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Abstract: This paper reports the overall thermal performance of a cylindrical parabolic concentrating
solar water heater (CPCSWH) with inserting nail type twisted tape (NTT) in the copper absorber tube
for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for
a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful
heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were
found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be
at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the
experiment, the value of charging efficiency was observed to be maximum, whereas the maximum
values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key
finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.

Keywords: cylindrical parabolic reflector; nail twist pitch ratio; water storage tank; thermal efficiency;
solar energy collected

1. Introduction

In the present era, utilization of solar energy increases with the development of societies as well as
the development of solar energy-collected techniques. Cylindrical parabolic concentrating solar water
heater (CPCSWH) is one of the techniques that are extensively used in the fields of power generation
and some chemical processing industries, due to it has few favorable characteristics, such as high
temperature (ranges up to 400 ◦C and can be obtained due to its higher concentration ratio), ease of
maintenance, compact size, and simple design. Huang et al. [1] used a black liquid as working
fluid and investigated the thermal performance of a cylindrical parabolic solar collector. They found
better thermal performance using black liquid. Heiti and Thodos [2] compared the instantaneous
efficiency obtained with and without a coated absorber tube. Their results showed better instantaneous
efficiency for the coated absorber tube. Hamad [3] studied the influence of water mass flow rate on
the instantaneous efficiency of the cylindrical parabolic solar concentrator. Their result showed that
instantaneous efficiency increases with an increase in water mass flow rate. Mullick and Nanda [4]
numerically studied the variation in heat loss factors versus absorber tube temperature and absorber
diameter. Their results showed that heat loss factors positively change with the absorber tube
temperature. Kothdiwala et al. [5] studied the influence of tracking and longitudinal configurations
of the compound parabolic concentrating solar collector on the thermal performance. Eskin [6]
presented the temperature variations of the absorber, glass envelope and water outlet. Eck and
Hirsch [7] conveyed the experimental investigation of a parabolic trough based power generation plant.
Kim et al. [8] numerically and experimentally studied the thermal performances of an evacuated
compound parabolic concentrator. They compared the experimental results with the numerical results
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and their results showed that the thermal performance of cylindrical parabolic collector (CPC) in
tracking mode was much higher than the same obtained from the non-tracking mode. Oommen and
Jayaraman [9] conducted an experiment on a compound parabolic concentrating collector to study
steam generation and solar energy collection. Fadar et al. [10] studied the adsorption refrigeration
system run by a parabolic trough collector. Padilla et al. [11] studied the heat loss and collector
efficiency, numerically. Gang et al. [12] performed the experimental investigation on exergy efficiency
and overall thermal efficiency of the compound parabolic collector. Kumaresan et al. [13] studied
the overall heat loss coefficient of the storage tank, charging efficiency and overall performance of
the parabolic trough collector, experimentally. Their results showed that the charging efficiency is
maximal at the beginning of the experiment and overall thermal efficiency increases with hourly solar
energy stored. Reddy [14] studied the performance of a solar parabolic trough power plant. Ceylan
and Ergun [15] conducted an experimental study of a temperature controlled CPC and reported energy
efficiency and exergy efficiency. Jafar and Sivaraman [16] conducted an experiment on a parabolic
trough collector to study the influence of nail twisted tape (twist ratios 2 and 3) on thermo-hydraulic
performance using Al2O3/water nanofluid. Their results showed that heat transfer was far better for
twist ratio 2. Mwesigye et al. [17] investigated the entropy generation caused by fluid friction and
heat transfer in the receiver tube. Khanna and Sharma [18] showed the circumferential temperature
distribution of the absorber tube of a CPC. Jaramillo et al. [19] found that the thermal performance
significantly improves with twisted tape inserts in the absorber tube. Liang et al. [20] used the Monte
Carlo Method to analyze the solar flux distribution on the receiver and the optical thermal performance
of the parabolic trough collector. Fuqiang et al. [21] investigated and compared the overall heat transfer
and thermal strain of the copper absorber tube. Bortolato et al. [22] used a flat bar and plate absorber
instead of the circular absorber and they found overall thermal efficiency significantly improved.
Zhao et al. [23] used the Monte Carlo Ray Trace method and their result showed circumferential heat
flux distribution on the receiver tube. Zou et al. [24] theoretically studied the optical performance of
the parabolic trough solar collector. Fraidenraich et al. [25] studied the angular acceptance function of
a cylindrical parabolic collector.

