
energies

Article

Transient Stability Analysis of Islanded AC
Microgrids with a Significant Share of Virtual
Synchronous Generators

Chang Yuan, Peilin Xie * ID , Dan Yang and Xiangning Xiao

State Key Laboratory for Alternate Electrical Power System with Renewable Energy Source,
North China Electric Power University, Beijing 102206, China; yc@ncepu.edu.cn (C.Y.);
yedda9523@163.com (D.Y.); xxn@ncepu.edu.cn (X.X.)
* Correspondence: 13810237925@126.com; Tel.: +86-138-1023-7925

Received: 16 November 2017; Accepted: 19 December 2017; Published: 1 January 2018

Abstract: As an advanced control method that could bring extra inertia and damping characteristics
to inverter-based distributed generators, the virtual synchronous generator (VSG) has recently drawn
considerable attention. VSGs are expected to enhance the frequency regulation capability of the local
power grid, especially the AC microgrid in island mode. However, the cost of that performance
promotion is potential instability. In this paper, the unstable phenomena of the islanded microgrid
dominated by SGs and distributed generators (DSs) are addressed after mathematical modeling and
detailed eigenvalue analyses respectively. The influence of VSG key parameters, e.g., virtual inertia,
damping factor, and droop coefficient on system stability is investigated, and the corresponding
mathematical calculation method of unstable region is obtained. The theoretical analysis is well
supported by time domain simulation results. The predicted frequency oscillation suggests the
consideration of stability constrain during the VSG parameters design procedure.

Keywords: microgrid; island; virtual synchronous generator (VSG); stability; parameters design

1. Introduction

In order to solve environmental problems and energy crisis, distributed generators (DGs) with
renewable energy sources (RES), e.g., photovoltaic and wind turbines have been quickly developed.
The installed capacities of wind power, solar power, and hydropower in China reached 338 GW,
154 GW, and 102 GW halfway through 2017 [1]. In European countries, U.S.A, Japan and India,
significant targets have also been considered for using DGs and renewable energy sources over the
next two decades [2].

The microgrid is one of the main forms for DGs connecting to the grid. A microgrid typically
consists of DGs, energy storage units, and distributed loads that may operate in grid-connected mode
or in island mode [3]. Frequency regulation and system stability are becoming the main concern
for microgrid operation [4,5]. In grid-connected mode, both the frequency and voltage magnitude
are mainly determined by the main grid. In island mode, frequency and voltage magnitude at all
locations within the microgrid have to be maintained at acceptable limits. The conventional enormous
synchronous generators (SGs) are capable of injecting the kinetic potential energy preserved in their
rotating parts to the power grid in the case of disturbances or sudden changes [6]. But unlike the
SGs, the power electronic interfaced DGs show different characteristics. The grid-connected power
electronic inverters are usually needed to regulate the power forms that the DGs primary generate,
and the inverters employing popular current source control methods provide less inertia and damping
than conventional SGs to the power grid. Hence, they are unable to contribute to the improvement of
system stability.
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The solution can be found in the control scheme of a grid-tie inverter. By controlling the switching
pattern of an inverter, it can emulate the behavior of a real SG. To introduce the “sync” mechanism
of SGs to inverters, some scholars have proposed the virtual synchronous generator (VSG), which
enables inverters to mimic not only the steady-state characteristics of SGs, but also their transient
characteristics by applying a swing equation to enhance the inertia [7–14]. VSG has draws much
attention in recent years. In China, the Chinese Southern Power Grid has successfully developed
its first VSG-based energy storage equipment, which has been put into operation in Guangdong
Grid. Furthermore, in 27 December 2016, the worldwide largest VSG exemplary project was put into
experimental operation in Hebei North Power Grid [15]. There are 24 photovoltaic VSGs and five
wind power VSGs, with a total capacity of 22 GW, connected to the grid. This project will reduce the
frequency fluctuation of the microgrid caused by the DG output power variation and enhance the
security and stability of Hebei North Power Grid [16].

