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Abstract: Photovoltaic (PV) power station faults in the natural environment mainly occur in the
PV array, and the accurate fault diagnosis is of particular significance for the safe and efficient PV
power plant operation. The PV array’s electrical behavior characteristics under fault conditions is
analyzed in this paper, and a novel PV array fault diagnosis method is proposed based on fuzzy
C-mean (FCM) and fuzzy membership algorithms. Firstly, clustering analysis of PV array fault
samples is conducted using the FCM algorithm, indicating that there is a fixed relationship between
the distribution characteristics of cluster centers and the different fault, then the fault samples are
classified effectively. The membership degrees of all fault data and cluster centers are then determined
by the fuzzy membership algorithm for the final fault diagnosis. Simulation analysis indicated that
the diagnostic accuracy of the proposed method was 96%. Field experiments further verified the
correctness and effectiveness of the proposed method. In this paper, various types of fault distribution
features are effectively identified by the FCM algorithm, whether the PV array operation parameters
belong to the fault category is determined by fuzzy membership algorithm, and the advantage of the
proposed method is it can classify the fault data from normal operating data without foreknowledge.

Keywords: PV array; FCM algorithm; cluster analysis; fault diagnosis; membership algorithm

1. Introduction

The photovoltaic (PV) power plant works under a tough natural environment, and PV array faults
are complicated and various, seriously affecting safe-stable operation and economic benefits of the
power station in a very complex and dynamic manner. The DC monitor resolution available to PV
power plants has reached the PV array level. The resolution of certain smart PV power stations has even
reached the module level. There is critical significance in identifying and early warning for DC faults
using the PV module/output data array of the PV power station in regards to intelligent predictive
maintenance of the PV power plant and improving the overall operation level of the station [1].

The classification and diagnosis of PV array faults has become a popular research subject in recent
years. Model-based algorithms and intelligence-based algorithms have drawn increasing attentions
recently. Model-based and multivariable statistical monitoring methods are the common methods for
fault identification, for example, Stellbogen [2] compared actual and expected values through detection
equipment for fault analysis; however, they did not establish any method for setting thresholds between
them. The model using PCA and other multivariate statistical monitoring methods for fault diagnosis is
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difficult to establish [3]. Model-based fault diagnosis algorithms depend on the analysis and calculation
for the equivalent circuit models of PV array, and the modeling results will affect the results of diagnosis
results, but the difficulty of modelling of PV array restricts such methods. The problem of multivariable
statistical monitoring methods is that the selection and division of fault samples rely on human prior
knowledge. In addition, quite a few researchers presented applicable intelligent recognition algorithms
for PV array fault analysis and diagnosis. Karatepe et al. [4], Noguchi et al. [5], Chowdhury et al. [6],
Miyatake et al. [7] and Wang et al. [8] used a particle swarm intelligent algorithm and Fibonacci search
technique for PV array fault diagnosis. Zhong [9] and Cheng et al. [10] conducted PV array fault
detection by analyzing the function relationship of the parameters in the PV array system according
to data fusion, but this method mainly focuses on heat pot phenomena and neglects other relevant
factors. Chao et al. [11] identified PV array fault locations by processing the acquired power data and
environmental parameters via an intelligent learning technique. Xu et al. [12] proposed a PV array
fault location method based on a Gaussian process that is effective in its own regard, but not suitable
for fault detection in large-scale PV generation systems. Zhao et al. [13] used a decision tree algorithm
for PV array fault diagnosis, but this method is too dependent on the measured fault sample data to be
fully practical. Li et al. [14] proposed a neural network-based fault diagnosis technique that is similarly
disadvantaged by the difficulty in obtaining fault samples and training the fault model. Wang et al. [15]
established a back propagation (BP) neural network method, they analyzed and classified some faults
of PV array based on L-M algorithm. Some researchers expanded upon the using the support vector
machine (SVM) [16,17]. The SVM algorithm can realize the fault diagnosis using small amounts of
sample data set, but the accuracy of SVM algorithm still relies on classified of fault samples. Compared
with model algorithms, the intelligent-based algorithms can identify the faults types of PV array
without additional equipment and complicated calculation model, but the accuracy of algorithms
need better setting of the algorithms parameters and good classified sample data, which making
intelligent-based algorithms is of poor certainty and stability. The researchers have did lots work in
the classification of fault samples, despite these valuable contributions to the literature, there is yet no
technique for the scientific division of fault thresholds. Previous researchers have also had success
in combining neural network, SVM, cluster analysis, and other model recognition techniques with
fuzzy mathematics, rough set, data analysis, and other mathematical methods in identifying fault
thresholds and diagnosing various types of fault [16–19]. Krishnapuram and Keller [20] combined
the fuzzy clustering algorithm with the three-ratio method for reliable, accurate transformer fault
diagnosis. The FCM algorithm converges rapidly with relatively few training samples. Du W et al. [21]
successfully applied the FCM theory for analog circuit fault diagnosis. The FCM algorithm is easily
computed and quickly operated as-applied to fault diagnosis; it does not require a large labeled
sample. However, FCM algorithm sample typicality is not reflected in the constraint of membership
matrix U ∑c

