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Abstract: The growing surplus of green electricity generated by renewable energy technologies has
fueled research towards chemical industry electrification. By adapting power-to-chemical concepts,
such as plasma-assisted processes, cheap resources could be converted into fuels and base chemicals.
However, the feasibility of those electrified processes at large scale has not been investigated yet.
Thus, the current work strives to compare, for first time in the literature, plasma-assisted production
of syngas, from CH4 and CO2 (dry methane reforming), with thermal catalytic dry methane reforming.
Specifically, both processes are conceptually designed to deliver syngas suitable for methanol
synthesis (H2/CO ≥ 2 in mole). The processes are simulated in the Aspen Plus process simulator
where different process steps are investigated. Heat integration and equipment cost estimation are
performed for the most promising process flow diagrams. Collectively, plasma-assisted dry methane
reforming integrated with combined steam/CO2 methane reforming is an effective way to deliver
syngas for methanol production. It is more sustainable than combined thermal catalytic dry methane
reforming with steam methane reforming, which has also been proposed for syngas production of
H2/CO ≥ 2; in the former process, 40% more CO2 is captured, while 38% less H2O is consumed per
mol of syngas. Furthermore, the plasma-assisted process is less complex than the thermal catalytic
one; it requires higher amount of utilities, but comparable capital investment.

Keywords: dry methane reforming; plasma-assisted reforming; process modeling; energy efficiency;
process evaluation

1. Introduction

Fossil feedstocks can be converted into added value products in a two-step process, known as
Fischer-Tropsch (FT) synthesis process. In the first step, syngas, a mixture of H2 and CO, is formed.
In the second step, syngas is converted into synthetic fuels and chemicals, according to the global reaction:

(2n + 1)H2 + nCO→ CnH(2n+2) + nH2O (1)

The FT process can be potentially used in synthesis of chemicals with high commercial value,
such as light olefins [1,2], alcohols [3,4] and other oxygenates [5]. The yield of products with secondary
functional group (i.e., OH or unsaturated bond) is usually low. The FT process is preferentially
conducted at moderate conditions, 473–573 K and 10–60 bar, to reach high product selectivity [6].

Due to the abundance of conventional and unconventional gas reserves rich in CH4 (i.e., tight and
shale gas, methane hydrate, coalbed methane), which have recently been discovered, CH4 constitutes
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the most promising fossil feedstock for fuels and chemicals production through FT. Therefore, many
CH4 reforming routes resulting in different product distributions have been investigated: non-oxidative
methane coupling, pyrolysis, partial oxidation, steam and dry reforming are of great interest [7].

Dry methane reforming (DMR) has attracted interest because it can valorize the abundant and
cheap natural gas and reduce the carbon footprint due to the increasing fossil fuel consumption
worldwide [8]. In DMR, CO2 is used as oxidizing agent, and so CH4 is oxidized to CO whilst H2 is
formed at relatively high temperature.

Significant effort has been put on catalyst synthesis to improve the reaction efficiency. Numerous
catalysts have been developed aiming at maximizing syngas yield at lower temperatures. Mostly
Nickel and noble metals (i.e., Pt, Ru, and Rh) have been investigated as potential catalysts for DMR.
Noble metals show high activity and resistance against carbon formation [9–12]. Although they
reach excellent performance, high cost is the main constraint towards their industrial application.
Alternatively, nickel-based catalysts may be used. However, they face deactivation issues due to
sintering and carbon encapsulation of Ni under reforming conditions [13].

Application of non-equilibrium gas phase electrical discharges, where energy is channeled into
molecular dissociation instead of gas heating, is an encouraging alternative. Besides the low operating
temperatures, plasma application for CO2 and CH4 dissociation is also considered as a way for green
electricity storage into chemical bonds. DMR has been explicitly studied in dielectric barrier discharges
(DBD) [14–17]. Mainly syngas and light hydrocarbons and oxygenates are formed; however, neither
conversion rate, nor the global energy efficiency is high. On the contrary, repetitive pulsed excitation
with a nanosecond scale pulse rise time and duration appears to be a better alternative due to its highly
non-equilibrium nature [18].

DMR is an appealing route to valorize natural gas and reduce CO2 emissions and this is reflected
in numerous works either on thermal catalytic or plasma-assisted DMR. Both processes have strengths
and downsides. This work strives to compare, for first time in the literature, the plasma-assisted
DMR process with the thermal catalytic DMR for production of syngas with composition suitable for
methanol synthesis through an FT process (H2/CO ≥ 2 in mole). Both processes are conceptually
designed and simulated in the Aspen Plus process simulator. Different process steps are investigated.
Heat integration and equipment cost estimation are performed for the most promising process flow
diagrams. Eventually, a comparison between the two processes is conducted based on quantitative
(resource efficiency, utility demand and capital cost) and qualitative (complexity, compatibility and
sustainability) performance criteria.