From the above literature survey, it has been observed that most researchers have worked
on the cylindrical parabolic collector with a plain absorber tube and they determined the thermal
performances only. Very few researchers have worked on the parabolic trough collector with an
inserted nail twisted tape in the absorber tube and they studied only the hydraulic performance
parameters. No researcher studied the thermal performance of the CPCSWH with the inserting nail
type twisted tape (NTT) in the absorber tube. In the present experimental study, the influence of a
new parameter, namely, the nail twist pitch ratio, on the thermal performance is reported. The main
objectives were to study the influence of the nail twist pitch ratio on useful heat gain, hourly solar
energy collected and hourly energy stored with the time of the day.

2. Experimental Setup and Procedure

Description of the Experimental Set Up and Experimental Procedure

Details of the CPCSWH experimental setup are shown by a schematic diagram (Figure 1).
The schematic of sectional views (front view and side view) of the nail type twisted tape insert in
the absorber tube are shown in Figure 2. Figures 3 and 4 show the photographic view of the CPCSWH
experimental setup (manufactured by Ecosense Sustainable Solutions Pvt. Ltd. (New Delhi, India),
Model: EcoSCTS-2.1) and NTT respectively. The CPCSWH consists of a water storage tank (capacity 28 L),
circulating pump, parabolic concentrating reflector (PCR) and copper absorber tube. The PCR is
made of acrylic mirror with a highly reflecting surface of reflectivity 0.90 and its focal length is
0.6065 m (rim angle 67.24◦). It has a reflecting surface, which consists of parabolic mirrors of 1.018 m2

aperture area each (0.834 m width and 1.220 m length), with a total aperture area of 2.036 m2, which
concentrates the incoming solar beam radiation to the absorber tube with a concentration ratio of 20.598.



