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Abstract: In order to improve the two-stage organic Rankine cycle of two heat exchanges of
exhaust gas, a two-stage organic Rankine cycle with a regenerator is proposed. Toluene, benzene,
cyclohexane and R245fa were selected as the working fluids of the cycle. The thermal efficiency,
exergy efficiency and net output power of the cycle were selected as the objective function of the
system. The influence of the regenerative performance on the thermodynamic performance of the
system was analyzed. The influence of the temperature change of the primary heat exchange outlet on
the thermodynamic performance of the system is discussed. The research shows that the regenerator
can increase the net power and thermal efficiency of the cycle output. For the selected working fluid,
as the efficiency of the regenerator increases, the thermal efficiency of the cycle and the net output
power increase. When the primary heat exchange outlet temperature of the exhaust gas increases,
the net output power and the exergy efficiency of the cycle increase. For the selected working fluid,
when the exhaust heat exchange outlet temperature was increased from 410 K to 490 K, the net output
power of the cycle increased up to 10.76 kW, and the exergy efficiency increased up to 7.85%.
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1. Introduction

Diesel engines are widely used in transportation vehicles, industrial and agricultural machines
and small power units [1]. However, around 50% of the fuel energy content is dissipated as waste
heat [2]. Many researchers [3–7] believe that waste heat recovery is the most potential method to
improve the thermal efficiency of diesel engines.

The organic Rankine cycle (ORC) has been proven to be the most promising technology for
recovering diesel engine waste heat [7–11]. Many scholars have conducted in-depth research on the
waste heat of diesel exhaust gas recovered by ORC, including simple systems [12,13], systems with
preheating [14,15], and dual loop ORC systems. SHU et al. [16] proposed a dual loop organic Rankine
cycle for recovering residual heat from internal combustion engines, and added reheaters to increase
the efficiency of the cycle in high temperature and low temperature cycles, respectively. Yu et al. [17]
presented a simulation model based on an actual organic Rankine cycle (ORC) bottoming system of a
diesel engine, and proved that the thermal efficiency of a diesel engine can be improved up to 6.1%.
Wang et al. [18] analyzed the static and dynamic properties of waste heat from exhaust gas recovered
using a two-stage organic Rankine cycle, under five typical internal combustion engine conditions.
Wang et al. [19] proposed a two-stage organic Rankine cycle system to absorb the energy of gasoline
engine exhaust and cooling water, and the results showed that the net power of the low temperature
cycle is higher than that of the high temperature cycle. Chen et al. [20] proposed a confluent cascade
cycle-expansion ORC (CCE-ORC) system and proved that this cycle had the advantages of simple
structure, small volume and high thermal efficiency compared with the traditional two-stage ORC.
Their results showed that the engine peak thermal efficiency can be improved from 45.3% to 49.5% and
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the CCE-ORC system can generate 8% more net power compared with conventional two-stage ORC.
Yang et al. [13] designed a dual loop organic Rankine cycle to recover high-temperature exhaust gas,
engine cooling water, and residual heat from the turbocharger. At the engine rated condition, the dual
loop ORC system achieved the largest net power output at 27.85 kW when the engine power was
247 kW. Yao et al. [21] designed a two-stage ORC to recover waste heat from a heavy-duty compressed
natural gas engine (CNGE), and the results showed that the maximum power output increase ratio and
the maximum brake specific fuel consumption improvement ratio were 33.73% and 25% compared with
the original CNG engine. Huang et al. [22] proposed a novel two-stage organic Rankine cycle, using a
high temperature cycle to exchange heat with the exhaust gas, and using the low temperature cycle for
secondary heat exchange of the exhaust gas. They proved that the thermodynamic performance of
this new cycle was superior to the traditional two-stage organic Rankine cycle. Li et al. [23] conducted
a comprehensive analysis of the thermodynamic and economic performance of the organic Rankine
cycle with a regenerator. The results show that the comprehensive economics of the ORC with a
regenerator is better than the basic ORC when the heat source temperature is relatively high.

