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Abstract: Hydraulic instability is a complex factor causing the vibration of hydro-turbine generator
shafting system (HGSS), and the mechanism is the uneven distribution of flow along the
circumference. The common reasons for this phenomenon include the inconsistency of the blade exit
flow angle, the relay stroke and the guide vane opening. This paper mainly focuses on the research
of the hydraulic instability caused by the inconsistency of the blade exit flow angle. Firstly, based
on the Kutta-Joukowski theorem, the hydraulic unbalance force model is firstly presented. Then,
considering the chain reaction among the hydraulic, mechanical and electrical instability, a combined
nonlinear mathematical model of the HGSS is established. Finally, by using numerical simulation, the
dynamic characteristics of the HGSS with the changing of the deviation of the blade exit flow angle,
the blade exit diameter and the guide vane opening angle are analyzed. Moreover, it is found that the
hydraulic instability determines the overall changing trend of the shafting dynamic behaviors. In
addition, some stable ranges of the HGSS are distinguished. But above all, these results can efficiently
provide a reference for the design and manufacture of hydro-turbine blades and the operation of
hydropower stations.
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1. Introduction

Hydraulic power as a kind of renewable, clean and economical energy has been well developed
worldwide [1–3]. For example, Paish [1] illustrated that hydraulic power on a small scale, or
micro-hydro, is one of the most cost-effective energy technologies to be considered as the main prospect
for future hydro developments in Europe due to micro-hydro being one of the most environmentally
benign energy technologies available. Spänhoff [2] proposed that hydraulic power plays an important
role as the main renewable source of energy generation with an installed capacity of 990 GW in
2012 worldwide contributing to climate protection. Future prospects for the development of large
hydropower and pump-storage hydropower plants are also generally more positive in some countries
as the need for storage of surplus electricity generation will increase. Modesto et al. [3] presented the
state of the art of hydraulic power generation in drinking and irrigation water networks through an
extensive review and how hydraulic power can be applied in water distribution networks (drinking
and irrigation) where energy recovery is not the main objective. Therefore, hydropower stations
have become an important part of public utilities and infrastructure [4–10]. Recently, with the rapid
development of manufacturing and energy industry, the hydropower stations have been developing
towards higher rotational speeds, larger capacity and more complex operation conditions [11–14]. For
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example, in the end of 2015, the installed capacity of the hydropower stations has reached 320.03 GW.
However, these changes will bring an increasing possibility of unstable vibration of the hydro-turbine
generator shafting system (HGSS) caused by hydraulic, mechanical and electrical instability [15–19].
More importantly, when the HGSS is in operation, mechanical, hydraulic and electrical factors interact
with each other. For example, when the flow of water makes the rotating part of the unit HGSS, it can
cause the asymmetric air gap between the generator rotor and stator, which will result in the magnetic
force and it can also exacerbate the vibration. Then, the changes of the motion state of the rotating
part will affect the flow field of the hydraulic turbine and the generator magnetic field. Therefore,
to ensure the safe and stable operation of hydropower stations, it is essential to study the dynamic
characteristics of the HGSS under unstable factors.

For a long time, in order to investigate the effects of electrical and mechanical unstable factors,
scholars have proposed a large amount of nonlinear mathematical models [20–31]. On the one hand,
for the mechanical unbalance, Huang et al. [20] established a dynamic model for the rotor system
coupled with misalignment and rub-impact faults and analyzed the dynamic behaviors of this system
using numerical integral method. Chang-Jian et al. [21] studied the dynamic characteristics of the
rotor-bearing system supported by oil film journal bearings and presented a kind of prevention method.
Ma et al. [22] systematically researched the oil-film instability laws of an overhung rotor system with
parallel and angular misalignment in the run-up and run-down processes. Dal and Karaçay [23]
analyzed the effects of angular misalignment on the performance of rotor-bearing systems supported
by externally pressurized air bearing. Yan et al. [24] introduced the fractional-order derivative into
the hydro-turbine generator and investigated the dynamic behaviors of a bending-torsional coupling
generator rotor shaft system with multiple faults. Dorji et al. [25] presented an overview for the hydro
turbine failure mechanisms. Based on adaptive chirplet decomposition, Fang et al. [26] analyzed
the nonstationary vibration signal of a hydro-turbine to discuss the unstable mechanical vibration
characters. On the other hand, for the electrical unbalance, Perers et al. [27] reported an investigation
of saturation effects on the unbalanced magnetic pull in a hydroelectric generator with 20% static
eccentricity and determined the magnetic pull force by the finite-element method in parallel with a
simple analytical model for various no-load voltages and loads. Keller et al. [28] presented a combined
analytical and numerical method for the computation of unbalanced magnetic pulls, damper bar
currents and losses of laminated low-speed hydro-generators in eccentricity conditions under no-load.
The unbalanced magnetic forces which act upon the rotor of a salient-pole synchronous generator due
to eccentric motion of the rotor shaft in the presence of magnetic field in no-load and loaded condition
were calculated by Zarko et al. [29] using the finite-element method. Based on the Jeffcott rotor model,
Xiang et al. [30] analyzed the stiffness characteristics of the rotor system of the permanent magnet
synchronous motors and investigated the nonlinear dynamic behaviors influenced by unbalanced
magnetic pull. Kim et al. [31] researched the vibration characteristics due to the hydro-electric force
generated in the Francis-turbines generator system. With respect to the hydraulic instability, it is a
complex and unpredictable factor causing the vibration of the HGSS and the mechanism is that the
flow is not evenly distributed along the circumference. The possible reasons for the uneven distribution
of flow along the circumference include the inconsistency of the blade channel, the blade profile, the
blade tip clearance and the blade relay stroke. Specially, for the blade channel, it is mainly caused by
the inconsistency of the blade exit flow angle, the relay stroke and the guide vane opening. So far,
although there are some studies [32–34] on hydraulic instability, they mainly focused on the monitoring
and diagnosing of the hydraulic instability fault. For example, in Reference [32], the mechanism of
the hydraulic instability fault is firstly analyzed. Then, the parameters for identifying the hydraulic
instability fault and the automatic identification model are proposed, which can realize the automatic
monitoring and diagnosis of hydraulic instability fault. Zhou and Chen [33] discussed the stochastic
analysis of hydraulic instability in pressurized water diversion and hydropower systems. Zheng and
Chen [34] described the hydraulic instability characteristics of hydraulic turbine in detail. This method
is passive and does not adequately meet the needs of economy and security for the HGSS. Therefore,
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for the HGSS, it is essential to establish a mathematical model on hydraulic instability to study the
influences of the hydraulic instability. Due to the lack of a mathematical model for the hydraulic
instability, for a long time scholars have been unable to present a combined model which considers the
hydraulic, mechanic and electric unstable factors accurately.

