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Abstract: To understand different control loops that have been proposed to improve the quality of
current into grid from the perspective of output impedance, control-loop-based output impedance
enhancement of grid-tied inverters for harmonic suppression is proposed in this paper. The principle
and generalized control loop deduction are presented for reshaping the output impedance. Taking a
traditional LCL (Inductor-Capacitor-Inductor)-type inverter with dual-loop control as an example,
different kinds of control loop topologies are derived step by step and further optimized for
the implementation of the proposed principle. Consequently, the improved control consists of
a filtering-capacitor voltage loop, and a grid current loop is found which can remove the existing
inner capacitor current loop and therefore simplify the control. Finally, the effectiveness of the
proposed control method is compared with the existing method and both are verified by simulations
and experiments.

Keywords: grid-tied inverter; harmonic suppression; impedance enhancement; output impedance

1. Introduction

This paper considers the suppression of current harmonics from the perspective of output
impedance reshaping. In this section, the background of harmonic suppression, literature review,
formulation of the problem of interest for this investigation, scope and contribution of this study, and
organization of the paper are provided.

1.1. Background and Significance

With the wide application of power-electronics-based distributed generator equipment, the quality
of current into grid is partly polluted with the harmonics caused by the process of switching and the
distorted grid voltage [1]. The loss on the cables will increase and some sensitive loads will work
abnormally or even break if large harmonic contents of current exist, leading to the low economy of a
power system. Therefore, to suppress the current harmonics as well as to achieve the goal of grid-tied
requirements for inverters, different kinds of schemes for harmonic suppression have been proposed,
including different regulators, topologies, and control loops [2].

1.2. Literature Review

Originally, the L-type grid-tied inverter is usually employed in a distributed generation system
with a single grid-current feedback control loop. To satisfy the grid-tied requirements on the harmonics
current, a large inductor is generally adopted to mainly suppress the harmonics at the switching
frequency. However, the scale of the inverters is large and the effect of harmonic suppression is not
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sufficient. Therefore, to reduce the scale of inverters as well as achieve a better effect on suppressing
current harmonics, an LCL filter is employed [3]. However, as the LCL filter has a resonance peak,
the inverter will become unstable if the grid voltage or the inverter has an excitation source at the
resonant frequency. To damp the resonant peak, the dual-loop control strategy with capacitor current
and grid current has been proposed [4]. The positive resonance peak is compensated by a negative
resonance peak which is introduced though an additional compensator [5,6]. However, since the
capacitor current contains a large amount of high-frequency harmonics, it is difficult to compensate
them accurately. Therefore, instead of using a capacitor current, the weighted average current flowing
through the two inductors of an LCL filter is used. This method is a split formation of capacitor current
because the capacitor current is equal to the difference of an inverter-side current and grid-side current
for an LCL filter [7,8].

Besides the harmonics caused by switches, the background harmonics of grid voltage also affect
the grid current [9,10]. To compensate the harmonics in the grid voltage, the grid voltage is directly
feedforward (FF), i.e., an equivalent voltage source which has the same magnitude and phase with
grid voltage is generated to attenuate the impact of grid voltage disturbance. This method is called
the partial feedforward control strategy. It is more suitable for the L-type structure, although for
the LCL-type structure, due to the role of the capacitor, partial feedforward control cannot fully
compensate the background harmonics of grid voltage [11,12]. The magnitude and phase of the
generated equivalent voltage will not be equal to the grid voltage through an LCL filter if partial
feedforward control strategy is used. Therefore, the coefficient of feedforward should be modified
to get full compensation, that is, a full feedforward control strategy [13]. Other control loops, such
as in [14,15], which employ the combination of current feedback and grid voltage feedforward also
achieve the effect of suppressing the current harmonics. In addition, some advanced control algorithms
such as repetitive control and the adjoint method can be taken into consideration for harmonic
suppression [16,17].

1.3. Formulation of the Problem of Interest for This Study

It is necessary that the guideline of harmonic suppression from the perspective of reshaping
output impedance should be summarized since the different kinds of control loops which have been
proposed in previous literatures are intrinsically enhancing the output impedance. Generally, the
equivalent model of grid-tied inverter systems is equal to a current source in parallel with an output
impedance [18]. If the output impedance is large enough within the control bandwidth, the current
source will become as ideal as possible. Therefore, based on the idea of infinite output impedance
enhancement, this paper investigates the principle regarding reshaping the output impedance and
optimizing the control loops.