In this paper, the two-stage organic Rankine cycle of the two heat exchanges of the exhaust gas
were improved. According to the characteristics of high temperature of the expander outlet, an organic
Rankine cycle with a regenerator was proposed. The influence of regenerator efficiency on the thermal
performance of the cycle was analyzed. At the same time, the influence of the primary heat exchange
outlet temperature of exhaust gas on the thermal performance of the cycle was analyzed.

2. System Model

The schematic diagram of the two-stage organic Rankine cycle by adding a regenerator is shown
in Figure 1. The cycle consists of a high temperature cycle and a low temperature cycle. The high
temperature cycle is used to absorb the exhaust heat for the first time, and the low temperature cycle
absorbs the exhaust heat for the second time. Because the outlet temperature of the high temperature
circulating expander is very high, a regenerator is set at the outlet of the expander to further absorb heat.
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Figure 1. Schematic diagram of the dual loop ORC system.

The object of recovering waste heat in this paper is Cummins’ six-cylinder in-line heavy-duty
diesel engine, and the specific parameters are shown in Table 1. According to the temperature of
the heat source, the most suitable working fluid for the cycle is selected. Because the temperature
of the exhaust gas is high, ordinary refrigerant is easily decomposed by heat, and it is not suitable
for use in the research process. Therefore, in the research process, toluene, benzene and cyclohexane
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were selected as the working fluids for the high temperature cycle. After preliminary calculation,
according to the range of low temperature circulating heat source temperature, R245fa was selected as
the working fluid for the low temperature cycle. The composition of the diesel exhaust and the ratio of
each component are shown in Table 2 [24]. The thermal properties of the high and low temperature
circulating working fluids are shown in Table 3.

Table 1. Main technical parameters of the diesel engine.

Parameter Value

Displacement 13 L
Maximum torque 2500 N·m

Exhaust gas mass flow 0.75 kg/s
Rated power//Rotation speed 412 kW/2100 rpm

Exhaust gas temperature 653 K

Table 2. The composition of the exhaust gas.

Composition Molecular Weight (g/mol) Fraction

O2 32.00 0.1483
CO2 44.00 0.0436
N2 18.01 0.0620

H2O 28.01 0.7461

Table 3. Properties of the working fluids.

Working Fluid Tcr (K) Pcr (MPa) Molecular Weight (g/mol) GWP ODP

toluene 591.75 4.126 92.138 Very low 0
benzene 562.02 4.906 78.112 Very low 0

cyclohexane 553.64 4.075 84.161 Very low 0
R245fa 427.16 3.651 134.05 950 0

3. Methods

3.1. Thermodynamic Model

Figure 2 is the T-s diagram of a two-stage cycle with a regenerator. Among them, (a) is the
T-s diagram of the high temperature cycle, and (b) is the T-s diagram of the low temperature cycle.
The thermodynamic model is established for the cycle by the first and second laws of thermodynamics.
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The net out power and exergy loss of the high temperature cycle expander are:

Wth =
•
mh•(h1 − h2), (1)

Ith =
•
mh•[h1 − h2 − T0(s1 − s2)], (2)

where T0 represents the surrounding temperature, which is 20 ◦C,
•
mh represents the mass flow rate

of the high temperature circulating working fluid, h is the enthalpy value of the state point, s is the
entropy value of the state point.

The cooling load and exergy loss of the circulating condenser with high temperature are:

Qch =
•
mh•(h3 − h5), (3)

Ich =
•
mh•[h3 − h5 − T0(s3 − s5)], (4)

The power consumed by the working fluid pump with the high temperature is:

Wph =
•
mh•(h6 − h5), (5)

Approximating the working fluid pump as a reversible adiabatic process, so:

Iph = 0, (6)

The efficiency of the regenerator can be expressed as:

ε =
T2 − T3

T2 − T6
, (7)

According to the conservation of energy in the regenerator,

h7 = h6 + (h2 − h3), (8)

The exergy loss of the regenerator is:

IINT =
•
mh•T0[(s7 − s6)− (s2 − s3)], (9)

The heat absorption of the working fluid in the high temperature cycle evaporator and the exergy
loss are:

Qeh =
•
mh•(h1 − h7), (10)

Ieh = Exa − Exb −
•
mh•[h1 − h7 − T0(s1 − s7)], (11)

where Ex represents the exergy value of the state point.
The net out power and exergy loss of the low temperature cycle expander are:

Wtl =
•
ml•(h9 − h10), (12)

Itl =
•
ml•[(h9 − h10)− T0(s9 − s10)], (13)

The cooling load and exergy loss of the low temperature cycle condenser are:

Qcl =
•
ml•(h10 − h12), (14)

Icl =
•
ml•[h10 − h12 − T0(s10 − s12)], (15)
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The power consumption of the low temperature cycle working fluid pump is:

Wpl =
•
ml•(h13 − h12), (16)

Approximating the working fluid pump as a reversible adiabatic process, so:

Ipl = 0, (17)

The heat absorption of the working fluid in the low temperature cycle evaporator and the exergy
loss are:

Qel =
•
ml•(h9 − h13), (18)

Iel = Exb − Exc −
•
ml•[h9 − h13 − T0(s9 − s13)], (19)

Total heat absorption of the evaporator:

Qtot = Qeh + Qel , (20)

The total net power output is:

Wnet = Wth + Wtl − Wph − Wpl , (21)

The thermal efficiency of the cycle is:

η =
Wnet

Qel + Qeh
, (22)

The exergy efficiency of the cycle is:

ηex = 1 − Ith + Ich + IINT + Ieh + Itl + Iel + Icl
Exa

, (23)

3.2. Calculation Conditions

In the calculation process of the mathematical model, the calculation conditions are set as follows:

1. Assume that the system is stable, ignore pressure loss and heat loss in the pipeline [25];
2. According to the output power and the working pressure of the expander, setting the isentropic

efficiency of the high and low temperature cycle expander to 0.8, and the isentropic efficiency of
the high and low temperature cycle pump is 0.85 [25–28];

3. Both high and low temperature cycles are condensed at environment pressure (0.1 MPa);
4. Select the appropriate evaporation pressure according to the thermal properties of the working

fluid. The high temperature cycle evaporation pressure is set to 2.5 MPa, and the low temperature
cycle evaporation pressure is set to 1.6 MPa. The thermal properties of all working fluids are
calculated by REFPROP 9.0.

4. Results

4.1. Effect of Regenerator Efficiency on Thermal Performance of Cycle

The pinch point temperature difference of the high temperature cycle evaporator is set to
30 ◦C, and the pinch point temperature difference of the low temperature cycle evaporator is
10 ◦C. Figures 3 and 4 show the relationship between the efficiency of the regenerator and the heat
absorption of the high and low temperature cycle evaporators. As the efficiency of the regenerator
increases, the heat absorption of the high temperature cycle evaporator decreases, and the heat
absorption of the low temperature cycle evaporator increases. The reason is that the efficiency of
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the regenerator increases, and the temperature of the working fluid has increased before entering
the high-temperature evaporator, thereby causing a decrease in the heat absorption of the working
fluid in the high-temperature evaporator. As shown in Figure 5, when the regenerator efficiency
increases, the high temperature evaporator exhaust gas outlet temperature Tb increases. When benzene
is used as the high temperature working fluid, the Tb increases from 408 K to 429.2 K when the
regenerator efficiency changes from 0 (without the regenerator) to 1; when the toluene is used as the
high temperature working fluid, the Tb increases from 413.5 K to 455.5 K; when cyclohexane is used as
a high temperature working fluid, the Tb increases from 421.9 to 465.6 K. Because the temperature of
the primary heat exchange outlet of the exhaust gas increases, that is, the temperature of the exhaust
gas entering the low temperature circulating evaporator increases, thereby causing an increase in the
heat absorption of the working fluid in the low temperature circulating evaporator.
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As shown in Figure 6, when the efficiency of the regenerator increases, the net output power
of the cycle also increases. As the Tb increases, the heat absorption of the working fluid in the low
temperature evaporator increases, and the required low temperature working fluid mass flow increases,
resulting in an increase in the net power of the low temperature circulating output, and finally the total
net power of the cycle output is increased. With toluene as a high temperature cycle working fluid,
when the efficiency of the regenerator increases from 0 to 1, the net output power of the cycle increases
from 42.8 kW to 57.16 kW. When benzene is used as the working fluid for the high temperature
cycle, the net output power of the cycle increases from 48.66 kW to 55.49 kW. With cyclohexane as
the working fluid for the high temperature cycle, the net output power of the cycle increased from
46.96 kW to 60.99 kW. Figure 7 shows the effect of regenerator efficiency on the cycle thermal efficiency.
With toluene used as a high temperature cycle working fluid, when the regenerator efficiency increases
from 0 to 1, the cycle thermal efficiency increases from 16.36% to 18.35%. When benzene is used as a
high temperature cycle working fluid, the cycle thermal efficiency increases from 17.77% to 18.66%.
When the high temperature cycle working fluid is cyclohexane, the cycle thermal efficiency increases
from 16.32% to 18.05%. Therefore, it can be seen from Figures 6 and 7 that increasing the efficiency of
the regenerator can increase the net output power and thermal efficiency of the cycle.
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4.2. Effect of Tb on Cycle Thermal Performance