Motivated by the above analyses, compared with the previous papers, there are three advantages
which make our research attractive. First, as a pioneering work, a nonlinear dynamic model of the
hydraulic unbalance forces is presented. Second, considering the chain reaction among the hydraulic,
mechanical and electrical instability, a novel mathematical model of the HGSS is established under
multiple faults. Third, the dynamic behaviors of the HGSS with the deviation of the blade exit flow
angle (χ), the blade exit diameter (D2) and the guide vane opening angle (α1) are studied. At the same
time, some unstable ranges of the HGSS are acquired.

The rest of the paper is organized as follows: Section 2 presents the dynamic model of hydraulic
unbalance forces and the combined model of the HGSS with multiple faults. Numerical simulations
along with detailed analysis results are presented in Section 3. Section 4 concludes the paper.

2. Mathematical Modeling

2.1. Modeling of the Hydraulic Unbalance Forces

2.1.1. Hydraulic Forces on a Single Blade

Hydraulic instability is a complex, untraceable, and typical factor threatening the security and
stability of hydropower stations, which is caused by the flow unbalance in the penstock, the spiral case,
the guide vane and the hydro-turbine runner. According to many engineering observations [6,19], the
hydraulic instability is mainly induced by the flow unbalance in the hydro-turbine runner, which can
lead to the strong vibration of the HGSS. However, the research about the hydraulic instability in the
hydro-turbine runner is poor. Therefore, we are going to establish a reasonable model to explain the
hydraulic instability in the hydro-turbine runner.

To understand the hydraulic instability in the hydro-turbine runner, the stress characteristics for
every hydro-turbine runner blade are firstly analyzed.

For the convenience of modeling, the flowing velocity of the water in the runner is decomposed
along the blade direction and the runner peripheral direction, which can be defined as the relative
velocity and the convected velocity, respectively. Figure 1 shows the triangle relationship among the
convected velocity, the relative velocity and the absolute velocity in the blade inlet and outlet, in which
W, U and V are the relative velocity, the convected velocity and the absolute velocity, respectively, α is
the angle between convected velocity and absolute velocity, β is the angle between relative velocity
and convected velocity, and the subscript 1 and 2, respectively represent the inlet and outlet of the
blade. Figure 2 is the breakdown drawing for the velocity triangle.
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For a single blade, the stress characteristics are shown in Figure 3 [34]. Here, the bold front stands
for vector. Based on the Kutta-Joukowski theorem, the drag force and lift force [34] can be respectively
written as

Rr = Cx
γ

g
|Wm|2

2
F, (1)

and

Rl = Cy
γ

g
|Wm|2

2
F, (2)

where Rr is the drag force; Rl is the lift force; Cx is the drag coefficient of the runner blade; Cy is the
lift coefficient of the runner blade; F is the maximum projected area of a blade in the cascade for the
hydro-turbine; Wm is the vector average value of the relative velocity of front and back flow around
the blade, namely Wm = (W1 + W2)/2, W1 is the inlet relative velocity of the runner blade, and W2

is the exit relative velocity of the runner blade; Wm, W1 and W2 are vectors and |Wm|, |W1|, and
|W2| are scalars, which represent the values of Wm, W1 and W2; γ is the unit weight of the liquids
around the runner blade.
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From Figure 3, the resultant force of drag force Rx and lift force Ry can be got as

R =
Rl

cos λ
= Cy

γ

g
|Wm|2

2
F

cos λ
, (3)

where λ = arctan(Cx/Cy).
Then, decomposing the force R along the radial direction, the radial force Rm can be written as