j = 1 µik = 1 and the algorithm does not work well when there is large discrepancy among
multiple specimen classes. In the fuzzy case index, the cluster centers of various fault states are obtained
based on the FCM algorithm, however, how to make rules according to the clustering results, is a major
concern. Li et al. [22] used similarity computation based on the membership function to secure fuzzy
numbers and fuzzy linguistics for calculating global similarity weights; this process allows for quick
and efficient case retrieval on different types of demand. In short: the membership function algorithm
can effectively distinguish different categories quantitatively. Although fuzzy theory and its related
technologies have been widely used in fault diagnosis, there has been little research on their application
in PV arrays. During PV array fault diagnosis, there is complex randomness and uncertainty between
the causes and external characteristics of different types of fault as well as significant differences among
various samples. Therefore, the combination of FCM algorithm and fuzzy membership algorithm
provides research ideas for division and identification of the PV fault samples. The combination of
FCM and fuzzy membership algorithm has the following advantages: the FCM algorithm requires
little computation and can be quickly operated to classify fault samples. The membership algorithm
can be used to distinguish the influence degree of fault classifications based on a wide variety of data;
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it classifies individual sample points to realize fault diagnosis. This paper presents a novel approach
to PV array fault diagnosis based on FCM and fuzzy membership algorithms. The randomness and
uncertainty of PV array fault characteristics are solved by the introduction of fuzzy theory, simulation
and experimental analyses demonstrate that the proposed method scientifically classifies fault sample
data for efficient, accurate PV array fault diagnosis.

This paper is organized as follows: Section 2 discusses the fault characteristics of PV arrays.
Section 3 provides an introduction to basic theories, principles, and application methods relevant to
the FCM algorithm and fuzzy membership algorithm for fault diagnosis. Section 4 reports simulation
tests and Section 5 reports experimental tests conducted to validate the proposed diagnosis method.
Section 6 provides concluding remarks.

2. Characteristics Analysis of Typical Faults in PV Arrays

2.1. Generation Mechanism of Typical Faults in PV Arrays

The actual operation of the PV power station is affected by multiple external factors such as
solar radiation intensity, temperature, humidity, dust, hail, and snow constituting a harsh (and highly
fault-prone) environment [23]. The PV array is an integral part of the PV system; its cost can account
for about 40% of the power system as a whole. In this paper, four common faults or abnormal condition
of the laboratory PV plant is studied respectively, which is configured as three parallel PV strings of
13 PV modules in series (regard this as the research object), as shown in Figure 1. Three common faults
of the PV array include the hot spot phenomenon (partial blockage), open circuits, or short circuiting
of the PV module caused by junction box error. Long-term shadow shadings and module mismatch
also accelerate the rate of degradation and introduce corresponding aging faults.
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Figure 1. Simulated faults in laboratory PV array.

For simplicity, six failure modes of the PV array are referred to in this paper: a one module short
circuit, two module short circuit, local shadow shading in one string group, local shadow shading in
two string groups, and one module open circuit. These modes are marked F1, F2, F3, F4, F5, and F6,
respectively. As shown in Table 1, based on typical fault mode of PV array set, the physics-based
mathematical model of the PV cell is established according to “Accurate model simulation research
on PV cells, modules and arrays” for different fault type [24]. The modeling results are shown in
Figure 2, where I-V and P-V curves describe the distribution characteristics of the PV array’s electrical
parameters under different fault conditions. The fault features are summarized in Table 1.
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Table 1. PV array fault features.

Fault Types Descriptions Electrical Characteristics

F1 Normal —
F2 One module shorted Current normal, voltage decreases
F3 Two modules shorted Current normal, voltage decreases
F4 One module shaded Current normal, voltage decreases
F5 Two modules shaded Current normal, voltage decreases
F6 One module opened No current, no voltage
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different fault conditions; (b) P-V curve under different fault conditions.

2.2. Fault Characteristic Parameter Selection

Changes in the PV array are similar under different fault modes and the same test conditions
(light intensity and temperature), as shown in the I-V and P-V curves in Figure 2. This suggests that it is
not feasible to diagnose fault in the PV array only by analyzing the I-V and P-V curves. Additional fault
parameters must be selected to describe the working conditions of the PV power system.

Changes in the electrical parameters under different fault conditions were determined as shown
in Figure 3 using the actual external environment input excitation simulation model.

As shown in Figure 3, under different fault conditions, the output characteristics of one or more
PV arrays change dramatically. To this effect, the output characteristics of the PV array may serve as
fault characteristic parameters under different fault states and environments: Uoc, Isc, Um, Im and Pm,
expressed as the form of the fault eigenvectors (Uoc, Isc, Um, Im, Pm) (the description of the parameters
is given in Table 2).

Table 2. Selected fault characteristic parameters.

Fault Parameters Name Descriptions

Uoc Open-circuit voltage of the array
Short-circuit fault caused the decline of Um, Uoc.Isc Short-circuit current of the array

Um Maximum power-point voltage of the array Open-circuit fault caused the decline of Isc, Im.
Im Maximum power-point current of the array

Pm Maximum power of the array Shadow fault caused the decline of Um, Im
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Figure 3. PV array electrical parameters change under different fault conditions, (a) Change in the
electrical parameter Uoc under different fault conditions; (b) Change in the electrical parameter Isc under
different fault conditions; (c) Change in the electrical parameter Um under different fault conditions;
(d) Change in the electrical parameter Im under different fault conditions; (e) Change in the electrical
parameter Pm under different fault conditions.