1.4. Scope and Contribution of This Paper

In this paper, through summarizing the prior different control loops, the concept of output
impedance enhancement is put forward, thus providing an understanding of different control loops.
An optimized control loop is derived from the grid voltage feedforward control strategy, which can
remove the existing inner capacitor current loop and therefore simplify the control loop. Meanwhile,
the capability of output impedance enhancement is identical to the grid voltage feedforward control
strategy. Besides, the cost of the system is reduced and its practical implementation is more convenient.

1.5. Organization of the Mauscript

The rest of this paper is organized as follows: by reshaping the output impedance based on
the concept of output impedance enhancement, the grid voltage feedback and grid current feedback
methods of reshaping output impedance are obtained in Section 2. The impact of two basic methods on
output impedance enhancement is analyzed in detail in Section 3. To simplify the control loop for the
convenience of realization, a method of splitting is adopted to optimize the grid voltage feedforward
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control loop. Then, a novel control loop is proposed in Section 4. The correctness of the proposed
control loop is verified in simulation and experiment in Section 5. Finally, a conclusion is made in
Section 6.

2. Principle of Control-Loop-Based Impedance Enhancement

2.1. Reshaping Principle Based on Output Impedance Models

The LCL-type grid-tied inverter with dual loop of capacitor current and grid current is employed.
The structure is shown in Figure 1a, where Udc, uinv, uC, uPCC, and ug, represent DC voltage, voltage
at inverter side, capacitor voltage, voltage at point of common coupling, and grid voltage, respectively.
iinv, iC, ig, iref, Ig, and iCref represent current at inverter side, capacitor current, grid current, reference
current, the magnitude of the reference current, and the reference capacitor current, respectively. L1, L2,
Cf, and Zg represent the filter inductor at the inverter side, filter inductor at grid side, filter capacitor,
and grid impedance, respectively. Gig and Gic represent the grid current regulator and the capacitor
current regulator, respectively.
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Figure 1. LCL (Inductor-Capacitor-Inductor)-type grid-tied inverter for single phase: (a) structure of
main circuit; (b) structure of impedance model; (c) structure of equivalent circuit model.

iref and io are satisfied with io = igrefGo, where Go is a transfer function of current gain. Figure 1c
shows the equivalent circuit model. It consists of a controlled current source in parallel with an output
impedance and a voltage source in series with a grid impedance [6].

According to Figure 1c, ig can be expressed as

ig =
Zo

Zo + Zg
io −

1
Zo + Zg

ug. (1)

It is found in (1) that ig is affected by io, ug, Zo, and Zg. If Zo is increased, the second item of (1)
will be decreased. Therefore, the impact of ug on ig will be reduced by enhancing Zo. If Zo is increased
to be much larger than Zg, that is, Zo >> Zg, (1) will be simplified to

ig = io. (2)

It can be found that the impact of grid voltage disturbance on grid current can be reduced by
increasing the output impedance, thereby improving the quality of current into grid. Therefore, ig is
approximately affected by io but not affected by ug and Zg.

The methods of reshaping output impedance are listed in Figure 2. Take Figure 2a as an example:
an extra impedance Zos is in series with grid impedance. The output impedance will be enhanced if
Zos is designed properly. Other reshaping ways are shown in Figure 2b,h.
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Figure 2. Methods of reshaping output impedance based on equivalent circuit: (a,c) series reshaping;
(b) parallel reshaping; (d–h) combination of series and parallel reshaping.

2.2. Deduction Principle Based on Output Impedance Models

If an extra impedance Zos is added to the grid side (shown in Figure 2a), the control structure will
be changed into Figure 3a. Compared to Figure 1b, a grid current feedback loop is added to the control
loop. To conveniently make a further control, the reference current iref is chosen, since a single point
that has physical meaning is needed. Then, Figure 3a can be transferred to Figure 3b. It is obvious
that the two structures are an equivalent formation. Similarly, the other reshaping ways shown in
Figure 2b–h can be transferred to Figure 4b–h, respectively.Energies 2018, 11, x FOR PEER REVIEW  5 of 17 
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Figure 3. Block diagram of reshaping output impedance: (a) impedance model; (b) deformed
impedance model.

Figure 4b,c,f,g, are grid voltage feedback control loops which feed grid voltage back to the
reference current point. Figure 4a is a grid current feedback control loop which feeds the grid current
back to the reference current, and Figure 4d,e,h are the combinations of grid voltage and grid current
feedback control loops.
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From Figure 4a–h, two basic methods are obtained which can be employed to reshape output
impedance: (a) grid voltage feedback control strategy and (b) grid current feedback control strategy.
In the next section, the impact of output impedance based on two basic methods will be analyzed.