Rm = Cy
γ

g
|Wm|2

2
F

cos λ
cos(βm − λ), (4)

where βm is the direction angle of the average relative velocity.
From Figures 1 and 2, the values of |W1| and |W2|can be obtained as

|W1| =
Vm1

sin β1
=

Q/F1

sin β1
=

Q
s1πD1b0 sin β1

, (5)
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|W2| =
Vm2

sin β2
=

Q/F2

sin β2
=

Q
s2πD2

2 sin β2
, (6)

where Q is the flow; s1 and s2 are the entrance excretion coefficient and exit excretion coefficient,
respectively, s1 = 1 − ZSu/(πD1), s2 = 1 − ZSu/(πD2); Z is the number of the runner blades; Su is the
runner blade thickness; D1 and D2 are the entrance diameter and exit diameter of the runner blade,
respectively; β1 is the blade entrance flow angle; β2 is the blade exit flow angle; b0 is the guide vane
height.

With regard to the blade entrance flow angle (β1), according to Figure 2, it can be calculated
as follows:

β1 = arctan
(

Vm1

U1 −Vu1

)
= arctan(

Q
s1πD1b0

D1ω
2 −

Q
s1πD1b0 tan α1

) = arctan
(

2Q tan α1

πD1
2ωs1b0 tan α1 − 2Q

)
, (7)

where α1 is the guide vane angle; ω is the angular velocity.
Here, setting x-axis in the peripheral direction and y-axis in its perpendicular direction, which

can be seen from Figure 1, W1, W2 and Wm can be written as

W1 = (|W1| cos β1, |W1| sin β1), (8)

W2 = (|W2| cos β2, |W2| sin β2), (9)

and

Wm =
W1 + W2

2
=

(
|W1| cos β1 + |W2| cos β2

2
,
|W1| sin β1 + |W2| sin β2

2

)
, (10)

where |Wm| and βm can be expressed as

|Wm| =

√
(|W1| cos β1+|W2| cos β2)

2+(|W1| sin β1+|W2| sin β2)
2

2

= Q
2

√
1

(s1πD1b0 sin β1)
2 +

1
(s2πD2

2 sin β2)
2 +

2 cos(β2−β1)

s1s2π2D1D2
2b0 sin β1 sin β2

, (11)

and

βm = arcsin
(
|W1| sin β1 + |W2| sin β2

|Wm|

)
= arcsin

 2(s1D1b0 + s2D2
2)√(

s2D2
2

sin β1

)2
+
(

s1D1b0
sin β2

)2
+

2s1s2D1D2
2b0 cos(β2−β1)

sin β1 sin β2

, (12)

When the Reynolds number changes in the range from 104 to 106 and the range of attack
angle is from 0.53 rad to 2.76 rad, the expressions of the lift coefficient and drag coefficient for the
two-dimensional plate airfoil can be applied to hydro-turbine runner blade [35]. Therefore, one gets{

Cx = 2(sin υ)2

Cy = sin 2υ
, (13)

where υ is the attack angle.
According to Equation (13), one gets

λ = arctan
(

Cx

Cy

)
= arctan

[
2 sin

[(
arcsin Cy

)
/2
]2

Cy

]
, (14)
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Based on Equations (7), (11) and (14), Equation (4) can be written as

Rm = Cy
Q2

8
γ

g

F cos
(

βm − arctan
[
2 sin

((
arcsin Cy

)
/2
)2/Cy

])
cos
{

arctan
[
2 sin

((
arcsin Cy

)
/2
)2/Cy

]} ×


1

(s1πD1b0 sin(arctan( 2Q tan α1
πD1

2ωs1b0 tan α1−2Q
)))2

+ 1
(s2πD2

2 sin β2)
2

+ 2 cos(β2−β1)

s1s2π2 D1 D2
2b0 sin(arctan( 2Q tan α1

πD1
2ωs1b0 tan α1−2Q

)) sin β2

, (15)

where

βm = arcsin

2
(

s1D1b0 + s2D2
2
)/√√√√( s2D2

2

sin β1

)2

+

(
s1D1b0

D2
2 sin β2

)2

+
2s1s2D1D2

2b0 cos(β2 − β1)

sin β1 sin β2

. (16)

Defining ξ as the position angle of the blade, Rm can be broken down to the component in x and y
directions of Cartesian coordinate system, which can be written as{

Rx = Rm cos ξ

Ry = Rm sin ξ
, (17)

where ξ = ξ0 + ωt, ξ0 is the initial position angle of a selected blade.

2.1.2. Hydraulic Forces on a Single Blade

In the ideal condition, all blades of the runner have the same exit flow angle β2, and the total radial
hydraulic force of all runner blades is zero. However, in actual engineering, for the hydro-turbine
blades, due to the manufacturing error, the deformation and the wear in the operation, there are always
differences in the exit flow angles, which cause that the total radial hydraulic force is not zero. Further,
the radial unbalance hydraulic force in the hydro-turbine runner can lead to the strong vibration of the
HGSS. Here, for simplifying the calculation, we are going to make two assumptions.

Assumption 1. The number of blades for the hydro-turbine runner is even.