3. Basic Theories Supporting the Algorithm

3.1. Fuzzy C-Mean Clustering Algorithm

Fuzzy clustering is commonly applied within knowledge discovery, pattern recognition, and many
other research fields. The FCM algorithm is one of the most widely used and successful algorithms for
fuzzy clustering, which improves Hard C-mean clustering (HCM) algorithm, and represents the foundation
upon which other fuzzy clustering analysis methods have been developed in theory and application.

FCM is a classification method as well as a clustering algorithm. The membership degree of
individual sample points is obtained iteratively by optimizing the objective function. The class of
sample points is determined to achieve the automatic classification of sample data. As discussed above,
this method is commonly used in the fault diagnosis field [20].

Set up n data sample as X = |xi, i = 1, 2, . . . , n| = {x1, x2, . . . , xn}, divide n data vectors Xi
into a c fuzzy group, then calculate the c cluster center v = {v1, v2, . . . , vn}. This produces the minimum
value of objective functions. Next, determine the level of each data point belonging to each group
according to the membership degree, which is any value in the [0, 1] interval. The sum of membership
values of each sample point to each cluster center is 1. The following two principles must be satisfied:

µik ∈ [0, 1] (1)

c

∑
j = 1

µik = 1, i = 1, 2, · · · , n (2)
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The general form of FCM algorithm’s objective function Jb can be expressed as follows:

Jb(U, v) =
n

∑
i = 1

c

∑
k = 1

(
µ .

ik

)b
(dik)

2 (3)

where n is the number of samples, c (2 ≤ c ≤ n) is the number of cluster centers; µik is the membership
degree between sample xi and class Ak; dik is a Euclidean measurement distance between the i sample

xi and k central point, dik = d(xi − vk) =

√
∑m

j = 1

(
xij − vkj

)2
; m is the characteristic number of samples;

b is a weighted parameter ∞ in the range 1 ≤ b ≤ ∞.
The membership degree µik between the sample xi and class Ak is calculated as follows:

µik =
1

c
∑

j = 1
(

dik
dlk

)
2

b−1
(4)

Set up Ik =
{

i
∣∣2 ≤ c < n; di,k = 0

}
, for all i classes, i ∈ Ik, µik = 0. The cluster centers are

calculated as follows:

vi =

n
∑

k = 1
(µik)

bxkj

n
∑

k = 1
(µik)

b
(5)

We modify the cluster centers and membership repeatedly according to Equations (3) and (4).
When the algorithm converges, the cluster center and membership degree of each sample to each
class can be obtained successfully and the fuzzy clustering division is complete. The analysis shows
that FCM algorithm is a simple iteration process, the general steps of determining cluster center and
membership matrix based on the FCM algorithm [20,25] are as shown in Figure 4.
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The FCM algorithm converges rapidly with relatively few training samples; it can thus facilitate
fault diagnosis very efficiently. MATLAB software (R2015b) also provides a rich functions for the FCM
algorithm and is easily operable for fault diagnosis personnel [20].

3.2. Membership Function Algorithm Based on Fuzzy Normal Distribution

Fuzzy sets are completely described by their corresponding membership functions. In classical
sets, the membership degree between sets and elements can only be 0; in fuzzy sets, the membership
degree between sets and elements can be any value in the [0, 1] interval. It can thus be used to describe
the extent to which an element belongs to the concept in the domain U. The membership function is
the most fundamental concept of fuzzy mathematics as it quantizes the necessary fuzzy sets [26–28].

To define the fuzzy set, make sure that fuzzy subset A in the domain U encompasses the
characteristics of membership function µA and construct the following map:

µA : U → [0, 1] (6)

where µA is the membership function of the fuzzy subset; µA(x) is the membership degree of U to A,
which represents the degree of the element u belonging to its fuzzy subset A in the domain U with
continuous variables on a closed interval [0, 1]. The closer µA(x) is to 1, the greater the extent to which
u belongs to A. The closer µA(x) is to 0, the lesser the degree of u belonging to A.

For the fault diagnosis of PV array, the characteristic parameters change in a certain range,
PV array is under healthy conditions with these parameters in a certain scope, and PV array is under
faulty conditions while these parameters out the scope, so the typical normal distribution function
is selected to calculate membership degree between diagnosis samples and the cluster center in
the PV system to diagnose the PV array directly and clearly according to the membership degree.
Figure 5 shows the curve of Normal Distribution Membership Function. The membership function of
normal distribution-Gaussian function is used to calculate the membership degree of each parameter:

µ(x)= e−
(x−µ)2

2σ2 × 100% (7)

where µ(x) is the membership degree of the parameter x; µ is expected value of the distribution; σ is
the width of the Gaussian function.
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According to the Gaussian function characteristics, 99.73% of the area under the function curve is
within three standard deviations (3σ) of the expected value µ. In this paper, 6σ is used as the function
domain. The value of σ was obtained as follows:

σ =
µmax − µmin

6
(8)

where µmax, µmin are the maximum and minimum values of the parameters.
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3.3. Fault Diagnosis Based on FCM Algorithm and Fuzzy Membership Algorithm

The relationship between the fault category and the fault eigenvectors is established to improve
robustness of the fault diagnosis methods based on the FCM algorithm, considering the randomness
and uncertainty of the fault eigenvectors. The fuzzy membership algorithm (membership function
based on fuzzy normal distribution) is a distance algorithm. It is used to quantize fuzzy sets to
diagnose fault samples. By measuring the membership degree between fault samples and each fault
mode, the fault diagnosis is finished by fuzzy membership algorithms.