3. Analysis of Impact on Output Impedance of Various Control

3.1. Impact on Output Impedance Using Voltage Feedback Control

For convenience, Ku is adopted to uniformly represent the feedback coefficient when the grid
voltage feedback control is employed. Ku can be expressed either as a constant value or a transfer
function. Its control diagram is shown in Figure 5.
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The new output impedance Zou is

Zou =
uPCC(
−ig

) ∣∣∣∣∣
igref=0

= Zo −
Zo

KuGoZo − 1
KuGoZo =

Zo

1− KuGoZo
. (3)

Considering G0 is positive in general within the control bandwidth, Zou can be enhanced when
Ku is positive.

3.2. Impact on Output Impedance Using Current Feedback Control

Ki represents the feedback coefficient when the grid current feedback control is employed. The
control diagram is shown in Figure 6.
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The new output impedance Zoi is

Zoi =
uPCC(
−ig

) ∣∣∣∣∣
igref=0

= Zo − KiGoZo. (4)

As indicated in (4), Zoi will be enhanced when Ki is negative. If (5) is satisfied, the two basic
methods will have an identical ability to enhance output impedance. Bode plots are given in Figure 7
to verify the enhancement effectiveness of the output impedance.

Zou = Zoi → Ki =
KuZo

KuGoZo − 1
. (5)
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Figure 7. Bode plots of output impedance with two basic impedance reshaped methods.

(a). As indicated in (4), Zoi will be enhanced when Ki is negative. If (5) is satisfied, the two basic
methods will have an identical ability to enhance output impedance. Bode plots are given in
Figure 7 to verify the enhancement effectiveness of the output impedance. The output impedance
will be enhanced when Ku is positive for voltage feedback control, while Ki is negative for current
feedback control.
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(b). The capacity of the two basic methods to reshape the output impedance is identical and they are
equivalent when (5) is satisfied except in one circumstance, that is, when Ku is equal to 1/GoZo,
Ki will trend to be infinite.

To obtain the largest gain of output impedance in order to prove that the basic impedance reshaped
methods have the instructive significance for the enhancement of output impedance, a specific example
is illustrated.

3.3. Impedance Enhancement Control Loop Based on Basic Impedance Reshaped Methods

Take the dual loop with capacitor current and grid current feedback as an example. When a grid
voltage feedback control loop is added to the reference current, as shown in Figure 8a, the control
diagram can be obtained (Figure 8b).
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Figure 8. LCL-type grid-tied inverter for single-phase: (a) the main circuit structure with grid voltage
feedback control loop; (b) control loop.

According to Figure 8b, the original output impedance without grid voltage feedback control
loop is

Zo =
s3L1L2Cf + s2GiCGinvL2Cf + sL1 + sL2 + GigGiCGinv

s2L1Cf + sGiCGinvCf + 1
. (6)

Go can be calculated as

Go =
ig
iref

∣∣uPCC=0 =
GigGiCGinv

s3L1L2Cf + s2GiCGinvL2Cf + sL1 + sL2 + GigGiCGinv
. (7)

The reshaped output impedance can be calculated according to

Zou =
Zo

1− KuGoZo
=

s3L1L2Cf + s2GiCGinvL2Cf + sL1 + sL2 + GigGiCGinv

s2L1Cf + sGiCGinvCf + 1− KuGigGiCGinv
. (8)

If the denominator of (8) is zero, the output impedance can be enhanced as much as possible.
Then, Ku is

Ku =
s2L1Cf + sGiCGinvCf + 1

GigGiCGinv
. (9)
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Simplify (9) and the deformed feedback coefficient K’u is

K′u =
s2L1Cf + sGiCGinvCf + 1

Ginv
. (10)

In order to reduce high-frequency noise introduced by the second-order differential item K’u,
a first-order low pass filter is employed. The output impedance will turn into

Z′ou =
Zo

1− K′u
TLPFs+1 × GoZo

=
s3L1L2Cf + s2GiCGinvL2Cf + sL1 + sL2 + GigGiCGinv

s2L1Cf + sGiCGinvCf + 1− K′u
TLPFs+1 × GigGiCGinv

(11)

where TLPF is the time constant of the low-pass filter. The voltage harmonics are mainly considered
about less than 40th, and the cut-off frequency of the low-pass filter should be larger than 2 kHz
in order to enhance output impedance as much as possible. So, TLPF = 40 µs. (Cut-off frequency is
3980 Hz, approximately).