Assumption 2. Only one blade’s exit flow angle is inconsistent with the other blades, and the deviation of the
exit flow angle is χ.

Based on Assumptions 1 and 2, and combining Equations (15) and (17), the hydraulic unbalance
force acting on the hydro-turbine runner in x and y directions of Cartesian coordinate system can be
written as

Px = |cos α|Cy
Q2

8
γ
g

F
cos
{

arctan
[
2 sin((arcsin Cy)/2)

2
/Cy

]}

×



cos
(

βm1 − arctan( 2 sin (
arcsin Cy

2 )2

Cy )

)
×


1

(s1πD1b0 sin(arctan( 2Q tan α1
πD1

2ωs1b0 tan α1−2Q
)))2

+ 1
(s2πD2

2 sin β21)2

+ 2 cos(β21−β1)

s1s2π2D1D2
2b0 sin(arctan( 2Q tan α1

πD1
2ωs1b0 tan α1−2Q

)) sin β21

−

cos
(

βm2 − arctan( 2 sin (
arcsin Cy

2 )2

Cy )

)
×


1

(s1πD1b0 sin(arctan( 2Q tan α1
πD1

2ωs1b0 tan α1−2Q
)))2

+ 1
(s2πD2

2 sin β22)2

+ 2 cos(β22−β1)

s1s2π2D1D2
2b0 sin(arctan( 2Q tan α1

πD1
2ωs1b0 tan α1−2Q

)) sin β22





, (18)



Energies 2018, 11, 2862 7 of 19

and

Py = |sin α|Cy
Q2

8
γ
g

F
cos
{

arctan
[
2 sin((arcsin Cy)/2)

2
/Cy

]}

×



cos
(

βm1 − arctan( 2 sin (
arcsin Cy

2 )2

Cy
)

)
×


1

(s1πD1b0 sin(arctan( 2Q tan α1
πD1

2ωs1b0 tan α1−2Q
)))2

+ 1
(s2πD2

2 sin β21)
2

+ 2 cos(β21−β1)

s1s2π2 D1 D2
2b0 sin(arctan( 2Q tan α1

πD1
2ωs1b0 tan α1−2Q

)) sin β21

−

cos
(

βm2 − arctan( 2 sin (
arcsin Cy

2 )2

Cy
)

)
×


1

(s1πD1b0 sin(arctan( 2Q tan α1
πD1

2ωs1b0 tan α1−2Q
)))2

+ 1
(s2πD2

2 sin β22)2

+ 2 cos(β22−β1)

s1s2π2 D1 D2
2b0 sin(arctan( 2Q tan α1

πD1
2ωs1b0 tan α1−2Q

)) sin β22





, (19)

where β21 and β22 are the blade exit flow angle of the pair of symmetrical blades; βm1 and βm2 are the
direction angle of the average relative velocity of the pair of symmetrical blades, and

βm1 = arcsin

2
(

s1πD1b0 + s2πD2
2
)/√√√√( s2πD2

2

sin β1

)2

+

(
s1πD1b0

D2
2 sin β21

)2

+
2s1s2π2D1D2

2b0

sin β1 sin β21

, (20)

βm2 = arcsin

2
(

s1πD1b0 + s2πD2
2
)/√√√√( s2πD2

2

sin β1

)2

+

(
s1πD1b0

D2
2 sin β22

)2

+
2s1s2π2D1D2

2b0

sin β1 sin β22

, (21)

2.2. Modeling of the Mechanical and Electrical Unbalance Forces

2.2.1. Damping Force Model

When the hydro-turbine generator unit is in a steady state, the damping forces [31] on the shaft
system can be expressed as {

Fx− f = c
.
xo1

Fy− f = c
.
yo1

, (22)

where c is damped coefficient; (xo1 and yo1) are axis coordinates of the hydro-turbine generator rotor.

2.2.2. Oil Film Force Model

When the hydro-turbine generator unit is in a stable operation with a small perturbation, and the
unsteady boundary of the oil film is set to be a steady boundary, the oil film force [31] is adopted as{

Fx−oil = Fx0 + kxxxo1 + kxyyo1 + dxx
.
xo1 + dxy

.
yo1

Fy−oil = Fy0 + kyxxo1 + kyyyo1 + dyx
.
xo1 + dyy

.
yo1

, (23)

where Fx0 and Fy0 are oil film forces in the quiescent operation point; kxx, kxy, kyx, kyy, dxx, dxy, dyx and
dyy are coefficients, which can be obtained from reference [31].

