Supplementary content

The economic feasibility of residential energy storage combined with PV panels: the role of subsidies in an European country

Federica Cucchiella *, Idiano D'Adamo and Massimo Gastaldi

Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, 67100 L'Aquila, Italy; idiano.dadamo@univaq.it (I.D.); massimo.gastaldi@univaq.it (M.G.)

* Correspondence: federica.cucchiella@univaq.it (F.C.); Tel.: +39-0862-434-464

Mathematical reference model used for the calculation of NPV [3]

$$NPV(PV) = DCI - DCO \tag{1}$$

$$DCI = \sum_{t=1}^{N} \frac{\omega_{self,c} \times E_{Out,t} \times p_{t}^{c} + \omega_{sold} \times E_{Out,t} \times p_{t}^{s}}{(1+r)^{t}} + \sum_{t=1}^{N_{TaxD}} ((C_{inv}/N_{TaxD}) \times TaxD_{u-sr})/(1+r)^{t}$$

$$(2)$$

$$p_{t+1}^{c} = p_{t}^{c} \times (1 + \inf_{el}); p_{t+1}^{s} = p_{t}^{s} \times (1 + \inf_{el})$$
(3)

$$DCO = \sum_{t=0}^{N_{debt}-1} (C_{inv}/N_{debt} + (C_{inv} - C_{lcs,t}) \times r_d)/(1+r)^t \\ + \sum_{t=1}^{N} \frac{P_{Cm} \times C_{inv} \times (1+inf) + P_{Cass} \times C_{inv} \times (1+inf) + SP_{el,t} \times P_{Ctax}}{(1+r)^t} + \frac{P_{Ci} \times C_{inv}}{(1+r)^{10}} + C_{ae}$$
(4)

$$C_{inv} = C_{inv,unit} \times (1 + Vat) \times P_f \times \eta_f$$
(5)

$$E_{\text{Out,t}} = t_r \times K_f \times \eta_m \times \eta_{\text{bos}} \times A_{\text{cell}} \times P_f \times \eta_f$$
(6)

$$E_{Out,t+1} = E_{Out,t} \times (1 - dE_f)$$
(7)

$$E_{\text{Out}} = \sum_{t=1}^{N} E \tag{8}$$

where DCI = discounted cash inflows; DCO = discounted cash outflows; t = single period; CI = cash inflows; CO = cash outflows; $E_{out} = energy$ output of the system; $C_{inv} = total$ investment cost; $C_{lcs} = loan$ capital share cost; $SP_{el} = sale$ of energy; $\eta_f = number$ of PV modules to be installed and $P_f = nominal$ power of a PV module. Other economic inputs, used in this analysis, are defined in Table S1.

Table S1. Economic inputs [3]

Acronym	Variable	Value
Acell	Active surface	7 m ² /kWp
Cae	Administrative and electrical connection cost	250 €
$C_{inv,unit}$	Specific investment cost	1850 €/kW
dE_f	Decreased efficiency of a system	0.7%
inf	Rate of inflation	2%
\inf_{el}	Rate of energy inflation	1.5%
\mathbf{k}_{f}	Optimum angle of tilt	1.13
N	Lifetime of a PV system	20 y
$N_{ m debt}$	Period of loan	15 y
N_{TaxD}	Period of tax deduction	10 y
η_{bos}	Balance of system efficiency	85%
η_{f}	number of PV modules to be installed	function of S
η_{m}	Module efficiency	16%
p^c	Electricity purchase price	19 cent €/kWh
p^{s}	Electricity sales price	9.8–10.9 cent €/kWh
Pcass	Percentage of assurance cost	0.4%
P_{Ci}	Percentage of inverter cost	15%
P_{Cm}	Percentage of maintenance cost	1%
Pctax	Percentage of taxes cost	43.5%
\mathbf{P}_{f}	nominal power of a PV module	function of S
r	Opportunity cost of capital	5%
${f r}_{\sf d}$	Interest rate on a loan	3%
t_{r}	Average annual insolation	1350-1550 kWh/(m ² ×y)
S	Size	1–6 kW
$TaxD_{u\text{-}br}$	Specific tax deduction (baseline rate)	36%
$TaxD_{u\text{-}\mathrm{sr}}$	Specific tax deduction (subsidized rate)	50%
$\omega_{\text{self,c}}$	Percentage of energy self-consumption	30-50%
$\omega_{ extsf{sold}}$	Percentage of the produced energy sold	50-70%
Vat	Value added tax	10%