In the past decade, a few research works have been published about the characteristics and
implementation of the VSG. By comparing with the traditional droop control using small-signal
method, literature [17] illustrates the effects of virtual inertia and damping constant during the
transient and steady states. However, no implementation method is discussed. In [18], two different
VSG implementation ways are introduced and compared detailed in terms of the droop and damping
constants. However, the determination of the primary parameters, e.g., virtual inertia and damping
constant, is still needed to be researched. A step-by-step method based on the small-signal model is
proposed in [8], which provides a good reference to design the parameters of VSG. Literature [6,19–22]
pointed out that VSG control has an advantage in that its swing equation parameters can be adopted
in real time to obtain a faster and more stable operation. However, the references above focused on
improvement of transient performance. The stability region has rarely been discussed.

It is worth noting that as the penetration of DGs increases in the system, especially in an islanded
microgrid, the system dominated by synchronous generators or DGs where the VSG connects should
no longer be seen as stiff. Therefore, defining the unstable region of this kind of system is of great
importance to promote the practical implementation of VSG and the accommodated capacity for
DGs of the power grid. In this paper, the unstable region of the islanded AC microgrid with VSG is
investigated, to guide the choices of virtual inertia and damping constant.

This paper is organized as follows. In Section 2, the mathematical models of VSGs and SG are
illustrated in detail. In Section 3, the equivalent models of microgrid are built and analyzed, for
both the SG dominated island mode and the DG dominated island mode. In Section 4, the stable
constraints of the two systems are investigated respectively, and the unstable region is carefully
depicted. The identified unstable region and stable control method are verified by detailed simulation
results in Section 5.

2. Basic Operation Principle of the Systems

Microgrid has become a popular way to integrate DGs to the grid in low and medium voltage
distribution networks. A typical microgrid system includes a small gas turbine, wind turbine,
photovoltaic arrays, energy storage system, and different kinds of loads. The interface between
DGs and the grid is usually a converter, which exhibits different characteristics under different
control methods. This paper focuses on the two kinds of islanded microgrids, SG-dominated islanded
microgrid and DG-dominated islanded microgrid. In this section, the equivalent schematic diagrams
for the two systems are presented in Figure 1a,b respectively. The mathematical models of VSGs and
SG are then built.

Figure 1a shows the typical system structure of a SG-dominated microgrid operating in islanded
mode. In this system, synchronous generators have a high proportion and undertake the important
task of primary frequency regulation. In this paper, the whole dominant part is taken as a synchronous
generator and marked as “SG”. The non-dominant, single distributed generator, like photovoltaics,
employing an energy storage system (ESS) and adopted by VSG control, is taken as a VSG unit and
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marked as “VSG”. Considering that if “VSG” participates in primary frequency regulation, the ESS
capacity will depleted quickly when the system steady-state frequency is deviant from the reference.
Therefore, “VSG” without primary frequency regulation is discussed in this paper. The cases when
VSG participates in primary frequency regulation can be considered in the future work.
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Figure 1. A typical microgrid with VSG: (a) System 1: synchronous generator (SG)-dominated islanded
microgrid; (b) System 2: distributed generator (DG)-dominated islanded microgrid.

As shown in Figure 1a,
→
E1 is the terminal voltage of VSG.

→
E2 is the terminal voltage of SG.

→
U is

the voltage of the point of common coupling (PCC). R1 and X1 are the line resistance and reactance

in the VSG side. R2 and X2 are the line resistance and reactance in the SG side.
→
I g1 and

→
I g2 are the

output currents.
Figure 1b shows the typical system structure of a DG-dominated microgrid operating in islanded

mode. This system is mainly composed of distributed generators adopting VSG controls, like wind
power, photovoltaic etc. The dominant distributed part mimics the characteristics of real synchronous
generators and undertakes the task of primary frequency regulation, which is taken as a VSG unit and
marked as “VSG2”. The non-dominant distributed generator is marked as “VSG1”. Similarly “VSG1”
does not participate in primary frequency regulation.

As shown in Figure 1b,
→
E1 is the terminal voltage of VSG1.

→
E2 is the terminal voltage of VSG2.

→
U is the voltage of point of common coupling (PCC). R1 and X1 are the line resistance and reactance

in VSG1 side. R2 and X2 are the line resistance and reactance in VSG2 side.
→
I g1 and

→
I g2 are the

output currents.
According to different simplified methods for the synchronous generator, there are different ways

of modeling the VSG. In this paper, the commonly used second mathematical model of VSG was
chosen as research object. Meanwhile, the dynamic changes of inner loop and DC side were neglected.