2.2.3. Rub-Impact Force Model

In the case of misalignment failure of hydro-turbine generator set, there is a great possibility of
friction between the rotor and stator. In this paper, the rubbing force model assumes that there is an
elastic collision between the rotor and stator, and the rubbing force is determined by the rotor, stator
and the stiffness of spindle, and the thermal effect produced by the rubbing action is ignored. Thus,
the rub-impact force model [19] can be written as{

Fx−rub
Fy−rub

}
= −H(L− δ)

(L− δ)kc

L

[
1 − f
f 1

]{
xo1

yo1

}
, (24)
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where f is the relevant friction coefficient; kc is the stator stiffness; δ is the gap between the generator
rotor and stator; L is the radical displacement of the generator rotor axis (o1);

H(xo1) =

{
0 xo1 ≤ 0
1 xo1 > 0

. (25)

2.2.4. Unbalanced Magnetic Pull Model

When the number of the pole pairs of a hydro-turbine generator is more than three, the unbalanced
magnetic pull of the hydro-turbine generator [19] can be described as Fx−ump =

r1lπk2
j i2

4µ0L (2Λ0Λ1 + Λ1Λ2 + Λ2Λ3)xo1

Fy−ump =
r1lπk2

j i2

4µ0L (2Λ0Λ1 + Λ1Λ2 + Λ2Λ3)yo1

, (26)

where r1 is the rotor radius; µ0 is the air permeability; kj is the air gap flux potential; i is the generator
excitation current; l is the generator rotor length. Apart from the above, there are four meaningless
intermediate variables (Λ0, Λ1, Λ2, and Λ3) calculated in reference [14].

2.3. Modeling of the HGSS

The hydro-turbine generator shafting is installed in a vertical position. In this paper, we only
consider the transverse vibration, neglecting the forces of the thrust bearing.

Assumption 3. The rotor and the coupling are both rigid.

The coordinate relationships [36] of generator rotor (o1), and the hydro-turbine runner (o2) are
shown in Figure 4.
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where (xo2, yo2) represent the axis coordinates of the hydro-turbine runner; θ0 is the initial angle for 
the hydro-turbine generator unit, and θ = ωt + θ0; φ0 represents the initial angle of the generator rotor, 
and φ= ωt + φ0; r is the distance between o1 and o2; (xc1, yc1) and (xc2, yc2) are the mass center coordinates 
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Figure 4. The coordinate relationships of hydro-turbine generator shafting system.

From Figure 4, one gets 

xo2 = xo1 + r cos θ

yo2 = yo1 + r sin θ

xc1 = xo1 + e1 cos ϕ

yc1 = yo1 + e1 sin ϕ

xc2 = xo2 + e2 cos ϕ

yc2 = yo2 + e2 sin ϕ

, (27)

where (xo2, yo2) represent the axis coordinates of the hydro-turbine runner; θ0 is the initial angle for the
hydro-turbine generator unit, and θ = ωt + θ0; ϕ0 represents the initial angle of the generator rotor, and
ϕ = ωt + ϕ0; r is the distance between o1 and o2; (xc1, yc1) and (xc2, yc2) are the mass center coordinates
of the generator rotor and the hydro-turbine runner, severally; e1 and e2 are the mass eccentricity of the
generator rotor and hydro-turbine runner, respectively.
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The potential energy and kinetic energy of the HGSS can be expressed as

T = Tr + TG = 1
2 (J1 + m1e2

1)
.
ϕ

2
+ 1

2
[

J1 + m2
(
r2 + e2

2
)] .

θ
2

+ 1
2 m1(

.
x2

o1 +
.
y2

o1 + e2
1

.
ϕ

2 − 2
.
xo1e1

.
ϕ sin ϕ + 2

.
yo1e1

.
ϕ cos ϕ)

+ 1
2 m2(

.
x2

o2 +
.
y2

o2 + e2
2

.
ϕ

2 − 2
.
xo2e2

.
ϕ sin ϕ + 2

.
yo2e2

.
ϕ cos ϕ)

U = 1
2 k1|oo1|2 + 1

2 k2|oo2|2 = 1
2 k1
(
x2

o1 + y2
o1
)

+ 1
2 k2
(

x2
o1 + y2

o1 + 2rxo1 cos θ + 2ryo1 sin θ + r2)
, (28)

where J1 is the moment of inertia of the generator; J2 is the moment of inertia of the turbine; m1 is the
mass of the rotor; T is the total kinetic energy; U is the total potential energy; k1 is the bearing stiffness
of the generator rotor; k2 is the bearing stiffness of the hydro-turbine runner.

The Lagrange function of the HGSS is defined as the difference between kinetic energy and
potential energy, which can be written as

L = T −U

= 1
2
(

J1 + m1e2
1
) .

ϕ
2
+ 1

2
[

J1 + m2
(
r2 + e2

2
)] .

θ
2
− 1

2 k2
(
x2

o1 + y2
o1 + 2rxo1 cos θ + 2ryo1 sin θ + r2)

+ 1
2 m2

( .
xo2

2
+

.
yo2

2
+ e2

2
.
ϕ

2 − 2
.
xo2e2

.
ϕ sin ϕ + 2

.
yo2e2

.
ϕ cos ϕ

)
− 1

2 k1
(
x2

o1 + y2
o1
)

+ 1
2 m1

( .
xo1

2
+

.
yo1

2
+ e2

1
.
ϕ

2 − 2
.
xo1e1

.
ϕ sin ϕ + 2

.
yo1e1

.
ϕ cos ϕ

) . (29)

The Lagrange equations [37] of the HGSS is
d
dt

(
∂L

∂
.
xo1

)
− ∂L

∂xo1
= ΣFx

d
dt

(
∂L

∂
.
yo1

)
− ∂L

∂yo1
= ΣFy

. (30)

Then, the dynamic model of the HGSS can be described as

d
dt

(
∂L

∂
.
xo1

)
− ∂L

∂xo1
= (m1 + m2)