The purpose of this study, as stated above, was to establish a novel PV array fault diagnosis
technique based on the FCM clustering and fuzzy membership algorithms. The proposed method
effectively exploits the advantages of FCM (excellent classification ability) as well as the membership
function algorithm (excellent distance computing ability), improving the proposed method’s accuracy.
Firstly, the FCM clustering algorithm is used to conduct clustering analysis of PV array fault samples
and give the cluster centers of various fault states. Then, the fuzzy membership function is designed
and used to carry out the fault diagnosis of PV array. Figure 6 shows the fault diagnosis framework of
a PV array.

Energies 2018, 11, 238  8 of 21 

 

3.3. Fault Diagnosis Based on FCM Algorithm and Fuzzy Membership Algorithm 

The relationship between the fault category and the fault eigenvectors is established to improve 
robustness of the fault diagnosis methods based on the FCM algorithm, considering the randomness 
and uncertainty of the fault eigenvectors. The fuzzy membership algorithm (membership function 
based on fuzzy normal distribution) is a distance algorithm. It is used to quantize fuzzy sets to 
diagnose fault samples. By measuring the membership degree between fault samples and each fault 
mode, the fault diagnosis is finished by fuzzy membership algorithms. 

The purpose of this study, as stated above, was to establish a novel PV array fault diagnosis 
technique based on the FCM clustering and fuzzy membership algorithms. The proposed method 
effectively exploits the advantages of FCM (excellent classification ability) as well as the membership 
function algorithm (excellent distance computing ability), improving the proposed method's 
accuracy. Firstly, the FCM clustering algorithm is used to conduct clustering analysis of PV array 
fault samples and give the cluster centers of various fault states. Then, the fuzzy membership function 
is designed and used to carry out the fault diagnosis of PV array. Figure 6 shows the fault diagnosis 
framework of a PV array. 

 
Figure 6. Framework of proposed fault diagnosis technique. 

Figure 6. Framework of proposed fault diagnosis technique.



Energies 2018, 11, 238 9 of 21

Step 1: Several fault feature parameters are selected through fault analysis, and fault samples are
collected under various fault modes based on simulated (or measured) data, structure fault sample
matrix. The fault sample sets are obtained. Meanwhile, the clustering number is also obtained by the
types of the faults through fault analysis, which is set as the input parameter of the FCM algorithm.

Step 2: The FCM clustering algorithm is used to classify the selected fault samples. The optimal
cluster centers of various fault states are obtained by adjusting clustering number C and the fault data
sets are clustered under different fault types based on the FCM algorithm, which means that the fault
classification is complete. The data classification process based on FCM algorithm is that the FCM
classifies the existing fault data into several classes, comparable with established the number of fault
types, known as cluster centers. In the process, the changes of the fault characteristics caused the
changes of clustering center. When the new data was input, we can adjust some parameters of the
FCM algorithm to obtain the new clustering center based on the process shown in Figure 6.

Step 3: The membership function algorithm based on fuzzy normal distribution is used to
diagnose the faults using operation data, then calculate the degree of membership according to the
cluster centers obtained by step 2. By transforming the fuzzy membership function into the distance
function, it quantize the faults, calculate the membership degree of fault samples between each fault
mode and each cluster center to complete the diagnosis, then the total membership degree of each
failure mode is calculated via weighted mean method.

Step 4: The total membership degrees under various fault modes are sorted, then the largest
membership degree is selected as the fault state of the diagnosed sample. The fault diagnosis
is complete.

4. Simulation Study

4.1. Formation of Fault Sample Data Sets

To simulate fault characteristics in different light intensities and temperatures in a typical PV
system, an 3 × 13 PV array simulation model was built in MATLAB/Simulink (R2015b) as shown in
Figure 7.
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The irradiance of the model was set to range from 900 W/m2 and 1000 W/m2 and the temperature
from 25 ◦C and 45 ◦C to simulate six different fault modes of the PV module; each fault mode’s value



Energies 2018, 11, 238 10 of 21

of Uoc, Isc, Um, Im, Pm was obtained accordingly. Fault data samples under various fault modes were
collected through multiple cycles of simulation. In each fault mode, 15 sample data points were
randomly collected under different irradiation intensities to make a total of 90 data samples across
six fault modes constituting fault sample matrix X:

X = {x1,, x2, · · · , x90} (9)

4.2. FCM Algorithm Cluster Analysis

The selection of clustering number C for the FCM algorithm is very important. Generally,
C is significantly smaller than the total number of cluster samples, and clustering number C > 1.
Through the analysis of Section 2.2, PV array is taken as basic fault diagnosis units, and fault is
classified into six classes: a one module short circuit, two module short circuit, local shadow shading in
one string group, local shadow shading in two string groups, and one module open circuit. The number
of fault types equals to clustering number C of FCM algorithm. So the parameters of the FCM algorithm
(Equations (3) and (4)) include clustering number C = 6, weighted exponent m = 2, maximum iteration
number L = 1000, and stopping iteration threshold ε = 10−5. The cluster centers of six fault modes were
obtained using the FCM function as shown in Table 3. Each cluster center is the typical value of each
fault mode and can be plugged into the fault dictionary of the PV array diagnostic system.