The parameters of an LCL inverter system are given in Table 1. According to (8), (11), and Table 2,
the original output impedance and reshaped output impedance can be obtained, as shown in Figure 9.
Figure 9 shows that the reshaped output impedance is obviously enhanced under the cut-off frequency,
and the highest gain is about 1000 times greater than before.

Table 1. Parameters of single phase inverters with LCL filter.

Symbol Quantity Value

ug Grid voltage 220 V
f g Frequency 50 Hz

Udc DC voltage 400 V
L1 Filter inductor at inverter side 2.4 mH
L2 Filter inductor at grid side 2.4 mH
Zg Grid impedance 0.2 Ω/0.08 mH
Cf Filter capacitor 4 µF
f s Switch frequency 16 kHz

Gic Capacitor current regulator 30
Ginv Gain of the inverter 1
Kp Proportional coefficient 1
KR Resonance regulator coefficient 50
ωc Band frequency 10 rad s−1

TLPF Time constant of low pass filter 40 µs
iref Reference current 10 A
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Table 2. THD of grid current under different harmonic suppression schemes.

Control Strategy THD of Grid Current/%

Dual-loop control strategy 13.17
Grid voltage feedforward control strategy 5.78

Proposed control strategy 5.75

Actually, this method is also called the full feedforward control strategy [9]. The principle of
reshaped output impedance is elaborately described in previous sections. Based on the impedance
model, two basic methods of reshaping output impedance are obtained, and a specific example is
illustrated to prove the effectiveness of the basic methods. Further, it is necessary to apply the methods
to engineering implementation.

4. Implementation and Optimization of Control-Loop-Based Impedance Enhancement

According to the Kirchhoff voltage law, grid voltage is equal to the difference between capacitor
voltage and grid-side inductor voltage, and the expression of the feedback branch can be transformed to

K′u =
s2L1Cf + sGiCGinvCf + 1

Ginv
. (12)

The expression of the feedback branch turns from uPCCKu to (uC − uL2) Ku, which means the
control loop turns from a single loop of grid voltage to a dual loop of capacitor voltage and inductor
voltage. If the feedback coefficient is equal to Ku, the capacity of reshaping output impedance is
identical to the grid voltage feedforward control. The control structure is shown in Figure 10. KZ is the
feedback coefficient of the grid-side inductor voltage. A new control loop structure is created through
a split. Similarly, the inductor voltage at grid side is also equal to the grid current multiplied by the
inductor impedance, and then the grid voltage also can be transformed to

uPCCKu =
(
uC − igZL2

)
Ku (13)

where ZL2 represents inductor impedance. The control structure is shown in Figure 11. KI is the
feedback coefficient of the grid current.Energies 2018, 11, x FOR PEER REVIEW  10 of 17 
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uPCCKu =
(
uC − igZL2

)
Ku = uCKu − igZL2Ku = uC

(
s2 L1Cf+sGiCGinvCf+1

GigGiCGinv

)
− igsL2

(
s2 L1Cf+sGiCGinvCf+1

GigGiCGinv

)
= uC

s2 L1Cf+1
GigGiCGinv

+ uC
sCf
Gig
− ig

(
s3 L1 L2Cf+s2GiCGinvCf L2+sL2

GigGiCGinv

)
= uC

s2 L1Cf+1
GigGiCGinv

+ iC 1
Gig
− ig

(
s3 L1 L2Cf+s2GiCGinvCf L2+sL2

GigGiCGinv

) (14)

Compared to the FF control strategy, the capacitor voltage, capacitor current, and grid current
feedback control loops are employed instead of the grid voltage feedback control loop as shown in
Figure 12a. The control structure in Figure 12a can be optimized to Figure 12b through simplifying the
control loops where the new controller G’ig equals GigGiC. G’ig is a proportional-resonant controller
similar to Gig in the FF control strategy. Otherwise, the proposed control method is derived from the
FF control strategy, and the capability of enhancing output impedance regarding the two methods is
identical, as is the control bandwidth. The specific control structure of the proposed method is shown
in Figure 12c. It shows that the inner capacitor current loop is eliminated and the capacitor current
is no longer needed compared to the FF control strategy. Therefore, the cost will be reduced and the
implementation in practice will be convenient.
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To deal with harmonic influences of the grid voltage on the grid current, the capacitor feedforward
control loop is proposed from the perspective of enhancing output impedance. The output impedance is
enhanced in the full bandwidth compared to the multiple PR (Proportional Resonance) controller which
enhances the output impedance only at the selected frequency, as shown in Figure 13. As mentioned
in [18], the repetitive control is equivalent to a combination of a proportional controller and multiple
parallel resonant controller. The effectiveness of enhancing output impedance is similar to the multiple
PR controller. Meanwhile, the repetitive control is a relative complex for implementation. Therefore,
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the proposed control strategy with the capacitor feedforward control loop is convenient to enhance the
output impedance.
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The stability of the proposed control strategy can be determined by the ratio of the grid impedance
and output impedance, that is, Zg/Z’ou should be satisfied with the Nyquist criterion [18]. Here, the
grid impedance is 0.2 Ω/0.08 mH, and Z’ou is shown in (11).