..
xo1 − [(m1e1 + m2e2) sin ϕ + m2r sin θ]

−[(m1e1 + m2e2) cos ϕ + m2r cos θ]ω2 − (k1 + k2)xo1 + k2r cos θ

= Fx−ump + Fx−oil − Fx− f + Px + Fx−rub

d
dt

(
∂L

∂
.
yo1

)
− ∂L

∂yo1
= (m1 + m2)

..
yo1 + [(m1e1 + m2e2) cos ϕ + m2r cos θ]

−[(m1e1 + m2e2) sin ϕ + m2r sin θ]ω2 + (k1 + k2)yo1 + k2r sin θ

= Fy−ump + Fy−oil − Fy− f + Py + Fy−rub

. (31)

Furthermore, Equation (31) can be simplified as

.
xo1 = vx

.
vx =

{
[(m1e1 + m2e2) cos ϕ + m2r cos θ]ω2 + (k1 + k2)xo1 − k2r cos θ

+Fx−ump + Fx−oil − Fx− f + Px + Fx−rub

}
/(m1 + m2)

.
yo1 = vy

.
vy =

{
[(m1e1 + m2e2) sin ϕ + m2r sin θ]ω2 − (k1 + k2)yo1 − k2r sin θ

+Fy−ump + Fy−oil − Fy− f + Py + Fy−rub

}
/(m1 + m2)

. (32)
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3. Dynamic Simulation and Analyses

In this section, by applying the Runge–Kutta method to the numerical simulation, the effects of
the deviation of the blade exit flow angle (χ), the blade exit diameter (D2), the guide vane opening
angle (α1) on the nonlinear dynamic characteristics of the HGSS are analyzed. The step–size is 0.01,
the iteration steps are 5000 for each time of simulation, and the initial values [36] specified for the
computation are as follows: [xo1, vx, yo1, vy] = [0.0001, 0.0001, 0.0001, 0.0001]. Besides, based on
references [36,38], the values of the parameters involved in the computation are chosen as follows:
m1 = 1.5 × 104 kg, m2 = 1.1 × 104 kg, c = 6.5 × 104 N·s/m, k1 = 8.5 × 107 N/m, k2 = 6.5 × 107 N/m,
e1 = 0.0005 m, e2 = 0.0005 m, i = 800 A, m3 = 1.0 × 103 kg, ω = 3.925 rad/s, ∆d = 0.0001068 m, l = 5.0 m,
∆l = 0.0002 m, µ0 = 4π × 10−7 H/m, δ = 0.008 m, f = 0.012, Kc = 3 × 107 N/m, Q = 42.86 m3/s,
Cy = 0.5, D1 = 2.0 m, b0 = 0.5 m, Φ = 0 rad, θ0 = 1 rad, ϕ0 = 0.8 rad.

3.1. Model Verification

To study the influences of the hydraulic instability on the vibration performance of the HTGS,
and verify the rationality of the model presented in Section 2, a comparison between the model in
this paper and the one in reference [36] is presented. In reference [36], the hydraulic instability factor
was not considered. As is shown in Figure 5, the vibration amplitude of the axis coordinates (xo1 and
yo1) in the model of this paper is far larger than that in the previous model in reference [36], meaning
that the hydraulic instability can aggravate the vibration of the HGSS. In fact, the influences of the
hydraulic instability have been detected in the actual hydropower stations, and a typical feature is to
magnify the vibration amplitude of the HGSS. Based on these analyses, it can be discovered that the
model presented in this paper is more reasonable than the one which doesn’t consider the hydraulic
unbalance force. Then, some more detailed analyses are carried out in Sections 3.2–3.4.
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Figure 5. The comparison diagram between the novel nonlinear mathematical model and the previous
nonlinear mathematical model. (a) Axis coordinate xo1; (b) Axis coordinate yo1.

3.2. Effects of the Deviation of the Blade Exit Flow Angle (χ)

The deviation of the blade exit flow angle (χ) is one of the most crucial factors causing the
hydraulic instability. In order to study the dynamic characteristics of the hydro-turbine generator unit
with the deviation of the blade exit flow angle (χ), the bifurcation diagrams of the hydraulic unbalance
forces (Px and Py) and the generator rotor axis coordinates (xo1 and yo1) with the increasing deviation
of the blade exit flow angle (χ) are shown in Figure 6.
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As is shown in Figure 6a,b, with the increase of the derivation of the blade exit flow angle (χ)
from 0 rad to 0.2 rad, the hydraulic unbalance forces (Px and Py) increase with a decreasing growth
rate. At the same time, under the effects of the hydraulic unbalance forces (Px and Py), the vibration
amplitude of the axis coordinates (xo1 and yo1) increases gradually when 0 rad < χ < 0.2 rad, which can
be seen in Figure 6c,d.