The primary heat exchange outlet temperature of the exhaust gas (Tb) has an important influence
on the thermal performance of both the high and the low temperature cycles, so it’s necessary to analyze
the impact of Tb. During the study, the pinch point temperature difference of the low temperature
cycle evaporator was set to 10 ◦C.

As shown in Figure 8, as the Tb increases, the total heat absorption Qtot of the high and low
temperature circulating evaporators increases. Because of the increase of Tb, the heat absorption of the
high temperature cycle evaporator has a certain amount of decrease, while the heat absorption of the
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low temperature circulating evaporator increases, and the total heat absorption increases. Figures 9
and 10 show the effect of Tb on the net output power and the exergy efficiency of the cycle. As shown in
Figures 9 and 10, toluene is used as a high temperature circulating working fluid, when the Tb increases
from 410 K to 490 K, the net circulating power increases from 50.47 kW to 61.23 kW, and the overall
exergy efficiency of the cycle increases from 36.82% to 44.67%. When benzene is used as the high
temperature cycle working fluid, the net output power of the cycle increases from 51.83 kW to 62.14 kW,
and the overall exergy efficiency of the cycle increases from 37.81% to 45.33%. When cyclohexane
is used as the working fluid for high temperature cycle, the overall exergy efficiency of the cycle
increased from 37.48% to 45.12%.
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As can be seen from Figure 11, increasing Tb can reduce the cooling load of the high temperature
cycle. As shown in Figure 11, with toluene as the working fluid, when the Tb changes from 410 K
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to 490 K, the cooling load of the high temperature cycle is reduced from 185 kW to 124.1 kW.
When benzene is used as the working fluid, the cooling load of the high temperature cycle is reduced
from 199.3 kW to 133.7 kW. When cyclohexane is used as the working fluid, the cooling load of the
high temperature cycle is reduced from 221.9 kW to 148.9 kW. Because the outlet temperature of the
high-temperature cycle expander is relatively high, the high-temperature waste heat at the outlet of
the expander is utilized by setting a regenerator, and the cooling load of the high-temperature cycle
condenser is reduced.
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5. Conclusions

In this paper, a two-stage organic Rankine cycle with a regenerator is designed to realize the
cascade utilization of exhaust heat. The influence of regenerative heat on the thermal performance of
the cycle was analyzed. At the same time, the influence of the primary heat exchange outlet temperature
of exhaust gas on the thermal performance of the cycle was analyzed. The major conclusions are listed
as follows:

• Setting the regenerator can increase the net output power and thermal efficiency of the cycle.
For the selected working fluid, when the regenerator efficiency increases from 0 to 1, the net
output power of the cycle can be increased up to 14.26 kW, and the thermal efficiency can be
increased up to 1.99%.

• When the primary heat exchange outlet temperature of the exhaust gas increases, the net output
power and the exergy efficiency of the cycle increase. For the selected working fluid, when Tb is
increased from 410 K to 490 K, the net output power of the cycle can be increased up to 10.76 kW,
and the exergy efficiency can be increased up to 7.85%.

• The efficiency of the regenerator affects the primary heat exchange outlet temperature of the
exhaust gas. When the efficiency of the regenerator increases, the primary heat exchange outlet
temperature of the exhaust gas also increases.
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