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Abstract: Quantifying nonlinear dynamic behaviors, such as bifurcation and chaos, in nonlinear
systems are currently being investigated. In this paper, permutation entropy is used to characterize
these complex phenomena in nonlinear direct current-direct current (DC-DC) converter systems.
A mode switching time sequence (MSTS), containing the information from different periodic states,
is obtained in a DC-DC converter by reading the inductor current when altering the switching
mode. To obtain the nonlinear characteristics of this system, the concept of permutation entropy of
symbolic probability distribution properties is introduced and the structure of the chaotic system
is reproduced based on the theory of phase space reconstruction. A variety of nonlinear dynamic
features of the DC-DC converter are analyzed using the MSTS and permutation entropy. Finally, a
current-mode-controlled buck converter is reviewed as a case to study the quantification of nonlinear
phenomena using permutation entropy as one of the system parameters changes.

Keywords: nonlinear behaviors; symbol sequence; operate mode; border collision bifurcation;
period-doubling bifurcation; permutation entropy

1. Introduction

1.1. Background

Direct current-direct current (DC-DC) switching converters are a typical nonlinear system that
enable the observation of nonlinear behaviors, such as period-doubling bifurcation, border collision
bifurcation, frequency-locking phenomenon, quasi-period, and chaos [1–5]. The study of nonlinear
behaviors is helpful for improving the performance of DC-DC converters.

1.2. Formulation of the Problem of Interest for This Investigation

Generally speaking, these nonlinear phenomena can be observed by phase plane, bifurcation
diagrams, and Poincaré sections in DC-DC converters [6–8], but these only provide qualitative analyses.
To examine nonlinear phenomena in a timely manner and identify them accurately, quantitative
analysis is necessary. At present, some quantitative analysis methods have been proposed to process
these nonlinear features, and the largest Lyapunov exponent (LLE) is the most common [9,10].

1.3. Literature Survey

In practical applications, analyzing the diverse nonlinear phenomena in LLE is challenging
due to the complex of the phase space trajectory and its solution process is complicated [7,11].
Researchers [12] found the symbolic time sequence contains a large amount of DC-DC converter system
state information, including nonlinear stability, bifurcation information, and degree of confusion. Both
symbolic sequence analysis and entropy are utilized to quantitatively analyze DC-DC converters.
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Multiscale entropy and sample entropy are used to characterize nonlinear phenomena and fault
features [13–16]. The symbolic time sequence method has been combined with block entropy to
quantify bifurcation and chaos state in boost converters [12,17]. Switch information sequences and the
concept of joint entropy have been used to quantify the complex state of the Ćuk converter [18,19].

1.4. Scope and Contribution of This Study

When the circuit parameters or the control parameters of the DC-DC converter are changed,
the system tends to exhibit processes from bifurcation to chaos or other nonlinear behaviors.
The conventional time sequence of a DC-DC converter is based on discrete mapping modeling
with the control period as the sampling period, so the information of the switching state time is
ignored. With nonlinear behavior, the switching state of a DC-DC converter may differ greatly in
adjacent control periods. Therefore, this paper introduces the mode switching time sequence (MSTS)
by sampling the value of the state variables at the mode switching moment. The MSTS not only obtains
the modality of each period, but also distinguishes the modalities presented in different periods.
Hence, two characteristics of the DC-DC converter can be simultaneously obtained through a time
sequence period.

In traditional symbolic sequence analysis, the process of hierarchical symbolization is prone
to excessive symbol in a certain layer, and the overlapping symbols indirectly lead to the loss of
information. Permutation entropy [20,21] is a special symbol sequence method based on information
entropy [22] and phase space reconstruction theory. It can effectively quantify the complexity of a time
sequence. Permutation entropy does not need to stratify the amplitude of the time sequence, which is
different from the general symbol sequence analysis method.

Permutation entropy is based on sorting the coordinates of the reconstructed phase space, and then
the generated symbol space is compared with all possible symbol sequences to achieve classification.
Permutation entropy can accurately obtain the autocorrelation degree of the time sequences [23,24].
When the sequence representation is completely random, the self-similarity of the sequence is zero.
This implies that the probability of occurrence of each sequence is the same, and the entropy value is
the largest. The entropy value is the smallest for the sequence based on a period-1 orbit because the
sampling data in each period remain unchanged.