In addition, taking a further study of Figure 6c,d, more dynamic characteristics of the axis
coordinates (xo1 and yo1) can be obtained. In detail, in the range of 0 rad < χ < 0.0461 rad, the axis
coordinates (xo1 and yo1) keep in a slight vibration, and the vibration amplitude gradually increases.
Specially, a small fluctuation appears at the end of this range, which finally induces the chaos named
Chaos-1 at χ = 0.0461 rad. Then the axis coordinates (xo1 and yo1) get rid of the chaos and entered into
a transient period-2 oscillation when 0.0657 rad < χ < 0.0673 rad. Interestingly, at χ = 0.0673 rad, the
axis coordinates (xo1 and yo1) turn into a new chaos state named Chaos-2. Finally, when 0.0818 rad < χ

< 0.2 rad, the axis coordinates (xo1 and yo1), once again, enter into a period-2 oscillation.
In light of the above analyses, there are several points that needed to be focused on. First, a

small increase of the derivation of the blade exit flow angle (χ) could cause an apparent increase of
the hydraulic unbalance forces (Px and Py), which can further cause a large vibration of the shafting.
Second, according to the similar changing trend of the hydraulic unbalance forces (Px and Py) and axis
coordinates (xo1 and yo1), it can be found that the hydraulic instability determines the overall changing
trend of the shafting behaviors. Third, in the ranges of the 0.0461 rad < χ < 0.0657 rad and 0.0673 rad <
χ < 0.0818 rad, the axis coordinates (xo1 and yo1) are in a chaos state while the hydraulic unbalance
forces show period oscillation, which is because that the hydraulic instability can cause the mechanical
and electrical instability. In other words, the chain reaction among the hydraulic, mechanical and
electrical instability happens in these ranges. Third, when 0.0818 rad < χ < 0.2 rad, although the axis
coordinates (xo1 and yo1) get rid of the chaos, the vibration amplitude of the shafting is very large,
which can cause the mechanical fatigue and even destroy the hydro-turbine. Therefore, in actual
engineering, the derivation of the blade exit flow angle (χ) should be limited in the range from 0 rad to
0.0461 rad.
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3.3. Effects of the Blade Exit Diameter (D2)

In addition to the deviation of the blade exit flow angle (χ), the size of the runner can also influence
the hydraulic characteristics of the hydro-turbine. Here, to investigate the effects of the size of the
runner, the bifurcation diagrams of the hydraulic unbalance forces (Px and Py) and the axis coordinates
(xo1 and yo1) with the increasing blade exit diameter (D2) are presented in Figure 7.
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Figure 7. Bifurcation diagrams of the hydraulic unbalance forces (Px and Py) and the axis coordinates
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force Px; (b) Hydraulic unbalance force Py; (c) Axis coordinate xo1; (d) Axis coordinate yo1.

From Figure 7a,b, it can be seen that dynamic characteristics of the hydraulic unbalance forces
(Px and Py) with the increasing blade exit diameter (D2) are more complex than that of the deviation
of the blade exit flow angle (χ). Concretely, when 0.37 m < D2 < 0.4824 m, the hydraulic unbalance
forces (Px and Py) decrease rapidly. However, at the point of D2 = 0.4824 m, the changing trend of
the hydraulic unbalance forces (Px and Py) shows a dramatical turn. Then, the hydraulic unbalanced
forces (Px and Py) keep in a quick increase when 0.5522 m < D2 < 0.6372 m and maintain stability when
0.5522 m < D2 < 0.6372 m. Particularly, at the point of D2 = 0.6372 m, a HOPF bifurcation appears,
which is a dynamic bifurcation meaning that with the system parameter changing continuously to the
bifurcation point, the stability of the system changes suddenly. Finally, in the range of 0.8046 m < D2 <
1.6 m, the hydraulic unbalance forces (Px and Py) remain in a slow growth.

Comparing the bifurcation diagrams of the hydraulic unbalanced forces (Px and Py) and the
axis coordinates (xo1 and yo1), it can be found that when 0.4 m < D2 < 0.8 m, the overall changing
trend of them are similar, but the dynamic characteristics of the axis coordinates (xo1 and yo1) are
more complex. Specifically speaking, the axis coordinates (xo1 and yo1) present Chaos-1, Chaos-2 and
Chaos-3 in the ranges of 0.4664 m < D2 < 0.4701 m, 0.4706 m < D2 < 0.4767 m, and 0.5255 m < D2 <
0.7065 m, respectively. Then, when D2 > 0.8 m, the hydraulic unbalance forces (Px and Py) increase
with the changing of the runner blade exit diameter, on the contrary, the vibration amplitude of the
axis coordinates (xo1 and yo1) gradually decreases. Meanwhile, at the point of D2 = 0.9505 m and
D2 = 1.041 m, the axis coordinates (xo1 and yo1) respectively enter into Chaos-4 and Chaos-5.