Table 3. Clustering results of typical faults.

Fault Types Uoc/V Isc/A Um/V Im/A Pm/W

F1 Normal 426.4071 7.8172 333.4751 7.0820 2357.7497
F2 One module shorted 393.5892 7.8174 305.9612 7.1291 2176.4355
F3 Two modules shorted 360.7937 7.8170 281.5260 7.1009 1995.3092
F4 One module shaded 422.0471 7.8168 303.5406 7.1275 2159.3655
F5 Two modules shaded 417.7141 7.8159 276.3280 7.1116 1959.9594
F6 One module opened 0 0 0 0 0

The cluster center rules under different fault modes were quantified as shown in Table 4 according
to the initial diagnosis and cluster centers of six fault modes in the PV array system (Table 3).

Table 4. Cluster center rules under different fault modes.

Rules Input (Electrical Characteristic Parameters)
Fault Mode

F1 F2 F3 F4 F5 F6

R1
∆Uoc ≈ 32 V,

0 1 0 0 0 0∆Um ≈ 28 V,
∆Pm ≈ 185 W,

R2
∆Uoc ≈ 65 V,

0 0 1 0 0 0∆Um ≈ 52 V,
∆Pm ≈ 380 W,

R3
∆Uoc ≈ 4 V,

0 0 0 1 0 0∆Um ≈ 30 V,
∆Pm ≈ 200 W,

R4
∆Uoc ≈ 9 V,

0 0 0 0 1 0∆Um ≈ 58 V,
∆Pm ≈ 420 W,

R5 All the characteristic parameters are zero 0 0 0 0 0 1

Five rules correspond to the results in Table 4 in comparison against the normal operation state.
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(1) When the open-circuit voltage drops about 32 V, the maximum-power-point voltage drops
about 28 V and the maximum power drops 185 W. This is diagnosed as F2, i.e., one module
short-circuit fault.

(2) When the open-circuit voltage drops about 65 V, the maximum-power-point voltage drops
about 52 V and the maximum power drops 380 W. This is diagnosed as F3, i.e., two modules
short-circuit fault.

(3) When the open-circuit voltage drops about 4 V, the maximum-power-point voltage drops about
30 V and the maximum power drops 200 W; this is an F4, or one module shaded fault.

(4) When the open-circuit voltage drops about 9 V, the maximum-power-point voltage drops about
58 V and the maximum power drops 420 W; this is an F5, or two modules shaded fault.

(5) When all the characteristic parameters are zero the fault is an F6, or one module opened fault.

4.3. Fault Diagnosis Using Fuzzy Membership Algorithm

The cluster centers of the PV array diagnosis system (Table 3) can be combined with the fuzzy
membership function algorithm to calculate the membership degree between fault diagnosed samples
and their cluster centers for complete fault diagnosis of the PV array. As mentioned above, the larger
the membership degree, the more likely the diagnosis sample is to belong to the given fault state.

To apply the membership function algorithm based on fuzzy normal distribution to the PV
array fault diagnosis, select a sample randomly and obtain the diagnosed parameters: Uoc = 361.0858 V,
Isc = 7.7779 A, Um = 281.8601 V, Im = 7.0669 A, Pm = 1987.7488 W. According to the deviation theory
σ2 introduced in Section 2.2, calculate the standard deviation of five fault characteristic parameters,
then set up the membership function of the open-circuit voltage (Uoc), the short-circuit current
(Isc), the maximum-power-point voltage (Um), the maximum-power-point current(Im), and maximum
power (Pm): 

µ(U∞) = e−
(U∞−µU∞ )2

693.7701 × 100%

µ(Isc) = e−
(Isc−µIsc )

2

0.3716 × 100%

µ(Um) = e−
(Um−µUm )2

633.7355 × 100%

µ(Im) = e−
(Im−µIm )2

0.3639 × 100%

µ(Pm) = e−
(Pm−µPm )2

112202.4769 × 100%

(10)

Plug the parameters of the measured sample into Formula (10) to obtain the membership degree
of fault samples between each fault mode and each cluster center as shown in Table 5. The extent to
which PV power impacts each characteristic parameter is the same; the weighted total membership
degree in the last column of Table 5 is the average value of Uoc, Isc, Um, Im, Pm.

Table 5. Membership degree between fault sample and each cluster center.

Fault
Types

Uoc
Membership

Isc
Membership

Um
Membership

Im
Membership

Pm
Membership

Total
Membership

F1 4.55 × 10−6 0.991688 0.000223 0.998751 0.087140 0.415561
F2 0.047568 0.991603 0.159910 0.978920 0.530140 0.541628
F3 0.999754 0.991770 0.999648 0.993650 0.998982 0.996761
F4 2.22 × 10−5 0.991873 0.226865 0.980015 0.591565 0.558068
F5 9.66 × 10−5 0.992234 0.907935 0.989078 0.986329 0.775134
F6 5.8 × 10−164 3.9 × 10−142 1.3 × 10−109 6.3 × 10−120 2.59 × 10−31 5.18 × 10−32

Once the total membership degrees are sorted (Table 5), select the largest membership degree as
the fault state of the diagnosed sample. As shown in the last column of Table 5, µF3 > µF5 > µF4 > µF2 >
µF1 > µF6. Within the total membership degree sorting results, F4 two modules shorted fault comprises
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the largest proportion—that is, the diagnosed samples in the F4 fault state are consistent with the
preset fault type, indicating that the proposed fault diagnosis method is effective and accurate.