1.5. Organization of the Paper

This paper is organized as follows: Section 2 introduces the MSTS to describe the characteristics
of the DC-DC converter. In Section 3, the identification of permutation entropy in periodic signals and
the selection of parameters of permutation entropy are discussed. In Section 4, MSTS combined with
permutation entropy is proposed. In Section 5, an example of a DC-DC converter is described in detail,
and the proposed method is applied to analyze nonlinear behaviors. Finally, through discussion and
summary, the feasibility of the method is demonstrated by comparison with other methods and the
nonlinear dynamic behaviors of the DC-DC converter are better quantified.

2. MSTS of the Modeled Converter

Current symbolic time sequence uses the control period as the sampling period in DC-DC
converters. However, the switching states or the change in the system topology may be different in
one control period, and the sampling control period ignores these details. For example, continuous
conduction mode (CCM) and discontinuous conduction mode (DCM), both working in period-1, orbit
at the stable state of the converter. So, the MSTS of the DC-DC converter is introduced to solve this
issue and is shown as follows.
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Set X = [X1X2X3 · · ·Xp]
T to the state vector (with p being the numbers of variables and superscript

T denoting transposition) of a DC-DC converter. So, in the ith control period, the discretized expression
of X can be expressed as:{

X(ti + ti1 + ti2 + · · ·+ tik) = Sk(X(ti + ti1 + ti2 + · · ·+ ti(k−1)), tik),
Xik = Sk(Xi(k−1), tik),

(1)

where Sk represents the relationship between the nitial and final terative alues in the circuit topology
as the operating mode k is presented (with its expression being only related to the topology and the
selected state variable). ti and tik represent the start time of the ith period and the mode k occurs in the
period, and Xik = X(ti + ti1 + ti2 + · · ·+ tik).

Suppose the system has ji (1 ≤ ji ≤ 2m –1, where m indicates the number of switching devices)
modes in the ith control period. As the system stabilizes, we take xL in the state variable X as the object
of observation and sample it when the mode changes from each control period. Hence, we obtain the
MSTS, i.e.,

xL−MSTS = {x1, x11, x12, . . . , x1j1 , x21, . . . , x(N−1)j(N−1),xN1, xN2, . . . , xNjN}, (2)

Considering the equation x(ti+1) = x(ti + ti1 + . . . + tiji ), the xi+1 has to be left out from
Equation (2). Figure 1 shows an example of two switching devices existing in the converter system,
which means it can express up to three modes, where T is the control period and ti is the time of the ith
switching moment (ti−ti-1 = T).
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Figure 1. Sampling at the mode switching time to build a mode switching time sequence (MSTS.) 
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3. Permutation Entropy

3.1. Phase Space Reconstruction Theory

The low-dimensional coordinate system cannot reflect the complex nonlinear states, as demonstrated
by Packard et al. [25]. Packard et al. [25] proposed two methods of reconstructing phase space in
a time sequence. The coordinate delay reconstruction method is widely used. In this method, the
one-dimensional time sequence is constructed by embedding the dimension m and the delay time τ

to form a new m-dimensional vector sequence. The phase space of the discrete time sequence x(n) of
length N can be obtained:

Y(i) = {x(i), x(i + τ), . . . , x(i + τ × (m− 1))}, i = 1, 2, . . . N − (m− 1)× τ (3)

Afterward, the Takens embedding theorems [26] proves the rationality of phase space
reconstruction and proposes that the embedding dimension of phase space should satisfy m ≥ 2D + 1,
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where D is the singular attractor dimension of the system and it is a geometric invariant. A dynamic
system with correlation dimension D can be described through 2D + 1 independent variables at
most [7]. This means that the geometry of the dynamic system is completely open when m is greater
than the minimum embedding dimension 2D + 1. At this time, the geometric invariant properties of the
system, such as the Lyapunov exponent, are independent of the embedding dimension m. In addition,
the delay time can be obtained by the autocorrelation method. The time sequence of a state variable can
reconstruct the phase space of the system, for it contains information about all variables participating
in the dynamic system. According to the Takens embedding theorem, the m-dimensional state space,
expressed in Equation (4), has the same meaning as the original state space topologically; that is, the
original state variable information can be reproduced.