Based on above analyses, some important results can be got. First, for different blade exit
diameters (D2), the value of the hydraulic unbalance forces has visible differences. Second, according
to the differences in the changing trend of the hydraulic unbalanced forces (Px and Py) and axis
coordinates (xo1 and yo1), it can be found that when the blade exit diameter (D2) is small, the hydraulic
unbalance forces (Px and Py) can determine the overall changing trend of the vibration amplitude of
the axis coordinates (xo1 and yo1). However, when the blade exit diameter (D2) is large, it can weaken
the influence of the hydraulic unbalance forces (Px and Py) caused by the blade manufacturing error.
Besides this, in the ranges of 0.4664 m < D2 < 0.4701 m, 0.4706 m < D2 < 0.4767 m, and 0.5255 m < D2 <
0.7065 m, the hydraulic unbalance forces (Px and Py) are in period oscillation while the axis coordinates
(xo1 and yo1) are in chaos, which indicates that the hydraulic instability can induce the mechanical and
electrical instability, and the chain reaction among them can cause the chaos of axis coordinates (xo1



Energies 2018, 11, 2862 15 of 19

and yo1). Finally, in the range from 0.7065 m to 0.9505 m, the axis coordinates (xo1 and yo1) show an
abnormal change due to the HOPF bifurcation. Therefore, the best range of the blade exit diameter is
from 1.215 m to 1.6 m.

3.4. Effects of the Guide Vane Opening Angle (α1)

In previous sections, the dynamic characteristics of the HGSS with the changing deviation of the
blade exit flow angle (χ) and blade exit diameter (D2) have been studied. These two factors are mainly
related to the design and manufacture of the hydro-turbine runner. In fact, in the actual hydropower
station, the operation condition is also a critical factor influencing the stability of the HGSS. In the
starting, shutdown and load changing process, the guide vane all needs to be adjusted to adapt the
current operation condition. Therefore, the effects of the guide vane opening angle on the HGSS are
needed to be studied. And bifurcation diagrams of the hydraulic unbalanced forces (Px and Py) and
the axis coordinates (xo1 and yo1) with the guide vane opening angle (α1) increasing from 0 rad to
0.8 rad are shown in Figure 8.
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From Figure 8a,b, when 0 rad < α1 < 0.1331 rad, the hydraulic unbalance forces (Px and Py) are
very large, and they decrease rapidly with the guide vane opening angle (α1) increasing. Then, at the
point of α1 = 0.1331 rad, the HOPF bifurcation appears. Finally, when α1 > 0.1713 rad, the hydraulic
unbalance forces (Px and Py) maintain a stable periodic oscillation.

As is shown in Figure 8c,d, the overall changing trend of the axis coordinates (xo1 and yo1) is
similar with the hydraulic unbalance forces (Px and Py). However, some differences between the axis
coordinates (xo1 and yo1) and the hydraulic unbalance forces (Px and Py) needed to be concerned about
in the details. Concretely, when 0.0154 rad < α1 < 0.0173 rad and 0.0181 rad < α1 < 0.0235 rad, the
hydraulic unbalance forces (Px and Py) keep in period oscillation while the axis coordinates (xo1 and
yo1) keep in Chaos-1 and Chaos-2, respectively.

According to the above analyses, four important results can be obtained. First, the vibration
amplitude of the axis coordinates (xo1 and yo1) is very large when the guide vane opening angle is
small. Namely, when the hydro-turbine generator unit works in the low load condition, the shafting
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vibration is strong, which is consistent with the actual engineering observation. Second, the hydraulic
unbalance forces (Px and Py) and the vibration amplitude of axis coordinates (xo1 and yo1), show a
similar changing trend, meaning that the hydraulic instability can determine the overall changing
trend of axis coordinates (xo1 and yo1). Third, based on the differences between the hydraulic unbalance
forces (Px and Py) and the axis coordinates (xo1 and yo1) in the ranges of 0.0154 rad < α1 < 0.0173 rad and
0.0181 rad < α1 < 0.0235 rad, it can be determined that under the influences of the hydraulic instability,
the electrical and mechanical instability are enhanced, which can lead to chaos in the shafting system.
Finally, when 0.1331 rad < α1 < 0.1713 rad, because of the HOPF bifurcation, the vibration amplitude of
the axis coordinates (xo1 and yo1) abnormally changes, which needs to closely watched in the operation.
Therefore, in actual engineering, the safe range of the guide vane opening angle is from 0.1713 rad to
0.8 rad.

4. Conclusions

In this paper, based on the Kutta-Joukowski theorem, a mathematical model of the hydraulic
unbalance forces is established. Then, combining the mechanical and electrical unbalance factors,
a novel nonlinear mathematical model of the HGSS is presented. Besides this, using the numerical
computation method, the dynamic characteristics of the HGSS are studied with the changing of the
deviation of the blade exit flow angle, the blade exit diameter and the guide vane opening angle.
Fortunately, some meaningful results have been found.

(1) A small increase of the derivation of the blade exit flow angle (χ) could cause an apparent
increase of the hydraulic unbalance forces and further magnify the vibration amplitude of the
HTGS. Moreover, the hydraulic instability can determine the overall changing trend of the shafting
dynamic behaviors.

(2) The larger blade exit diameter can weaken the effects of the hydraulic instability on the shafting
system. The best range of the blade exit diameter is from 1.215 m to 1.6 m.

(3) The vibration amplitude of the axis coordinates (xo1 and yo1) in the small guide vane opening
angle is larger than that in the large guide vane opening angle. At the same time, a safe range of the
guide vane opening angle is from 0.1713 rad to 0.8 rad.

More importantly, these results can provide a theoretical reference for the further study of
the hydraulic instability, the design and manufacturing of the hydro-turbine runner blade and the
operation of the hydropower station.
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