System 1 represents the SG dominated islanded microgrid. System 2 represents the DG dominated
islanded microgrid. In system 1 and system 2, the primary frequency regulation is taken by “SG”
and “VSG2” respectively. “VSG” in system 1 and “VSG1” in system 2 have no primary frequency
regulation capability.

Figure 2 shows the basic control system of VSG control without primary frequency regulation.
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Figure 2. Basic control systems of VSG and VSG1 without primary frequency control.

The swing equation in the dashed block “VSG control” in Figure 2 can be written as:

2H
dω∗

dt
= P∗m − P∗e − D(ω∗ −ω∗g) (1)

where Pm is the virtual mechanical power, Pe is the measured output active power, H is the virtual
inertia constant, D is the virtual damping coefficient, ω is the virtual rotor angular frequency, ωg is the
angular frequency of the point where the voltage sensor is installed, and ω0 is the nominal angular
frequency. An asterisk (*) suggests the parameter is in p.u.

Figure 3 shows the simplified model of the SG turbine governing system. The swing equation of
SG can be expressed as:

2H
dω∗

dt
= P∗m − P∗e − D(ω∗ −ω∗0 ) (2)

P∗m = P∗0 − Kd1(ω
∗ −ω∗0 ) (3)

where Kd1 is the primary control coefficient of SG.
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Figure 3. Simplified model of the SG turbine governing system.

Figure 4 shows the basic control system of VSG2 which has the capability of primary frequency
control. DGs employing this control can imitate the characteristics of SGs governing system.
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The VSG controller can be represented as:

2H
dω∗

dt
= Kd2(ω

∗
0 −ω∗g) + P∗0 − P∗e − D(ω∗ −ω∗g) (4)

where Kd2 is the droop control coefficient of VSG2.

3. Mathematical Model of the Microgrids

This section focuses on the mathematic models of the two systems discussed in Section 2.
The responses of frequency and output active power during a load step change are analyzed.
The corresponding transfer functions are then deduced.

3.1. System 1: SG-Dominated Islanded Microgrid

For system 1, the output current of VSG can be derived as:

.
I =

E∠δ−U
Z∠α

(5)

where impedance Z =
√

R2 + X2.
Thus the output apparent power of VSG can be conducted as follows:

S1 = U
.
I

= E1U∠(−δ1)−U2

Z1∠(−α1)

= E1U
Z1

cos(α1 − δ1) + j E1U
Z1

sin(α1 − δ1)− U2

Z1
cos α1 − j U2

Z1
sin α1

= Pe1 + jQe1

(6)

where superscript “–” here indicates conjugate operation of the element, and impedance angle
α = tan−1(X/R). Pe1 is the output active power. Qe1 is the output reactive power. It can be concluded
from Equation (6) that:  Pe1 = E1U cos(α1−δ1)

Z1
− U2 cos α1

Z1

Qe1 = E1U sin(α1−δ1)
Z1

− U2 sin α1
Z1

(7)

Thus Equation (8) can be deduced as:

∆P∗e1(s) =
E1U
SbZ1

sin(α1 − δ1)∆δ(s) (8)

Let SE = EUsin(α − δ)/SnZ. SE is the synchronizing power coefficient. According to Equation (8),

∆δ1 =
1

SE
∆P∗e1 (9)

Knowing that:

∆δ1 =
1
s

ω0(∆ω∗1 − ∆ω∗bus) (10)

ωbus is the angular frequency of PCC. If Xf >> X1:

∆ω∗g ≈ ∆ω∗bus (11)

From (1) and (8)–(11), the transfer function for VSG can be obtained as:

kVSG =
∆P∗e1
∆ω∗g

= − 2H1ω0SE1s
2H1s2 + D1s + ω0SE1

(12)
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The same derivation as (12) holds for SG:

kSG =
∆P∗e2
∆ω∗g

= − (2H2s + Kd1 + D2)ω0SE2

2H2s2 + (Kd1 + D2)s + ω0SE2
(13)

From the law of conservation of energy:

∆P∗e1 + ∆P∗e2 = ∆P∗load (14)

Applying (12) and (13) to (14), we have:

∆ω∗g =
∆P∗load

kVSG + kSG
(15)

and:
∆P∗e1

∆P∗load
=

kVSG
kVSG + kSG

(16)

Applying (12) and (13) to (16):

∆Pe1
∗

∆Pload
∗

= 4H1 H2ω0SE1s3+(2H1Kd1ω0SE1+2H1D2ω0SE1)s2+2H1ω0
2SE1SE2s

4H1 H2ω0(SE1+SE2)s3+(2H1Kd1ω0(SE1+SE2)+2H1D2ω0(SE1+SE2)+2H2D1ω0SE2)s2+(D1Kd1ω0SE2+2(H1+H2)ω0
2SE1SE2+D1D2ω0SE2)s+(Kd1+D2)ω0

2SE1SE2

(17)

Eliminating ∆δ1 from Equations (9)–(11):

∆ω∗1 =
s

ω0SE1
∆P∗

e1
+ ∆ω∗g (18)

Applying (16) to (18):
∆ω∗

1

∆P∗
load

=
kVSGs + ω0SE1

(kVSG + kSG)ω0SE1
(19)

Applying (12) and (13) to (19):

∆ω1
∗

∆Pload
∗ =

− 2H2D1s3+(2H2ω0SE1+Kd1D1+D1D2)s2+(Kd1ω0SE1+D2ω0SE1+D1ω0SE2)s+ω0
2SE1SE2

4H1 H2ω0(SE1+SE2)s3+(2H1Kd1ω0(SE1+SE2)+2H1D2ω0(SE1+SE2)+2H2D1ω0SE2)s2+(2(H1+H2)ω0
2SE1SE2+D1Kd1ω0SE2+D1D2ω0SE2)s+(Kd1+D2)ω0

2SE1SE2

(20)

3.2. System 2: DG-Dominated Islanded Microgrid

For system 2, Equations (21) and (22) can be obtained by the same derivation:

kVSG1 =
∆P∗e1
∆ω∗g

= − 2H1ω0SE1s
2H1s2 + D1s + ω0SE1

(21)

kVSG2 =
∆P∗e2
∆ω∗g

= − (2H2s + Kd2)ω0SE2

2H2s2 + D2s + ω0SE2
(22)

Transfer function of output active power and frequency during a load transition can be constructed
as follows:

∆P∗e1
∆P∗load

=
kVSG1

kVSG1 + kVSG2
(23)

∆ω∗
1

∆P∗
load

=
kVSG1s + ω0SE1

(kVSG1 + kVSG2)ω0SE1
(24)
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Applying (21) and (22) to (23):

∆Pe1
∗

∆Pload
∗ =

4H1 H2ω0SE1s3+(2H1D2ω0SE1)s2+2H1ω0
2SE1SE2s

(4H1 H2ω0SE1+4H1 H2ω0SE2)s3+(2H1Kd2ω0SE2+2H1D2ω0SE1+2H2D1ω0SE2)s2+(Kd2D1ω0SE2+2H1ω0
2SE1SE2+2H2ω0

2SE1SE2)s+Kd2ω0
2SE1SE2

(25)

Applying (21) and (22) to (24):

∆ω1
∆Pload

=

− 2H2D1s3+(2H2ω0SE1+D1D2)s2+(D2ω0SE1+D1ω0SE2)s+ω0
2SE1SE2

(4H1 H2ω0SE1+4H1 H2ω0SE2)s3+(2H1Kd2ω0SE2+2H1D2ω0SE1+2H2D1ω0SE2)s2+(D1Kd2ω0SE2+2H1ω0
2SE1SE2+2H2ω0

2SE1SE2)s+Kd2ω0
2SE1SE2

(26)

4. Stability and Parameter Sensitivity Analysis

4.1. System 1: SG-Dominated Islanded Microgrid

The dynamics of system 1 is governed by the following three-order characteristic equation:

ax3 + bx2 + cx + d = 0 (27)

where:
a = 4H1H2ω0(SE1 + SE2) (28)

b = 2H1Kd1ω0(SE1 + SE2) + 2H1D2ω0(SE1 + SE2) + 2H2D1ω0SE2 (29)

c = D1Kd1ω0SE2 + 2(H1 + H2)ω0
2SE1SE2 + D1D2ω0SE2 (30)

d = (Kd1 + D2)ω0
2SE1SE2 (31)