Y =



Y(1, :)
Y(2, :)

...
Y(i, :)

...
Y(N − (m− 1)× τ, :)


=



x1 x1+τ . . . x1+τ×(m−1)
x2 x2+τ . . . x2+τ×(m−1)
...

...
...

xi xi+τ . . . xi+τ×(m−1)
...

...
...

xN−(m−1)×τ xN−(m−2)×τ . . . xN


(4)

3.2. Symbol Permutation Method

Entropy can quantify the periodic states and chaos by time sequence. Its concept is sourced in
the second law of thermodynamics. After Shannon introduced it into information theory, Shannon
entropy became an important quantitative means to measure the probability distribution of a sequence
signal [22].

For any discrete sequence {x(i), i = 1, 2, . . . , n}, the corresponding probability distribution
{p(i)|i = 1, 2, . . . , n} can be calculated, where p(i) is equal to the proportion of x(i) in the entire
sequence. The Shannon entropy HP can be defined as HP = −∑ p(i) ln p(i). The larger the HP, the
more uneven the signal distribution. This indicates that the system is highly complex, and the time
sequence is difficult to predict. On the contrary, the information contained in the signal is easy to find
for small HP, and the prediction can be realized with minimal error. Particularly, in the case where
HP = 0, the sequence signal could be theoretically predictable, such as the step signal at t > 0.

In order to accurately quantify the nonlinear features, we first need to acquire certain statistical
characteristics of the signal. In 2001, Bant et al. proposed the concept of permutation entropy based on
phase space reconstruction theory, and successfully applied it to the complex quantization process of
time sequences [23]. Equation (5) was generated by sorting Equation (4) in ascending order:

Y(i) = {x(i + ki1τ) ≤ x(i + ki2τ) ≤ . . . ≤ x(i + kimτ)}. (5)

We determined the corresponding symbol permutation:

Ki = {ki1, ki2, . . . , kim}, ki· = 0, 1, . . . , m− 1. (6)

For m-dimensional phase space reconstruction, we studied all n! permutations s(g) of
(1, 2, . . . , m− 1)

s(g) = {g1, g2, . . . , gm}, 1 < g < m!, (7)

where gi ∈ (0, 1, . . . , m − 1)(gi 6= gj, 1 ≤ i ≤ m, 1 ≤ j ≤ m). Then, comparing Ki
logically with the sequence of symbols s(g), we define p(g) as the probability that s(g) appears in{

K1; K2; . . . ; KN−(M−1)τ

}
:

p(g) =
Card{i|1 ≤ i ≤ N − (m− 1)τ , Ki == s(g)}

m!
, (8)
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where Card is a function that represents the number of elements in a collection
According to the definition of the Shannon entropy, the permutation entropy can be defined as:

PE(m) = −
m!

∑
g=1

p(g) ln p(g). (9)

The whole -process -can be illustrated by the special example in Figure 2. In this graph, a
sequence of period-6 was chosen as the object of analysis below. We set the embedding dimension
m = 3 and the delay time τ = 2. It was assumed that the sequence is sampled from the first 13 data
points onto the curve shown in Figure 2. In this case, the state space is divided into 3! (=6) parts,
so there are 6 mutually different arrangement symbols. According to the definition in Equation
(3), the first sample point has a three-dimensional (3D) coordinate of (1.3660,–1.0000,−0.3660).
Following Equation (5), we found that x(i + τ) ≤ x(i + 2τ) ≤ x(i), i = 1. Then, the corresponding
permutation is (−1.0000,−0.3660,1.3660) and the corresponding symbol sequence {120} is
obtained by referring to Equation (6). Therefore, combined with Equation (3), the sequence
(1.3660,−0.6340,−1.0000,−2.3660,−0.3660,3.0000,1.3660,−0.6340,−1.0000,−2.3660,−0.3660,3.0000,1.3660)
can be converted into 9 symbol sequences for representation ({120}, {102}, {012}, {021}, {201}, {210},
{120}, {102}, {012}).
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Figure 2. Procedure to obtain the permutation symbols from the sample period-6 signal as delay
time τ = 2.