Energies 2018, 11, 204 3 of 15

The copper tube is used as a solar radiation receiver with an absorptance of 0.95, which is placed
along the focus axis of the concentrating reflector. It is coated with black nickel coating, and is
covered by a glass envelope to minimize heat losses through convection and conduction. The glass
envelope has the following dimensions: inner diameter, 0.066 m and outer diameter, 0.071 m, with
a transmissivity of 0.85. The rubber corks are incorporated at the ends of the glass envelope to
achieve an air-tight enclosure. The main function of the absorber tube of a CPCSWH is to absorb
the concentrated solar radiation and transfer the concentrated solar radiation to the water flowing
through it. A pump pumps water to flow continuously through the absorber tube of the CPCSWH
to the water storage tank, and during the flow through the absorber tube, absorbed solar energy
transfer takes place from absorber tube to flowing water. A pump regulating knob is used to control
the volumetric water flow rate (in L/min). A water flow sensor (model: YF-S201, Seametrics Inc.,
Kent, WA, USA) is fitted in line with the hydraulic hose pipe (between the pump’s outlet and the
inlet of the absorber tube) to measure the volumetric water flow rate. Hydraulic hose pipes are
connected between the pump and water flow sensor, water flow sensor and absorber tube inlet,
and absorber tube outlet and the water storage tank. The water storage tank is made of stainless
steel material and is cylindrical in shape. The water storage tank is insulated with glass wool and
covered by a thick, black colour Rexene to prevent heat losses and is placed at the bottom of the
cylindrical parabolic reflector. The thermocouples are inserted on the surface of the absorber tube,
inside the water storage tank, water storage tank inlet as well as at the inlet and outlet of the absorber
tube, to measure the water temperatures at the same locations. A display board, equipped with five
numbers as digital temperature indicators (connected with the above-mentioned thermocouple), to
indicate the thermocouple’s deflection (i.e., temperature readings), and a water flow rate indicator
(connected with water flow sensor) to indicate the volumetric water flow rate. During the experiment,
temperatures and water flow rate were recorded from the display board. Two pressure transducers
(model: 3100, Setra Systems, Boxborough, MA, USA) are used, in order to measure the pressure at
outlet and inlet of the absorber tube. One is placed in the inlet of the absorber tube and the other one is
placed at the outlet of the absorber tube. The tracking mechanism consists of an embedded electronic
control system. The electronic control system is equipped with a Light Dependent Resistor (LDR), to
move the collector with the apparent motion of the sun, so that solar radiation reaches the collector
aperture at a 90◦ angle. The PCR rotates around the horizontal north–south axis, to track the sun as it
moves through the sky during the day. The solar intensity is recorded by a pyranometer, connected
with a solar power meter (Tenmars TM-207, Tenmars Electronics Co., Ltd., Tapei, Taiwan).
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Initially, the experiment was conducted with a plain copper absorber tube and the next
experiments were conducted by inserting the NTT into the absorber tube, one by one, with varying
nail twist pitch ratios (4.787, 6.914 and 9.042). Aluminium strips were used to manufacture the twisted
tape and mild steel headless screws were inserted into the previously drilled holes at a twist pitch
distance over the length of the twisted tape. The experiment was conducted from the 25 April of 2017
to June of 2017 and during the time period of 9:00 a.m. to 15:00 p.m. and the experimental works were
conducted at Indian Institute of Technology (Indian School of Mines) Dhanbad (latitude 23◦47′′ N and
longitude 86◦30′′ E), a city situated in the northeast region of India (country), with an elevation of
232.0 m (approx.) above mean sea level (MSL).
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The specifications of the CPCSWH experimental set up and NTT are shown in Table 1.

Table 1. Specifications of the CPCSWH experimental setup and NTT (nail type twisted tape).

Sl. No. Parameter Value

1 Reflector aperture area 2.036 m2

3 Length of absorber tube 1.220 m
4 Inner diameter of absorber tube 0.023 m
5 Outer diameter of absorber tube 0.025 m
6 Width of NTT 0.020 m
7 Thickness of NTT 0.0012 m
8 Length of nail 0.020 m
9 Diameter of nail 0.004 m

10 Effective length of nail 0.0188 m

3. Data Reduction

The experimental data were used in the below equations to determine the experimental results.
The water mass flow rate is calculated using Equation (1), as follows

m = ρfVf (1)

Useful heat gain is the solar energy absorbed by the circulating water during the flow through the
absorber tube and is calculated using the Equation (2), as follows

Q = mcp(To − Ti) (2)

Bulk mean temperature is calculated using the Equation (3), as follows

Tb =
Ti + To

2
(3)

Bulk mean temperature of the water in the water storage tank is calculated using the Equation (4),
as follows

Tb,st =
Tst,j+1 + Tst,j

2
(4)

Hourly solar energy collected is the solar energy gain during a one-hour time interval, as given
by Kumaresan et al. [13] and it is calculated using Equation (5), as follows

Ec =

[
mcp(To−Ti)j+1 + mcp(To − Ti)j

2

]
× 3600 (5)

Hourly solar energy stored is the solar energy stored in the water storage tank during the one
hour time interval as given by Kumaresan et al. [13] and it is calculated using Equation (6) as follows

Est= mstcp,st
(
Tst,j+1 − Tst,j

)
(6)

The temperature rise parameter is calculated using the Equation (7), as follows

TRP =
To − Ti

Ib
(7)
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Instantaneous efficiency is calculated using Equation (8), as follows