Next, the selected range of the sample irradiance was expanded to 700 W/m2 and 1000 W/m2

and 150 fault samples of the PV array were selected based on the proposed method. Only six fault
samples showed diagnostic errors out of the 150 sample. During actual diagnosis, some fault types are
easily misjudged which may cause some errors, due to the similarity of faults types. The error analysis
of fault samples is shown in Table 6. The diagnostic accuracy was 96%, effective, indicating that the
proposed method is also highly feasible.

Table 6. Error analysis of fault samples.

O
bt

ai
ne

d
C

la
ss

1
25 0 0 0 0 0 100.00%

16.67% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2
0 24 0 2 0 0 92.31%

0.00% 16.00% 0.00% 1.33% 0.00% 0.00% 7.69%

3
0 0 24 0 2 0 92.31%

0.00% 0.00% 16.00% 0.00% 1.33% 0.00% 7.69%

4
0 1 0 23 0 0 95.83%

0.00% 0.67% 0.00% 15.33% 0.00% 0.00% 4.17%

5
0 0 1 0 23 0 95.83%

0.00% 0.00% 0.67% 0.00% 15.33% 0.00% 4.17%

6
0 0 0 0 0 25 100.00%

0.00% 0.00% 0.00% 0.00% 0.00% 16.67% 0.00%
100.00% 96.00% 96.00% 92.00% 92.00% 100.00% 96.00%

0.00% 4.00% 4.00% 8.00% 8.00% 0.00% 4.00%
1 2 3 4 5 6

Actual Class
Table 6 gives the misdiagnosis rate of the fault samples. Among them, the correct number of diagnosed samples is
marked with green, the wrong number of diagnosed samples is marked with orange, the misdiagnosis rate of each
sample is marked with gray, and the misdiagnosis rate of all samples is marked with blue.

To verify the adaptability of the proposed method when a new fault was coming, a new fault
named F7 which six PV modules are shaded in one string is addressed. With a perfect scalability of
FCM algorithm, and the clustering number C is changed to 7, new cluster center is obtained, and the
faults types are identified by comparing the membership degree based on the fuzzy membership
function algorithm. Seven faults are re-simulated based on simulated PV array model established in
this paper, 175 fault samples of the PV array were selected based on the proposed method. And the
diagnostic accuracy was 96.6%. The result shows that the proposed method has a good scalability
and adaptability.

4.4. Comparison of Algorithm Performance

4.4.1. Comparison of Classification Algorithms

K-Means algorithm is popular as one of hard C-means (HCM) clustering algorithms. When the
data set and clustering number are given, K-Mean classifies the data into different clustering domain
iteratively according to specific distance function, and its membership degree can only be 0 or 1.
FCM algorithm is the improvement of HCM algorithm and extends HCM algorithm to a fuzzy case,
its membership degree can be any value in the [0, 1] interval. FCM algorithm is more suitable for
extraction of the fault feature and classification of the fault data in the course of PV array fault diagnosis.

In order to verify the performance of FCM algorithm, K-Means algorithm and FCM algorithm are
used for the classification of 6 types fault described in Table 1. Fifteen samples are given for each fault,
and the total number of fault samples is 90.

The clustering result of different algorithm is shown in Figure 8, which describes six fault states
of PV array fault modes. Figure 8a shows that there are mixings between different clustering result,
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and the clustering result of K-Means is not ideal. While Figure 8a shows the FCM clustering algorithm
can divide the data into six groups, and six types of fault data are aggregated in cluster center. For PV
array’s fault data classification, compared with the K-Means algorithm, the FCM algorithm can cluster
and classify the fault data accurately and effectively.
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Figure 8. Comparison of clustering results, (a) Clustering analysis results of six fault states based on
K-Means algorithm; (b) Clustering analysis results of six fault states based on FCM algorithm.

Table 7 shows the comparison of different algorithms by wrong classified number, running time
and accuracy. The running time of FCM algorithm is larger than the K-Means algorithm in, but the
clustering accuracy of FCM algorithm is much higher than the K-Means algorithm, which indicates
that the FCM algorithm has a better clustering performance.
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Table 7. The experimental comparison results of K-Means algorithm and FCM algorithm.

Clustering Methods Wrong Clustering Number Running Time/s Accuracy/%

K-Means 15 0.128001 83.3
FCM 8 0.46744 91.1

4.4.2. Comparison of Diagnostic Algorithms

As a typical intelligent-based fault diagnosis method, the BP neural network is widely applied in
the field of fault diagnosis, but its fault detection is mainly determined by its parameter setting and the
training data. In order to verify the performance of the proposed diagnostic method, the diagnostic
performance is compared between the BP neural network methods. The 90 fault samples describing
six typical fault types are selected for the training of BP neural network and the proposed method.
24 typical fault data samples are selected for the testing of different method. The results are shown
in Table 8. According to Table 8, the proposed method in this paper has one diagnosis error, and the
BP neural network diagnosis method has three diagnostic errors. The contrast analysis shows that
the proposed algorithm is more accurate the BP-based method. The reason for the low accuracy of BP
neural network diagnosis method is that the general neural network needs a large amount of fault
samples for the training process, but the sparsity of the fault samples in actual operation data leads to
the limitation of the neural network diagnosis method.
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Table 8. The comparison results of different fault diagnosis methods for testing samples.