As analyzed above, the previous six symbol sequences are different from each other. Starting from
the seventh symbol sequence, the periodic extension is performed in the order in which the first six
sequences appeared. This means that all possible symbol sequences are included. The remaining other
parameters are unchanged, the analysis is performed again with m = 4, and the above calculation is
repeated to obtain 7 symbol sequences ({1230},{1032},{3012},{3021},{2031},{2130},{1230}). We considered
kij > ki(j+1) as x(i + kij) = x(i + ki(j+1)). The permutation entropy calculated by Equation (8) is
approximately 1.7918, provided the sampling sequence is long enough. The comparison shows that
the distribution of symbol sequences in m = 3 is consistent with m = 4. That means if the cycle count
is less than m!, the m would not affect the amount of information acquired. So, the information that
can be obtained is also uniform.

The permutation entropy is a method proposed according to the spatial characteristics of
time. We can obtain the new state space Y by reconstructing the phase space. After sorting each
m-dimensional vector in Y, N − (m − 1)τ sorts symbol sequence K can be obtained. For the embedding
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dimension m, the total number of corresponding order permutations is m!. To ensure the degree of
uniformity of quantization, N − (m − 1)τ >> m! is generally required, and N >> m! is adopted in
practical application. Furthermore, if m is small, the signal with a higher multiple periodic cannot
be identified. Hence, the information volume read is correspondingly reduced, eventually resulting
in a loss of information. However, if the selection of m is oversized, it often leads to N < m!. As a
consequence, the identification accuracy decreases and the error trend increases.

The noise-free chaotic sequence studied by Taken’s theorem of embedding indicates that there
is no specific limitation on the delay time τ. τ does not take the optimal delay time only affects the
Euclidean geometry of the reconstructed attractor when reconfiguring the phase space. So, it affects
the calculation of the correlation dimension. However, it will not affect the reconstructive attractor’s
unambiguous representation of the system dynamics. In addition, a completely independent situation
of the two adjacent coordinate components could occur if the value of τ is too large, in which case,
the projection of the chaotic attractor’s trajectory in the same direction would become irrelevant.
Hence, smaller values of τ should be chosen according to the specific situation; Bandt and Pompe
suggested choosing a τ value of 1 [20]. Therefore, the embedding dimension m is considered to be a
key parameter of spatial reconstruction, and it is commonly recommended to select m within the range
of 3 to 7 for systems with less than three dimensions.

The traditional symbol sequence divides the time sequence into n regions by amplitude coarse
granulation to obtain the symbol sequence. After the window with length L is selected, the block
entropy (BE) of the symbol sequence is obtained and its maximum value is not more than ln(2L). For the
permutation entropy, after the m-dimensional phase space reconstruction, the maximum value of the
permutation entropy does not exceed ln(m!). That is to say, m! >> 2L as m = L > 3. Compared with
the traditional symbol sequence method, the permutation entropy can read more information and does
not need to perform amplitude layering. The method of combination of the permutation entropy and
MSTS is elaborated in Section 4. Combined with MSTS, we compare permutation entropy and sample
entropy in Section 5. Given the logical calculation used in the method, the permutation entropy has
the advantages of high robustness and fast calculation speed.

4. Combination of MSTS and Permutation Entropy

In common DC-DC switching converters that include both an inductor and a capacitor, the trend
in the current variable or voltage variable can reflect the operating mode of the system. For a switched
capacitor DC-DC converter [27], since it does not contain an inductor, the capacitor voltage can be
used as an object for extracting the MSTS. Peak current single loop control is characterized by the
inability to stabilize the output voltage and produces a rich nonlinear behavior. We used the current
variable as the observation signal for the common converter (Figure 1). The procedure of K as m = 3,
τ = 1 can be observed in Figure 3.
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Combined with the above analysis, the permutation entropy has the following characteristics
when applied to a DC-DC converter:

(1) Assuming the signal is random, such as white noise, permutation entropy is expected to be
close to the maximum value ln(m!). Considering that there are at least two operation modes in
period-1, the recurring number of the MSTS is greater than or equal to 2. Hence, the minimum
value of PE is ln(2) = 0.6931.

(2) When the system does not enter the chaotic state by changing m, the acquired permutation
entropy remains uniform. This means that increasing or decreasing m as appropriate does not
affect the value of the permutation entropy.