It can be found that in Figure 14, there is no pole at the right side of the s plane, and its Nyquist
curve does not circle the point −1 + j0. According to the Nyquist criterion, this system is stable.Energies 2018, 11, x FOR PEER REVIEW  12 of 17 
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5. Simulations and Experimental Verifications

To verify the proposed control strategy, a single-phase grid-tied inverter with an LCL filter was
established in PSIM (Power Simulation), and the parameters are shown in Table 1. The 3rd, 5th, 7th,
9th, 11th, and 13th harmonics were injected into grid voltage, and the magnitude of each harmonic
was 5%, 6%, 1%, 1.5%, 3.5%, and 3%, respectively.

In order to be more realistic, a 0.5 Ω resistor was concatenated on the DC side to simulate the
true DC voltage source in this paper. Figure 15a shows the simulation results of a dual-loop control
strategy with capacitor current and grid current. It can be seen that both the voltage and current
are heavily distorted. The THD (total harmonic distorted) of the grid current was 7.4%, as shown in
Figure 15b. (ig*20)/A in Figures 15a, 16a and 17a indicates that the grid current is 20 times greater than
the original value.
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the grid current is smaller. The current wave in Figure 16a is approximately sinusoidal and the THD of
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the grid current reduces to 3.3% in Figure 16b. It is suggested that by enhancing the output impedance,
the current harmonics are suppressed, and the grid voltage feedforward control strategy is effective at
suppressing the grid voltage disturbance.

The simulation results in Figure 17a indicate that the proposed control strategy employing the
capacitor voltage and grid current is also effective at suppressing current harmonics. It is suggested
that the proposed control strategy also has an identical ability of enhancing output impedance with
the grid voltage feedforward control strategy. The THD of the grid current is 2.8% in Figure 17b and it
achieves the requirements of grid connectedness.

In order to further verify the proposed control strategy, a prototype was designed and established
in the laboratory, as shown in Figure 18. The parameters were identical to the simulation as shown
in Table 2. The experimental results of the dual-loop control strategy with the capacitor current and
grid current feedback, the grid voltage feedforward control, the proposed control strategy of capacitor
voltage, and the grid current are shown in Figures 19–21 respectively.Energies 2018, 11, x FOR PEER REVIEW  14 of 17 
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The current harmonics are well suppressed when the grid voltage feedforward control is
employed, as shown in Figures 19 and 20. The proposed control strategy achieves the same ability of
suppressing current harmonics with the FF as shown in Figure 21. The THDs of the grid current with
different harmonic suppression schemes are shown in Table 2.

To show the good transient performances, dynamic experiments were carried out in which the
reference current was given from 2 to 4 A at t1 and from 4 to 2 A at t2, respectively. The experimental
results are shown in Figure 22 and indicate that dynamic performance can be guaranteed when the
proposed control method is adopted.
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6. Conclusions

The principle and implementation of control-loop-based impedance enhancement of grid-tied
inverters for harmonic suppression was proposed in this paper in detail. Based on the idea of reshaping
output impedance, two basic methods of impedance reshaping were obtained. It was found that the
grid voltage feedback control has an infinite impedance enhancement ability which can eliminate
the influences of the distorted grid voltage in theory. A specific example was illustrated to prove the
effectiveness of the basic methods of reshaping impedance. Based on the idea of infinite impedance
reshaping, the implementation of control loops was made step by step. To find an optimized control
loop, a novel control loop that can eliminate the inner capacitor current loop and reduce the number
of sensors was proposed through splitting the grid voltage. Finally, the simulation and experimental
results were illustrated to verify the effectiveness of the proposed control strategy.
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