ηi =
mcp(T o − Ti

)
AapIb

(8)

The charging efficiency is the ratio of hourly solar energy stored in the water storage tank to
hourly solar energy collected, as given by Kumaresan et al. [13]. It is calculated using Equation (9),
as follows

ηch =
Est

Ec
(9)

The overall system efficiency is the ratio of hourly solar energy stored in the water storage
tank to hourly solar energy collected on the parabolic concentrating reflector. It is calculated using
Equation (10), as follows

ηo =
Est

AapIh
(10)

4. Uncertainty Analysis

The method proposed by Kline and McClintock [26] is used for uncertainty calculation. In the
experimental measurements, the maximum value of uncertainties was found to be ±3.49% for useful
heat gain,±2.105% for hourly solar energy collected,±0.9851% for hourly solar energy stored,±3.389%
for the temperature rise parameter, ±4.571% for instantaneous efficiency, ±0.986% for the charging
efficiency and ±0.985% for the overall thermal efficiency. The accuracies of the instruments used for
uncertainty analyses are shown in Table 2.

Table 2. Accuracies of the instruments.

Sl. No. Instruments Accuracy

1 Water flow sensor (model: YF-S201, Seametrics
Inc., Kent, WA, USA) ±10%

2 Digital anemometer (model: AVM-03, Metravi,
Kolkata, India)

±3% (for wind velocity)
±2 ◦C (for temperature)

3
Pyranometer integrated with solar power meter
(model: TM-207, Tenmars Electronics Co., Ltd.,
Tapei, Taiwan)

±0.499%

4 Thermocouple (Radix Electrosystems Pvt. Ltd.,
Pune, India) ±0.4%

5 Pressure transducer (model: 3100, Setra Systems,
Boxborough, MA, USA) ±0.25%

5. Results and Discussion

5.1. Solar Intensity with Time

Figure 5 presents the variation of solar intensity with time. From this figure, it is very clear that
the slope of solar intensity increases from 9:00 a.m. to 11:00 a.m. and after that its slope increases
slowly until noon. The peak values of solar intensity are observed at 12:00 a.m. After 13:00 p.m.,
the value of solar intensity starts to reduce, with a higher decreasing rate until 15:00 p.m.
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5.2. Effect of Nail Twist Pitch Ratio on Useful Heat Gain

Figure 6 shows the variation in useful heat gain with time for the plain absorber tube and the
absorber tube with NTT inserts. The useful heat gain changes progressively with time, from 9:00 a.m. to
12:00 a.m., and then starts to deteriorate from 12:00 a.m. to 15:00 p.m., as shown in Figure 6. The useful
heat gain is maximum at noon when solar intensity is maximum. The variation in useful heat gain
follows the path of variation in solar intensity. Also, useful heat gain increases with a smaller nail twist
pitch ratio. This is owing to the fact that swirl flow and turbulence are induced by the NTT. Also with
a smaller nail twist pitch ratio, the tape twist pitch decreases and the number of nails increase, which,
in turn, deeply intensifies swirling and turbulence. The combined effect increases heat transfer time
and the rate of heat transfer from the absorber tube to flowing circulating water. Due to this, useful
heat gain increases. In the present experimental study, the maximum useful heat gain increased by
12.462% for a nail twist pitch ratio of 4.787, 10.753% for a nail twist pitch ratio of 6.914 and 7.591% for a
nail twist pitch ratio of 9.042 than useful heat gain obtained from the plain absorber tube. Therefore,
useful heat gain, obtained from the absorber tube with NTT inserts, are found to be much higher than
that in the plain absorber tube.
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5.3. Effect of Nail Twist Pitch Ratio on Water Outlet Temperature and Water Temperature in the Water
Storage Tank