(3) DCM and CCM can be further divided into different working patterns according to the different
switching numbers of modes. Border collision occurs when the working pattern combination
changes. The complexity of the systems in DCM working patterns is usually greater than that of
the CCM working pattern. Therefore, the more DCM patterns the system contains, the higher
the value of the permutation entropy. After entering chaos, the permutation sequence K shows
a certain disorder. Because the chaotic motion is pseudo-random, the permutation entropy
obtained in the chaotic state is not able to reach the maximum value.

5. Application Example

In this section, the peak current control buck DC-DC converter is analyzed using the above
method. By quantifying its complexity, the behaviors of the period-doubling bifurcation, border
collision bifurcation, and chaos present in the converter are quantitatively described. The circuit model
is shown in Figure 4. Relevant parameters were selected as follows: E = 20 V, R = 19 Ω, L = 3.3 mH,
C = 1000 uF, T = 400 us, and the variation range of the control variable Iref was controlled within
0.12–1.32. As shown in Figure 4, there are two switching devices in the circuit: the fully controlled
device V and the uncontrollable diode VD. Combined with the principle of the buck converter, we
obtained three working modes of the circuit, as shown in Figures 5 and 6. These figures depict
the switching mode (V,VD) = (on,off )→(V,VD) = (off,on)→(V,VD) = (off,off ) of each switching period.
The inductor current is xL > 0 during mode-1 and mode-2 and xL = 0 during mode-3. In Figure 6, Ib1 and
Ib2 are the borderlines in the buck converter with peak current control. Analyzing the characteristics of
the buck converter and using the precise discretization method to model the system, we determined the
work pattern of each control cycle. After multiple iterations, the inductor current xL was numerically
sampled under the overall steady state, and MSTS was obtained. Here, m = 4 and τ = 1 were selected.
Figure 7 shows the permutation entropy for the MSTS as a function of the reference current for different
nonlinear feature. For the data of the chaotic state part, since the irregularity was relatively strong,
cycle extension was performed to homogenize the order.
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is performed first in the period, then the switch state changes once and enters into mode-2; and (c) F3

represents the mode in the period change from mode-1 to mode-2 to mode-3.

As shown in Figure 8, the inductor current xL is sampled at the operating mode interval and the
bifurcation diagram of the system with Iref as a changing parameter can be obtained.

By comparing Figures 7 and 8, the dynamic behavior of the buck converter in the peak current
control can be clearly analyzed. Similarly, each state of the border collision bifurcation and the standard
bifurcation are represented in Table 1. In this table, S and MSTS-PE indicate the permutation symbol of
the MSTS and the corresponding permutation entropy, respectively.

Table 1. Permutation sequence and permutation entropy of the buck converter as reference current
Iref changes.

Iref/A S MSTS-PE State

[0.1200,0.2778] ({1203},{0231},{0231})∞ 1.0986 Period-1
[0.2779,0.8295] ({1203},{0213})∞ 0.6931 Period-1
[0.8296,0.9006] ({3102},{2013},{1302},{0213})∞ 1.3863 Period-2
[0.9007,1.1577] ({3102},{2301},{1203},{0132},{0213})∞ 1.6094 Period-2
[1.1578,1.1946] ({2301},{1230},{0123},{0312})∞ 1.3863 Period-2
[1.1947,1.2624] ({2031},{1203},{3012},{2301},{1230},{0123},{0312})∞ 1.9459 Period-4
[1.2625,1.3200] No period: ({ . . . }, . . . ) >2.2 Chaos
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1. As Iref ∈ [0.1200,0.2778], the system works in the F3 pattern of period-1. In this pattern, there are
three modes in each period of the system, which means the system is in the DCM state. Then, the
first border collision bifurcation occurs in the system at Iref = 0.2779 A. Because the inductor
current in the steady state collides with Ib2, the operating mode changes and the working patterns
of the converter system change from F3 to F2.

2. During Iref ∈[0.2779,0.8295], the system still works in the period-1 state, but the operating mode
is F2. At this time, the system has two modes in each period. When Iref = 0.8296, the system
generates period doubling bifurcation and enters period-2. Since there is no border collision
bifurcation, the working patterns are extended to F2F2.