Group Number F1 Membership F2 Membership F3 Membership F4 Membership F5 Membership F6 Membership Proposed Method BP Neural Network Actual Results

1 0.9979 0.9108 0.7259 0.9311 0.7903 2.7 × 10−11 F1 F1 F1
2 0.9867 0.8975 0.7172 0.9209 0.7833 4.8 × 10−11 F1 F1 F1
3 0.9906 0.9381 0.7577 0.9523 0.8161 2.3 × 10−11 F1 F1 F1
4 0.9931 0.8879 0.6947 0.9084 0.7638 6.4 × 10−12 F1 F1 F1
5 0.8938 0.9978 0.9167 0.9717 0.9067 4.1 × 10−10 F2 F2 F2
6 0.8913 0.9987 0.9241 0.9751 0.9169 6.7 × 10−10 F2 F2 F2
7 0.8746 0.9882 0.9267 0.9652 0.9173 1.4 × 10−9 F2 F2 F2
8 0.8486 0.9570 0.9011 0.9365 0.8936 2.9 × 10−9 F2 F1 F2
9 0.7138 0.9162 0.9993 0.8643 0.9131 9.9 × 10−9 F3 F3 F3
10 0.7078 0.9102 0.9989 0.8593 0.9149 1.4 × 10−8 F3 F3 F3
11 0.6863 0.8870 0.9864 0.8371 0.9014 2.8 × 10−8 F3 F3 F3
12 0.6562 0.8505 0.9512 0.8016 0.8665 5.4 × 10−8 F3 F3 F3
13 0.9240 0.9750 0.8635 0.9989 0.9309 5.4 × 10−10 F4 F4 F4
14 0.9187 0.9724 0.8685 0.9990 0.9377 8.8 × 10−10 F4 F4 F4
15 0.9004 0.9870 0.8686 0.9600 0.9366 1.8 × 10−9 F2 F2 F4
16 0.8699 0.9236 0.8390 0.9533 0.9082 3.9 × 10−9 F4 F4 F4
17 0.7683 0.8940 0.9081 0.9190 0.9959 2.0 × 10−8 F5 F5 F5
18 0.7905 0.9072 0.9102 0.9346 0.9915 2.7 × 10−8 F5 F4 F5
19 0.7503 0.8721 0.9007 0.8992 0.9896 5.2 × 10−8 F5 F5 F5
20 0.7274 0.8427 0.8728 0.8720 0.9617 9.1 × 10−8 F5 F5 F5
21 0.3269 0.3995 0.3437 0.3689 0.3318 0.6135 F6 F6 F6
22 0.3387 0.3995 0.3320 0.3794 0.3409 0.6117 F6 F6 F6
23 0.3657 0.3696 0.2711 0.3991 0.3529 0.6105 F6 F6 F6
24 0.3572 0.3697 0.2788 0.3997 0.3616 0.6181 F6 F6 F6
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4.5. Dynamic Attribute of the Algorithm

To illustrate the adaptability of the proposed method when transient faults come, a transient fault
is set up in PV array 1 based on the simulation model showed in Figure 6. The introduced transient
fault is a shadow fault occurs in PV array 1 within a period of time and other time is normal in a day.
The simulation conditions are described as Figure 9.
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Figure 9. The simulation of transient fault.

Table 9 shows the dynamic adaptability and diagnosis results of the proposed method for transient
fault. According to Figure 9, there are five status modes for different PV arrays: PV array 1 before the
failure, PV array 1 in the failure, PV array 1 after the failure, PV array 2 and PV array 3. These modes
are marked M1, M2, M3, M4 and M5, and the diagnosis results are shown in Table 9. Table 9 shows
that the proposed method can identify the unknown transient faults effectively, and the faults can be
classified according to the feature distribution of faults.

Table 9. The dynamic adaptability analysis of the algorithm.

The Results

M1 membership 0.9979 0.6863 0.9906 0.9867 0.9931
M2 membership 0.9108 0.9864 0.9381 0.8975 0.8879
M3 membership 0.7259 0.887 0.7577 0.7172 0.6947
M4 membership 0.9311 0.8371 0.9523 0.9209 0.9084
M5 membership 0.7903 0.9014 0.8161 0.7833 0.7638

Diagnostic results Normal Shaded Normal Normal Normal

5. Experiment Analysis

To verify the correctness and effectiveness of the proposed method, experiments were carried out
under short circuit, open circuit, and partial occlusion conditions. The fault conditions of each data
sample cover a wide range of work irradiances and temperatures. First, some labeled data samples
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under different fault conditions were collected on an experimental platform. Then, tests and analyses
were carried out based on the proposed diagnosis method.

5.1. Experimental Description

In order to verify the correctness and effectiveness of the proposed diagnosis method in this
paper under different environmental conditions, an empirical test platform for PV power generation
is constructed. Figure 10 illustrates the system structure of the empirical test platform. The platform
installed capacity is 9.555 kWp. Thirty nine PV modules are used and the electrical parameters
are shown in Table 10. In order to better analyze the influence of external environment on the PV
power generation and performance, the experimental platform includes a high-precision irradiator
for measuring solar irradiance, a small weather station for measuring the external environmental
parameters such as global solar irradiance, temperature, wind speed, a temperature sensor for
measuring the operating temperature, a data collector for measuring the current and voltage, an I-V
scanner, etc., then those data are stored in the computer through a Supervisory Control And Data
Acquisition (SCADA) system, which can collect multiple operating parameters of PV plant such
as the PV power generation, the current of AC and DC sides and the voltage of AC and DC sides.
Table 10 illustrates the specific parameters of the experimental platform. Different tests under short
circuit, open circuit, and partial shading conditions were run on an empirical platform.
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Table 10. The description of the experimental equipment.