Correspondingly, there are three eigenvalues.
For simplification, let:

y = x +
b

3a
(32)

p =
c
a
− b2

3a2 (33)

q =
d
a
+

2b3

27a3 −
bc

3a2 (34)

Equation (27) can be transformed into:

y3 + py + q = 0 (35)

According to the Cardan’s formula on cubic equation, we can get:

y1 =
3

√
− q

2
+

√
(

q
2
)

2
+ (

p
3
)

3
+

3

√
− q

2
−

√
(

q
2
)

2
+ (

p
3
)

3
(36)

y2 = λ
3

√
− q

2
+

√
(

q
2
)

2
+ (

p
3
)

3
+ λ2 3

√
− q

2
−

√
(

q
2
)

2
+ (

p
3
)

3
(37)

y3 = λ2 3

√
− q

2
+

√
(

q
2
)

2
+ (

p
3
)

3
+ λ

3

√
− q

2
−

√
(

q
2
)

2
+ (

p
3
)

3
(38)

where:

λ =
−1 +

√
3i

2
(39)
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Thus the roots of (27) can be deduced as:
x1 = n1 + n2 − b

3a

x2 = − 1
2 (n1 + n2) +

√
3

2 (n1 − n2)i− b
3a

x3 = − 1
2 (n1 + n2)−

√
3

2 (n1 − n2)i− b
3a

(40)

where:

n1 = 3

√
− q

2
+
√

M (41)

n2 = 3

√
− q

2
−
√

M (42)

M = (
q
2
)

2
+ (

p
3
)

3
(43)

Parameters of system 1 are shown in Table 1. When Qref = 0 kVar, SE1 and SE2 can be calculated as
4.628 and 3.0865. And during the transient process, SE1 and SE2 are considered constant.

Figure 5 shows the variation range of M when H1, H2, D1, D2, Kd1 changes. H1 is the virtual
inertia time constant of VSG. H2 is the virtual inertia time constant of SG. The “s” in brackets represent
“second”, which is the unit of virtual inertia time constant, H. D1 is the damping coefficient of VSG.
D2 is the damping coefficient of SG. Kd1 is the primary frequency regulation coefficient.

Therefore, if M > 0, according to (41) and (42), n1 and n2 are real and unequal. Then from (40), the
imaginary parts of both x2 and x3 are none zero, which means there are two conjugate roots among
the three eigenvalues. If M = 0, according to (41) and (42), n1 and n2 are real and equal. Then from
(40), imaginary parts of both x2 and x3 are zero, which means the three eigenvalues are all real and
x2 equal to x3. Under these circumstances, the real component of the conjugated eigenvalues can be
calculated as:

P = −1
2
(n1 + n2)−

b
3a

(44)

It can be concluded from Figure 5 that, as the parameters H1, H2, D1, D2, Kd1 vary, M remains
greater than or equal to 0, which makes the eigenvalues conjugate. When H2, D1, D2, Kd1 are chosen as
Table 1, the cross-section curve of the surface on H1-M plane is presented in Figure 5e.

Figure 6 shows the variation of the real root, x1, when parameters H1, H2, D1, D2, Kd1 change.
x1 keeps negative under these circumstances. The cross-section curve of the surface on H1-x1 plane
when H2, D1, D2, Kd1 are chosen as Table 1 is presented in Figure 6e.
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Figure 7 shows the variation of the real part of the conjugated eigenvalues, P, when parameters
H1, H2, D1, D2, Kd1 change. It can be seen that P keeps negative under these circumstances, which
makes the conjugate eigenvalues distribute on the left side of imaginary axis. Cross-section curve of
the surface on H1-P plane when H2, D1, D2, Kd1 are chosen as Table 1 is presented in Figure 7e.

It can be concluded from Figures 5–7 that the three eigenvalues will always distribute on the left
side of the imaginary axis when the system parameters are varying in the reasonable range.

Figure 8 shows the root locus of system 1 when H1 changes. When H1 increases, the conjugate
complex eigenvalues will approach the imaginary axis, which will result in deterioration of system
stability. The eigenvalues will go away from imaginary axis when H1 keeps increasing.
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The above analyses indicate that the system will keep stable.