Figure 7 indicates the variation of the water outlet temperature with time, whereas Figure 8
indicates the water temperature in the water storage tank with time, for different nail twist pitch
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ratios (4.787, 6.914 and 9.042). These figures clearly show that the water outlet temperature and
water temperature in the water storage tank both change positively with higher incremental rates,
from 9:00 a.m. to 12:00 a.m., as solar intensity increases during this time period. From 12:00 a.m. to
15:00 p.m., the water outlet temperature and the water temperature in the water storage tank both
increase slowly and the NTT insert absorber tube improves these temperature results. This is due to
the fact that the stored water is flowing through the absorber tube to the water storage tank and from
the water storage tank to the absorber tube (i.e., a closed-loop system) and hot water, stored in the
water storage tank, is entering the absorber tube to absorb the concentrated solar energy from the
absorber tube. There is neither fresh water entering into the system, nor energy withdrawing from the
system. Stored hot water is being heated again and again, only during the experiment. Also, the water
outlet temperature increases for the NTT inserts absorber tube with a smaller nail twist pitch ratio,
due to swirl flow and turbulence, created by the tape twist and nail of the NTT inserts absorber tube.
Also, the water temperature in the water storage tank is affected by the same influences of the NTT.
During the experiment, the maximum water outlet temperature was found to be 77.170 ◦C for a nail
twist pitch ratio of 4.787 at 15:00 p.m. Therefore, it is very transparent that the water temperature in
the water storage tank follows the path of variation of the circulating water temperature at the outlet
of the absorber tube.
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5.4. Effect of the Nail Twist Pitch Ratio on Hourly Solar Energy Collected

The hourly solar energy collected vs. time is shown in Figure 9. The hourly solar energy
collected increases, from 9:00 a.m. to 11:00 a.m., at a faster rate and reaches a peak value at noon.
After noon, its value again decreases and reaches a minimum value. From this figure, it is also clearly
observed that hourly solar energy collected enhances, with a significantly faster rate from 9:00 a.m.
to noon and after noon it begins to decay. Therefore, hourly solar energy collected follows the
path of variation of incident solar radiation and useful heat gain. From the present experimental
investigation, the maximum values of hourly solar energy collected are observed during the time
interval between 12:00 a.m. and 13:00 p.m. Also, the maximum value of hourly solar energy collected
was found to be increased by 12.189% for a nail twist pitch ratio of 4.787, 9.770% for a nail twist pitch
ratio of 6.914 and 6.733% for a nail twist pitch ratio of 9.042, compared to the same obtained for the
plain absorber tube. This is because of the swirl flow and turbulence induced by the NTT inserted
absorber tube. The combined effect increases the useful heat gain that, in turn, increases the hourly
solar energy collected.
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5.5. Effect of Nail Twist Pitch Ratio on Hourly Solar Energy Stored in the Water Storage Tank

Figure 10 shows the variation in hourly solar energy stored vs. nail twist pitch ratio and time.
From this figure, it is very clear that hourly solar energy stored increases between the time period of
9:00 a.m. and 13:00 p.m. After that, its value decreases, with a faster rate, until 15:00 p.m., as the hot
water is heated again and again, so useful heat gain gradually decreases during this time period. Also,
hourly solar energy stored increases with decreasing nail twist pitch ratio, as lower nail twist pitch
ratios strongly intensify the swirling flow and turbulence in the absorber tube. The combined effect
improves the hourly solar energy stored. From the present experimental study, the maximum value of
hourly solar energy stored was found to be increased by 11.087% for a nail twist pitch ratio of 4.787,
6.154% for a nail twist pitch ratio of 6.914 and 9.179% for a nail twist pitch ratio of 9.042, compared
to the same for the plain absorber tube. Maximum values of hourly solar energy stored are observed
during the time interval between 11:00 a.m. and 12:00 a.m.
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5.6. Effect of Nail Twist Pitch Ratio on Temperature Rise Parameter

