22, 32, and 10 min of future
information, respectively. The most important improvement was the decrease in RMSE and MAE of
the total energy received at the surface over one hour. Figure 4d shows a particular simulation case
where the measured irradiance was very low—between 4 W/ m? and 32 W/m?2. Under low irradiance
conditions, the network did not predict adequately when it stopped receiving information from the
last taken picture; see Table 3. The measured irradiation value at IMuK on 10 January, 2015 was
15 Wh/m? between 10:01 and 11:00. Our model simulated a total of 24 Wh/m?, i.e., a difference of
9 Wh/m? (54%). In comparison, the persistence model predicted a total of 27 Wh/m?, a difference
of 12 Wh/m?, which corresponds to 76%. The new model does not significantly outperform the
persistence model. For very small irradiance levels, the ANN does not have the same effectiveness as
for high irradiance levels. However, forecasts with very low irradiance levels were of minor relevance
for solar energy forecasts. On September 18, 2014, from 16:01 to 17:00, the irradiation measured at IMuK
was 414.8 Wh/m? and the new model simulated 412.3 Wh/m?, which corresponds to a difference of
2.5 Wh/m? (0.06%). The persistence model predicted 408.3 Wh/m? with a difference of 6.5 Wh/m?,
corresponding to 1.6% (Tables 3 and 4).

Table 3. Comparison of the statistical indicators of the new ANN forecast model against the persistence
forecast model on four different days. The table compares the information until the last picture with
the information after the last picture.

Simulation Day tol\é()):le[}:re With Information from the Last Picture When theh];;::rii;::;e 13:;;}:? Provide
Day Model  Minutes (é{vf/siz) R? (le\//ﬁfnz) Minutes (ézvl\k:[/s EZ) R (Wl\fl?riz)
18 Sepetember 2014 1;2 Ei\slt 1 174 83; 152 * Zg 8?:23 3513
wagms AN RGm s w w07
21 August 2015 Ifjr\g\slt 32 é} 82; ;(9) o ég 8?? Zg
10 Jane 2015 persi . ; o1 ; ” o ow s

Table 4. Summary of the statistical indicators of the new ANN forecast model for four different days.

Day Hour Total Measured Total Simulated Difference RMSE R2 MAE
Energy (Wh/m?) Energy (Wh/m?) (Wh/m?) (Wh/m?) (Wh/m?)
18 September 2014 14:01-15:00 414.8 412.3 2.5 69 0.61 50
14 August 2015 12:01-13:00 510 521 11 91 0.79 62
21 August 2015 16:01-17:00 197 203 6 37 0.84 24
10 January 2015 10:01-11:00 15 24 9 19 0.38 14

3.2. Analysis of the Daily Integrated Irradiation

The hourly average of the simulation for one day on 17 July 2015 from 05:01 to 18:00 is shown in
Figure 5. When making a prediction for an entire day, it was necessary to take a picture every 60 min.
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900 Hourly average of the simulation on July 17th 2015

Irradiance [w/mz]

Obs one-minute values —&— Simulated —&— Persistence —&— Observed (hourly)

_1 OO 1 Il Il
17/Jul 00:00 17/Jul 06:00 17/Jul 12:00 17/Jul 18:00 18/Jul 00:00
Time

Figure 5. The hourly average of simulation on 17 July 2015 from 05:01 to 18:00. The grey line shows the
measured one-minute values.

In Figure 5 we see that the persistence model, as a linear statistical model, cannot describe the
performance for days with broken clouds as accurately as the new ANN model can. Table 5 compares
the statistical indicators of the global irradiance for the one-hour prediction on 17 July 2015 from
05:01 to 18:00 using the new ANN model and the persistence model.

Table 5. Comparison of the statistical indicators of the ANN forecast model against the persistence
forecast model on 17 July 2015 at 05:01 to 18:00.

Model RMSE (Wh/m?) R? MAE (Wh/m?)