4.2. System 2: DG-Dominated Islanded Microgrid

The dynamics of the system 2 is governed by the following three-order characteristic equation:

ax3 + bx2 + cx + d = 0 (45)

where:
a = 4H1H2ω0SE1 + 4H1H2ω0SE2 (46)

b = 2H1Kd2ω0SE2 + 2H1D2ω0SE1 + 2H2D1ω0SE2 (47)
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c = Kd2D1ω0SE2 + 2H1ω0
2SE1SE2 + 2H2ω0

2SE1SE2 (48)

d = Kd2ω0
2SE1SE2 (49)

The same derivation as (32)–(44) holds for system 2.
The parameters of system 2 are shown in Table 2. H1 is the virtual inertia time constant of VSG1.

H2 is the virtual inertia time constant of VSG2. The “s” in brackets represent “second”, which is the
unit of virtual inertia time constant, H. D1 is the damping coefficient of VSG1. D2 is the damping
coefficient of VSG2. Kd2 is the primary frequency regulation coefficient.

Figure 9 shows the variation of M when parameters H1, H2, D1, D2, Kd2 change, from which
we can see that M maintains positive. Figure 10 shows the variation of the real root, x1, which can
also keeps positive under these circumstances. However as we can see in Figure 11, the real part of
conjugate eigenvalues, P, will transcend the z = 0 axis, which means that the conjugate eigenvalues
will distribute on the right side of the complex plane in some cases.
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Similar conclusions can be drawn by the root locus shown in Figure 12. As H1 increases, the
conjugate complex roots are approaching to the imaginary axis. Continuously increasing H1 will cause
the roots crossing the imaginary axis and lead the system instable. If further increasing H1, the roots
will go back to the left side of imaginary axis, in which cases the system can maintain stable again.
This implies that there exists an unstable region for DG dominated islanded microgrid. The stable
constraints can be calculated by the Routh Criterion.
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According to the Routh Criterion, the system will remain stable if only the following
inequality holds:

(D2Kd1ω0SE1 + Kd2D1ω0SE2 + 2H1ω0
2SE1SE2 + 2H2ω0

2SE1SE2) ∗ (2H2Kd1ω0SE1 + 2H1Kd2ω0SE2

+ 2H1D2ω0SE1 + 2H2D1ω0SE2)− (4H1H2ω0SE1 + 4H1H2ω0SE2)(Kd2 + Kd1)ω0
2SE1SE2 > 0

(50)

Thus, the stable region of H1 can be calculated as:

H1 <
−B−

√
B2 − 4BC

2A
(51)

or:

H1 >
−B +

√
B2 − 4AC

2A
(52)

where:
A = 4ω0

3SE1SE2(Kd2SE2 + D2SE1) (53)

B = 2D1Kd2
2ω0

2SE2
2 + 2D1D2Kd2ω0

2SE1SE2 + 4H2D2ω0
3SE1

2SE2 + 4H2D1ω0
3SE1SE2

2 − 4Kd2H2ω0
3SE1

2SE2 (54)

C = (Kd2D1ω0SE2 + 2H2ω0
2SE1SE2) ∗ 2H2D1ω0SE2 (55)

The stable constraints of H1 can be written as:

Hmin =
−B−

√
B2 − 4AC

2A
(56)

Hmax =
−B +

√
B2 − 4AC

2A
(57)

Figure 13 shows the range of Hmin and Hmax when H2, D1, D2 and Kd2 changes. According to
Figure 13a, the increased D1 decreases both the upper limit Hmax and the lower limit Hmin. Larger
D1 makes smaller instable regions. Figure 13b shows a similar influence of D2 as D1. It can also be
seen from Figure 13c that both Hmax and Hmin are increased if H2 is raised. Increased H2 enlarges
the unstable region. Figure 13d shows that larger Kd2 will decrease Hmin but increase Hmax, and thus
makes a larger unstable region.

It can be seen from Figure 13 that the stable constraints are significantly affected by the system
parameters. For example, increasing H1 from 0.06 (point A (5,0.06)) to 3 (point B (5,3)), and then to 9
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(point C (5,9)), the system will go through an unstable region (Figure 13c). As a result, to maintain the
stability of the microgrid, the constraints should be taken into account.Energies 2018, 11, 44  14 of 19 

 

 
(a) (b) 

 
(c) (d) 

Figure 13. The unstable constraints of H1: (a) The stable constraints when D1 changes; (b) The stable 
constraints when D2 changes; (c) The stable constraints when H2 changes; (d) The stable constraints 
when Kd2 changes. 