3. When Iref ∈[0.8296,1.1946], the system works in period-2. We found that two bounder collisions
of the system occur in this area because the inductance current of the system collides with
the borderline of Ib2 and Ib1 at Iref = 0.9007 and Iref = 1.1578 A, respectively. Hence, the
operating pattern of the converter system changes from F2F2 at Iref ∈[0.8296,0.9006] to F2F3

at Iref ∈[0.9007,1.1577] and to F1F3 at Iref ∈[1.1578,1.1946]. From the entropy value of three
period-2 orbits shown in Figure 7, the permutation entropy value of period-2 is greater than the
corresponding entropy value of any working pattern in the entirety of period-1. The sample
entropy, used for assessing the complexity of the time sequence shown in Figure 10, is the
negative logarithm of the probability of if two sets of simultaneous data points of length m have
a distance smaller than r, then two sets of simultaneous data points of length m + 1 also have a
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distance smaller than r [28]. However, with the change in sample entropy, we could not find the
bifurcation information of the system under period-1 and period-2 states.

4. As Iref ∈[1.1947,1.2624], the system works in the period-4 state with the working pattern F1F2F1F3,
and there are seven modes in this state. Then, the fifth time border collision bifurcation of a fixed
point and Ib1 curve collision occur once more in the system at Iref = 1.2625 A. At this time, LLE
shown in Figure 9 is greater than 0 and the mode switching shows disorder, which means that the
system is beginning enter the chaotic state. When Iref ≥ 1.2625 A, a number of border collisions
occur in the chaotic state, as depicted in Figure 7. Then, the value of permutation entropy is no
longer stable, exhibiting similar characteristics to the LLE, and its corresponding value is greater
than any period. The characteristics described are consistent with Bandt C et al. [20].

Moreover, the fourth border collision bifurcation occurs at Iref = 1.1947 A. Since the system has
unstable characteristic roots at the same time, the system generates period-doubling bifurcation and
enters the period-4 state. The working pattern is extended while F2 switches to F3.
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To further explain permutation entropy, the time-domain simulating waveforms with phase
plane, and the experimental results at the typical values of Iref, are illustrated in Figures 11 and 12,
respectively. We found that the values of the permutation entropy correspond to the complexity of the
working waveforms. In summary, the presented MSTS-PE can quantify the complexity of the operation
states of the buck converter, and the established MSTS can characterize the bifurcation phenomena of
the system.
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Figure 11. Waveforms of inductor current xL and phase plane at (a) Iref = 0.20 A; (b) Iref = 0.50 A;
(c) Iref = 0.85 A; (d) Iref = 1.00 A; (e) Iref = 1.17 A; (f) Iref = 1.20 A; and (g) Iref = 1.27 A. In (a) to (g),
xC and xL represent the inductor current and capacitor voltage, respectively, and the red marker dot
corresponds the mode switching moment.
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6. Discussion and Conclusions

Phase space reconstruction is a method of reconstructing attractors based on finite data to study
the dynamic behavior of a system. Its basic idea is that the evolution of any component in the system is
determined by its interactions with other components. In DC-DC converters, the dynamic information
of one component is implicit in any related component; that is, the original dynamic system model can
be reconstructed with one variable observation in the system.

The quantization process of the sequence information based on the permutation entropy, and
comparison between permutation entropy and the traditional symbol sequence method, are described
in Section 3. In addition, the permutation entropy and sample entropy of buck converter are shown
in Figures 7 and 10. The permutation entropy seems to be a better indicator in some circumstances
because it has high robust performance and anti-interference ability for analysis of the mixed signal.
Permutation entropy overcomes shortcomings, like the poor relative consistency of sample entropy
and time consuming calculation of multi-scale entropy, which is easily affected by the non-stationarity
and outliers of time sequences. For a better description of nonlinear dynamic behaviors of a system
from a time sequence, MSTS was proposed to describe the dynamic features of a DC-DC converter.
In addition, distinguished from joint entropy, permutation entropy combined with MSTS only needs
one sequence to identify the system features. This concept is also consistent with the concept of phase
space reconstruction.

Based on the theory of phase space reconstruction, the permutation entropy of the DC-DC
converter under the determined parameters is obtained by sorting each group of m-dimensional
vectors. In this paper, we found that the higher the frequency of mode switching, the more complex
the obtained MSTS. This means that the higher the complexity of the corresponding system, the larger
the permutation entropy value. With the fluctuation in the permutation entropy value of different
control parameters, the nonlinear dynamic behaviors of a DC-DC converter can be better quantified.
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