Figure 11 indicates the variation in temperature rise parameter with time for the nail twist pitch
ratios, 4.787, 6.914 and 9.042, respectively. This figure clearly shows that the temperature rise parameter
increases with a higher rate, from 9:00 a.m. to 11:00 a.m., as the solar intensity increases and after
that, it attains a maximum value at noon. After 13:00 p.m., its value decreases to a minimum value
with a faster rate, as storage hot water is circulating through the absorber tube and this results in
very little increase in water outlet temperature at the absorber tube. Therefore, the temperature rise
parameter decreases and follows the path of variation of solar intensity. Also, the temperature rise
parameter increases for the NTT insert absorber tube with a smaller nail twist pitch ratio, as swirl flow
and turbulence, created by the tape twist and nail of the NTT inserts absorber tube and the smaller nail
twist pitch ratio deeply intensify the swirling and turbulence. From the present experimental study, it
has been observed that the maximum value of temperature rise parameter is increased by 13.168%
for a nail twist pitch ratio of 4.787, 11.815% for a nail twist pitch ratio of 6.914 and 9.444% for a nail
twist pitch ratio of 9.042, compared to the result obtained from the plain absorber tube. Therefore, NTT
influences the temperature rise parameter.
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5.7. Effect of Nail Twist Pitch Ratio on Instantaneous Efficiency

Figure 12 shows the change in instantaneous efficiency with time for the nail twist pitch ratios:
4.787, 6.914 and 9.042. This figure shows that instantaneous efficiency rises from 9:00 a.m. to 11:00 a.m.
and beyond this time its value rises substantially, with a slower rate until noon. After this, its value
decreases with time. From this experimental work, it is found that the instantaneous efficiency reaches
a peak value of 64.280% for a nail twist pitch ratio of 4.787, 63.299% for a nail twist pitch ratio of 6.914
and 61.639% for a nail twist pitch ratio of 10.106, at noon. The instantaneous efficiency was found to be
55.820% for the plain absorber tube. This is due the fact that water flows through the path directed by
the tape twist and turbulence, magnified by the nail of the NTT inserted absorber tube; the combined
effect increases useful heat gain. Thus, there is an increase in instantaneous efficiency.
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5.8. Effect of Nail Twist Pitch Ratio on Charging Efficiency

Figure 13 shows the variation in charging efficiency of the CPCSWH with nail twist pitch ratio
and time. In this figure, it is very obvious that at the start of the experiment, the charging efficiency is
maximum and then decreases, with a slower rate from 9:00 a.m. to 12:00 a.m. and beyond this time,
it decreases at a faster rate. From this figure, it is also clear that smaller nail twist pitch ratio is linked
with a higher charging efficiency. In case of NTT inserts in the absorber tube, swirl flow is induced by
the tape twist, and turbulence intensifies with the nail. This combined effect increases useful heat gain
and thus increases hourly solar energy stored in the water storage tank. From the present experimental
study, the maximum charging efficiency has found to be increased by 12.489% for a nail twist pitch
ratio of 4.787, 10.508% for a nail twist pitch ratio of 6.914 and 4.333% for a nail twist pitch ratio of 9.042,
compared to the same obtained from the plain absorber tube. Therefore, the charging efficiency of the
CPCSWH is influenced strongly by nail twist pitch ratio and increases with a decreasing nail twist
pitch ratio.
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5.9. Effect of Nail Twist Pitch Ratio of Overall Thermal Efficiency

Figure 14 shows the variation in overall thermal efficiency of the CPCSWH with nail twist pitch
ratio and time. In this figure, it is very obvious that the overall thermal efficiency of CPCSWH increases
during the first 3 h of the experiment and after this time, it decreases continuously until 15:00 p.m.
The peak values of overall thermal efficiency are observed between the time interval of 11:00 a.m.
and 12:00 a.m. From this figure, it is also clear that smaller nail twist pitch ratio leads to a higher overall
thermal efficiency. This is due to the swirl flow, induced by tape twist and the greater turbulence,
created by the nail of the NTT. The combined effect increases the hourly solar energy stored and
hence, increases the overall thermal efficiency. In the present experimental study, the maximum overall
efficiency increased by 12.027% for a nail twist pitch ratio of 4.787, 7.697% for a nail twist pitch ratio of
6.914 and 10.697% for a nail twist pitch ratio of 9.042, compared to the same obtained from the plain
absorber tube. Therefore, the overall thermal efficiency of the CPCSWH is influenced by nail twist
pitch ratio and the smaller nail twist pitch ratio has a stronger influence than the higher nail twist
pitch ratio.
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6. Conclusions