It can be seen from Figure 13 that the stable constraints are significantly affected by the system 
parameters. For example, increasing H1 from 0.06 (point A (5,0.06)) to 3 (point B (5,3)), and then to 9 
(point C (5,9)), the system will go through an unstable region(Figure 13c). As a result, to maintain the 
stability of the microgrid, the constraints should be taken into account. 

Table 1. Parameters of system 1. 

Parameter Value Parameter Value
capacity reference, Sb 10 kVA Voltage reference, Ub 0.3102 kV 

SVSG 0.25 (p.u.) SSG 1 (p.u.) 
Udc_VSG 0.8 kV USG(L_L) 0.38 kV 

HSG 5 s DSG 2 (p.u.) 
Droop coefficient of P-V, KVSG 0.1 VSGvirtual impedance, Xx 0.2 (p.u.) 
Line resistancein VSG side, R1 0.0042 (p.u.) Line resistancein SG side, R2 0.0062 (p.u.) 
Line reactancein VSG side, X1 0.01327 (p.u.) Line reactancein SG side, X2 0.0198 (p.u.) 

SG direct-axis armature reactance, Xd 0.3 (p.u.) 
SG quadrature-axis armature 

reactance, Xq 
0.3 (p.u.) 

SGdroop control coefficient, Kd1 25 ωref 314 rad/s 
Pref_VSG 0.25 (p.u.) Pref_SG 1 (p.u.) 
Qref_VSG 0 Qref_SG 0 

Filter resistor, Rf 0.037 Ω Filter inductance, Lf 3.1 mH 
Filter capacitor, Cf 8.17 μF   

Table 2. Parameters of system 2. 

Parameter Value Parameter Value
Capacity reference, Sb 10 kVA Voltage reference, Ub 0.3102 kV 

SVSG1 1 (p.u.) SVSG2 1 (p.u.) 
Udc_VSG1 0.8 kV Udc_VSG2 0.8 kV 
HVSG2 5 s DVSG2 2 

VSG1 droop coefficient of P-V, KVSG1 0.1 
VSG2 droop coefficient of P-V, 

KVSG2 
0.1 

VSG1 virtual impedance, Xx1 0.2 (p.u.) VSG2 virtual impedance, Xx2 0.3 (p.u.) 
Line resistance in VSG1 side, R1 0.0062 (p.u.) Line resistance in VSG2 side, R2 0.0062 (p.u.) 

Figure 13. The unstable constraints of H1: (a) The stable constraints when D1 changes; (b) The stable
constraints when D2 changes; (c) The stable constraints when H2 changes; (d) The stable constraints
when Kd2 changes.

Table 1. Parameters of system 1.

Parameter Value Parameter Value

capacity reference, Sb 10 kVA Voltage reference, Ub 0.3102 kV
SVSG 0.25 (p.u.) SSG 1 (p.u.)

Udc_VSG 0.8 kV USG(L_L) 0.38 kV
HSG 5 s DSG 2 (p.u.)

Droop coefficient of P-V, KVSG 0.1 VSGvirtual impedance, Xx 0.2 (p.u.)
Line resistancein VSG side, R1 0.0042 (p.u.) Line resistancein SG side, R2 0.0062 (p.u.)
Line reactancein VSG side, X1 0.01327 (p.u.) Line reactancein SG side, X2 0.0198 (p.u.)

SG direct-axis armature
reactance, Xd

0.3 (p.u.) SG quadrature-axis armature
reactance, Xq

0.3 (p.u.)

SGdroop control coefficient,
Kd1

25 ωref 314 rad/s

Pref_VSG 0.25 (p.u.) Pref_SG 1 (p.u.)
Qref_VSG 0 Qref_SG 0

Filter resistor, Rf 0.037 Ω Filter inductance, Lf 3.1 mH
Filter capacitor, Cf 8.17 µF

Table 2. Parameters of system 2.