Name Model Description of Parameters

3 kW power station (3 × 13
serial-parallel module) JKM245P

Maximum power: 254 Wp;
Optimal operating voltage (Vmp): 30.1 V;
Optimal operating current (Imp): 8.14 A;

Module efficiency: 14.97%;
Operating temperature range: −40~+85 ◦C;

Cell operating temperature: 45 ± 2 ◦C.

I-V scanner MP-11
power measurement range: 10 W~18 kW;
Voltage measurement range: 10~1000 V;

Current measurement range: 100 mA~30 A.

Current and voltmeter PZ72
Voltage measurement range: 0~1000 V;
Current measurement range: 0~10 A.

Backplane temperature sensor WRM-101
Temperature range: −50~200 ◦C;
Measuring accuracy: ≤±0.2 ◦C.

Solar irradiance meter MS-80
Irradiation measurement range:0~2000 W/m2;

Measuring accuracy: ≤±3%;
Operating temperature: −40 ◦C~80 ◦C.

Weather station WS200 Temperature, wind, humidity and total, direct,
scattered radiation observation.

5.2. Experimental Data Acquisition

Five PV array faults (normal, one module shorted, two modules shorted, one module shaded,
and two modules shaded) were tested (Table 11) based on the PV array experimental platform. 200 data
samples were collected. The description of the selected data was shown in Table 12.

Table 11. Experiments description.

Fault Types Fault Descriptions Fault Pictures

F1 Normal Normal condition.
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Table 11. Cont.

Fault Types Fault Descriptions Fault Pictures

F4 One module shaded
F5 Two modules shaded

The partial shading condition is
tested by covering some PV
modules with shield panels.
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Table 12. Experimental collection distribution.

Normal One Module
Shorted

Two Modules
Shorted

One Module
Shaded

Two Modules
Shaded

Data number 20 40 40 50 50
Proportion (%) 10 20 20 25 25

5.3. Experimental Result Analysis

Five typical fault data samples were selected from the five fault modes mentioned above as shown
in Table 13. The diagnosis results obtained via the proposed method are shown in Table 14.

Table 13. PV array fault diagnosis samples.

Group Number Uoc/V Isc/A Um/V Im/A Pm/W F1 F2 F3 F4 F5

1 426.7566 7.7779 333.8868 7.0476 2348.7680 1 0 0 0 0
2 393.9118 7.7779 306.4041 7.0933 2168.0670 0 1 0 0 0
3 361.0858 7.7779 281.8601 7.0669 1987.7490 0 0 1 0 0
4 422.3981 7.7776 303.9081 7.0934 2151.1730 0 0 0 1 0
5 418.0583 7.7772 276.8681 7.0732 1952.6170 0 0 0 0 1

Table 14. Proposed method diagnosis results.

Group Number F1 F2 F3 F4 F5

1 0.996579 0.534397 0.416860 0.695547 0.565517
2 0.532841 0.996478 0.552609 0.812129 0.541072
3 0.415561 0.541628 0.996761 0.558068 0.775134
4 0.695257 0.810263 0.569131 0.996675 0.708160
5 0.572519 0.526165 0.777834 0.700664 0.996326
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Again, a larger membership degree indicates a greater likelihood that the diagnosis sample is in
the given fault state. As shown in Table 14, the five diagnosed samples fell into F1, F2, F3, F4, and F5
states, once more indicating that the proposed method yields correct results.

6. Conclusions

This paper proposed a novel PV array fault diagnosis method based on the FCM and fuzzy
membership algorithms. The proposed method effectively detects short circuit, open circuit, partial
occlusion, and other faults. Simulation analysis indicated that the diagnostic accuracy of the proposed
method was 96%. Field experiments further verified the correctness and effectiveness of the proposed
method, and the method can complete the PV array diagnosis. The innovations of this paper can be
summarized as follows:

(1) The FCM algorithm described the distribution characteristics of fault data effectively based on
small amounts of fault samples data, and avoided the difficult for obtaining the fault samples.

(2) By using the membership function of vague math as the fault diagnosis function, it quantized
the membership degree between fault samples and each fault mode, and described the degree of
similarity between fault samples and each fault mode clearly and objectively.

(3) The proposed method effectively exploits the advantages of FCM (excellent classification ability)
as well as the membership function algorithm (excellent distance computing ability). And the
proposed method didn’t need additional equipment support, concerned people can detect the
fault module quickly by measuring voltage, current, power and other parameters.

(4) The distribution characteristics of the FCM cluster centers reflected the fault characteristics,
and the distribution characteristics can be used for updating membership function.

(5) The clustering centers obtained by the FCM algorithm can be used as the typical value of each fault
state, and then fault characteristic database can be established. Based on the fault characteristic
database, combined with other intelligent methods, it will be much easier to develop new ideas
for the PV array fault diagnosis.
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