The solar intensity increases, with a faster rate between the time period of 9:00 a.m. to 11:00 a.m.
and reaches to a maximum value at noon and after that it starts decreasing.

Useful heat gain, hourly solar energy collected, the temperature rise parameter and instantaneous
efficiency are observed to follow the path of variation of solar intensity. The peak values of these
parameters are found at noon when the solar intensity arrives a maximum. A smaller nail twist pitch
ratio enhances the above parameters.

The absorber tube water outlet temperature and storage tank water temperature both increase
during the time period of 9:00 a.m. to 11:00 a.m. with faster rates and in the period of 12:00 a.m.
to 15:00 p.m. with slow rates. The peak value of the absorber tube water outlet temperature and
storage tank water temperature are observed at 15:00 p.m.

The maximum values of hourly solar energy collected are found between 12:00 a.m. to 13:00 p.m.,
whereas hourly solar energy stored is found to be maximum between 11:00 a.m. and 12:00 a.m. Also,
a smaller nail twist pitch ratio leads to higher values of hourly solar energy collected and hourly solar
energy stored.

The temperature rise parameter, instantaneous efficiency and overall thermal efficiency follow
the path of variation of solar intensity. At the beginning of the experiment, the charging efficiency is
maximum. A smaller nail twist pitch ratio causes the higher values of the above parameters.

Therefore, the NTT insertion in the absorber tube strongly influences the thermal performance of
the Cylindrical Parabolic Concentrating Solar Water Heater.
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Nomenclatures

Af Absorber tube flow cross-sectional area (m2)
Aap Reflector aperture area (m2)
cp Specific heat (J·kg−1 ◦C−1)
Di Absorber tube inner diameter (m)
Do Absorber tube outer diameter (m)
dn Nail diameter (m)
Ec Hourly solar energy collected (kJ)
Est Hourly solar energy stored (kJ)
Ib Solar intensity (W·m−2)
Ih Hourly solar intensity (kJ·m−2 h−1)
kf Thermal conductivity (W·m−1 ◦C−1)
leff Effective length of nail, leff = (ln − t) (m)
ln Length of nail (m)
Lp absorber tube length (m)
m Mass flow rate of water (kg·s−1)
mst Mass of water in the water storage tank (kg)
P Twist pitch of nail type twisted tape (m)
Q Useful heat gain (W)
t Thickness of nail type twisted tape (m)
Tb Bulk mean temperature (◦C)
Tb,st Bulk mean temperature of water in the water storage tank, (◦C)
Ti Water inlet temperature (◦C)
To Water outlet temperature (◦C)
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Tp Absorber tube surface temperature (◦C)
Tst Water temperature in the water storage tank (◦C)
TRP Temp. rise parameter (m2 ◦C W−1)
uf Velocity of water (m·s−1)
Vf Volumetric water flow rate (m3)
w Width of nail type twisted tape (m)
Yn Nail twist pitch ratio (P leff

−1)
Greek Symbols
ρf Density of water (kg·m−3)
ηi Instantaneous efficiency
ηch Charging efficiency
ηo Overall thermal efficiency
Abbreviations
CPCSWH Cylindrical parabolic concentrating solar water heater
NTT Nail type twisted tape
PCR Parabolic concentrating reflector
Subscripts
J At any time interval
j + 1 One hour time interval from jth time
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