Parameter Value Parameter Value

Capacity reference, Sb 10 kVA Voltage reference, Ub 0.3102 kV
SVSG1 1 (p.u.) SVSG2 1 (p.u.)

Udc_VSG1 0.8 kV Udc_VSG2 0.8 kV
HVSG2 5 s DVSG2 2

VSG1 droop coefficient of P-V, KVSG1 0.1 VSG2 droop coefficient of P-V, KVSG2 0.1
VSG1 virtual impedance, Xx1 0.2 (p.u.) VSG2 virtual impedance, Xx2 0.3 (p.u.)
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Table 2. Cont.

Parameter Value Parameter Value

Line resistance in VSG1 side, R1 0.0062 (p.u.) Line resistance in VSG2 side, R2 0.0062 (p.u.)
Line reactance in VSG1 side, X1 0.0198 (p.u.) Line reactance in VSG2 side, X2 0.0198 (p.u.)

VSG2 droop control coefficient, Kd2 25 ωref 314 rad/s
Pref_VSG1 0.25 (p.u.) Pref_VSG2 1 (p.u.)
Qref_VSG1 0 Qref_VSG2 0

Filter resistor of VSG1, Rf1 0.037 Ω Filter inductance of VSG1, Lf1 3.1 mH
Filter capacitor of VSG1, Cf1 8.17 µF Filter resistor of VSG2, Rf2 0.037 Ω

Filter inductance of VSG2, Lf2 3.1 mH Filter capacitor of VSG2, Cf2 8.17 µF

5. Simulation Analysis

The above ideas have been verified by simulations in this section. Simulation circuits of system 1
and system 2 are shown in Figure 14a,b. Simulations are carried out when load steps down to verify the
theoretical analysis. The parameters of the two systems are shown in Tables 1 and 2, respectively. The
simulation was carried out in PSCAD/EMTDC. Switching frequency was set at 10 kHz and solution
time step was set at 1 µs.
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5.1. System Performance Simulation

In Figures 15 and 16, the two systems were initially working in steady state. When load stepped
down from 1.25 p.u. to 1 p.u. at t = 3 s, the output powers of VSG in system 1 and VSG1 in
system 2 decreased and the frequencies increased correspondingly. Moreover, we could see from
Figures 17 and 18 that during the transient process, the simulation results (black lines) coincided
with corresponding theoretical results (red lines). These results verify the small-signal models of
the two systems. And it can be noticed that the SG-dominated system shows smaller fluctuations in
dynamical behaviors.
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5.2. Stability of the Two Systems

When the virtual inertia time constant H takes different values, the comparison of the two systems
is carried out in this part. The load steps at t = 2 s, and other parameters are set up as shown in
Tables 1 and 2. The three values of H1 correspond to the point A, B and C shown in Figure 13c,
respectively. When adopting different H1, the transient responses of the output active power deviation
and the frequency deviation of VSG in system 1 and VSG1 in system 2 are shown in Figures 19 and 20.

It can be seen from Figure 19 that the virtual inertia H1 influences the dynamical behaviors but
has no affect on the final stable state. However, completely different results for system 2 are shown in
Figure 20. As shown in Figure 20a,b, if operating at point A, where H1 = 0.06, the system remains stable
when small load disturbance occurs. In Figure 20c,d increased H1 will cause the system to be unstable.
While, as shown in Figure 20e,f, the system will remain stable if H1 increases further. Compared to
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system 1, there is a slight fluctuation under steady state for system 2. The simulation results verify that
virtual inertia H1 shows different affects on the two systems. System 1 faces severer stability issues.
And the inappropriate H1 will cause the system to be unstable when facing small disturbances.
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6. Conclusions

This paper identifies the unstable region of islanded AC microgrids through detailed transient
stability analysis.

Firstly, this paper established the simplified models of two kinds of islanded AC microgrids,
SG-dominated islanded microgrids and DG-dominated islanded microgrid. Then, based on the models,
it was noted that compared to the SG-dominated islanded microgrids, there were potential stability
issues for DG-dominated islanded microgrids. Mathematical calculation methods were used to study
the unstable region, and the influences of key parameters on unstable constraints were discussed.
Finally, detailed simulation results verified the theoretical analysis. The identified unstable region
provided an important basis for the parameter tuning of VSG operating in an island microgrid.
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