ANN 65 0.98 30
Persistence 91 0.91 63

3.3. Analysis of the Statistical Sampling

Figure 6 shows the distribution of the relative deviations as boxplots. The results of Figure 6a
suggest that the new model shows a symmetrical approach for 50% of the sample rate for the first
several simulation minutes. Nevertheless, Figure 6b shows an asymmetrical distribution of outliers
and a decreasing number of outliers for higher sample sizes, leading to higher uncertainties in the
simulation of the data. As expected, the uncertainty of the new model decreased as soon as more
simulation data were introduced and remained constant with the increase of sample sizes. It is worth

noting that in the persistence model, the uncertainty increased as soon as more simulation data
were introduced.
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Relative Error of the new model

+
600 | L . B
400 T T 1
Fos S .
+ + o
200 ¢ ® % S T F T T @
9 P N
s o=+ + F 0B 00HAHg
= A : | 1 | 4 |
1 . N T I
-200 f =2 L 4 F %4
¥ i + % + + B
-400 | r +
&
-600 - 1
5 10 15 20 25 30 35 40 45 50 55 60
Time [min]
(a)
Relative Error of the Persistence model
T T T T T :I\: T T 4\»
& T
600 - . _ N | - ,
* % t * T i + i T i T
400 - FoF T
g & ® 1 7 I
$ + | : I i
— 200" - § T i ]
= sgnl O E
S i E E I e e
= PI ! i i l o’ i | ! i !
oo . - Pk o |
- I
-400 r 1
-600 - 1

5 10 15 20 25 30 35 40 45 50 55 60
Time [min]
(b)

Figure 6. The relative deviation boxplot of the simulation derived for different time horizons.
The symmetry in 50% of the data decreases as soon as the program receives information from the
last picture and increases when the program does not receive information from the last picture.
(a) corresponds to the new ANN. Here, there are narrower interquartile ranges for higher sample sizes,
but the numbers of outliers (+) are lower than in (b). (b) corresponds to the persistence model. Of the
data, 50% is not exactly located in the middle, and the 25% and 75% levels of the data deviation are
higher than in (a).

In order to estimate how many simulations were needed to carry out the validation of our model,
statistical sampling was performed. Over 6 months of validation periods and assuming that we could
simulate an average of 8 h every day, we got 1440 valid cases. In these 6 months, 80 cases were not
considered because the irradiance level was under 100 W/m?2. Hence, our final valid cases numbered
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1360 and, to validate our algorithm, we applied statistical sampling. Thus, taking into consideration
a confidence level of 95% with a margin of error of 6%, our simulated cases numbered 288 (i.e., 288 h).
Therefore, each interval time corresponded to one hour of simulation, and from these 288 cases, 96 cases
corresponded to cloudless hours, 96 cases to overcast hours, and 96 cases to broken cloud hours. For the
new method, if on the horizon the presence of clouds is zero, it is very likely that in the next few
minutes, near the sun, there will be no cloud, as well. Thus, for clear sky days, the deviations varied 8%
compared to the measurement values. Overcast days and days with broken clouds represented a very
important challenge for the neural network. The deviations varied approximately 24% according to
the type of clouds and the amount of clouds on the horizon compared to the measurement values.
In addition, on days with broken clouds, the deviations varied 32% according to the percentage of
clouds and blue sky between the horizon and the center of the sun compared to the measurement
values. Applying the new ANN model to the 288 cases, our model achieved an average 22% deviation
compared to the measurement values for all sky conditions. In contrast, the persistence model shows
a 52% deviation for the three cases.

4. Conclusions

A new method developed to forecast solar irradiance one hour ahead has been presented. This new
model combines the advantages of using all-sky images and an LM-ANN. The GHI predicted by
the proposed methodology improves the forecast for the total amount of energy one hour ahead by
reducing both the RMSE and MAE of the simulation by approximately 40% when compared to the
persistence model. Furthermore, we showed here that the new model is capable of reproducing the
nonlinear nature of the solar irradiance more reliably than statistical linear models.

According to the simulation results, for the first minutes of simulation, the new algorithm
outperforms the persistence model. For irradiation levels under 80-100 W/m?, the new algorithm
does not accurately predict one hour ahead. However, such low irradiances are usually not relevant for
the production of solar energy. Nevertheless, for higher irradiance the new algorithm can predict one
hour ahead under diverse weather conditions with an average deviation of 22% within the next hour.

The model presented here has only been tested at IMuK. The neural network may be trained with
datasets from other places. To achieve this, only the pictures of the desired place with the respective
pyranometer measurements are sufficient. This work could be especially relevant for implementing
strategies in decisions for the balance of supply and demand of electricity. Additionally, this study will
be of interest for energy markets concerned with mitigating utility cost by acquiring more accurate
weather predictions. It may also be important for the estimation of power output and to avoid damage
to the electrical grid.
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