2. Materials and Methods

Utilities, operating and maintenance as well as capital investment are the major costs of syngas
production (after the raw material cost) corresponding to ~7%, 16% and 10%, respectively, of the total
production cost [19]. The syngas production cost has a great impact on the economic feasibility of
gas-to-liquid (GTL) fuels and chemicals [20] and is vital for the commercialization of GTL processes.
Capital investment and operating costs (i.e., utility, maintenance, general expenses and plant overhead
costs) strongly depend on the process design and the engineering. Therefore, process block diagrams
(PBD) for syngas production achieving molar ratio of H2/CO ≥ 2 at industrial scale are developed for
both thermal catalytic and plasma-assisted DMR processes. Different process steps are designated and
simulated in the Aspen Plus process simulator V8.8 for each PBD. The utility demand is reported while
the cost of each piece of equipment is estimated. The utility demand is distinguished in cold and hot
utility and expressed in kWh/kmolsyngas. The type and cost of process equipment that is required for
syngas production is correlated with the maintenance/operation and capital expenditure. Eventually,
the PBDs are evaluated with respect to the utility demand and required process equipment (type of
equipment and cost) to define the most promising process flow diagram (PFD), which leads to the
lowest syngas production cost.
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2.1. Process Modeling

All process units are simulated according to experimental data published in the literature
assuming chemical and thermodynamic equilibrium. The sizing of the process equipment is facilitated
by mass and energy balances, design equations and rules of thumb. The process model development,
and the calculation of the mass and energy balances for both processes are based on the following
design inputs:

- The boundary limits are set on the dry methane reforming process itself. Intermediate steps
of the input streams (CH4 and CO2) such as transportation, purification and CO2 capture are
beyond the scope of this work since they are common steps for both processes. Thus, they can be
excluded in a relative comparison. Therefore, reactants are considered to be free of impurities.
Although extremely high purity streams are difficult to be achieved in reality, plasma-assisted
processes are tolerant to impurities presence. Since plasma chemistry occurs in the gas phase
reaction and no catalyst is involved, impurities do not affect the plasma reactor performance.
In addition, impurities concentration may be reduced during the plasma reaction since they are
cracked by the electrons [21].

- The predictive Redlich–Kwong–Soave (PSRK) equation of state is selected to calculate all the
thermodynamic properties for the components involved in the overall process. This thermodynamic
model provides high accuracy in water-hydrocarbon systems over a wide range of temperatures
and predicts the instability of the liquid phase [22].

- An equimolar total feed is set for the simulation. The chosen feed rate produces a certain amount
of syngas, which can be utilized for small-size methanol production (plant design capacity of
100–200 ktMeOH/y) since dry methane reforming processes (both plasma-assisted and thermal
catalytic) have not been established at large industrial scale yet [8,23]. Therefore, the lowest
industrial capacity is selected. Equimolar feed is selected because this is the feed composition
adopted in most of experimental works as well as in the work that will be used as reference case
in the plasma-assisted process. Moreover, the data obtained from the literature to facilitate the
comparison among the different process alternatives are coherent since they correspond to the
same plant capacity (500–1000 kmol/h). It is assumed that 500 kmol/h of CH4 are available
for the plasma-assisted process and 1000 kmol/h for the thermal catalytic one because steam
methane reforming (SMR) is also required in the later process to achieve the targeted syngas
composition; regarding the thermal catalytic process, 312.5 kmol/h are consumed in DMR and
the rest in SMR.

- The reactor model which minimizes the Gibbs free energy (known as RGIBBS reactor model
in Aspen Plus process simulator) is used to simulate the thermal catalytic reactors of DMR,
water-gas shift (WGS), SMR and combined steam/carbon dioxide methane reforming (SCMR) at
steady state. The reactor model where stoichiometry and molar extent can be defined when they
are known for each reaction (known as RSTOIC reactor model in Aspen Plus process simulator)
is used to simulate the plasma reactor at steady state.

- The thermal catalytic DMR reactor achieves chemical equilibrium at 750 ◦C and pressure equal
to 1 bar in order to simulate the results achieved by Theofanidis et al. [24]. These authors
synthesized a bimetallic Fe-Ni/MgAl2O4 catalyst with enhanced carbon-resistance (about 4 h
stable performance) and relatively low catalyst demand (Wcat/FCH4 = 800–1420 kg s mol−1)
suitable for DMR at the aforementioned conditions; approximately 1.3% of CH4 feed results
in coke formation. For high energy efficiency, the WGS reaction occurs at the same conditions
as thermal catalytic DMR. Therefore, the WGS reactor also achieves chemical equilibrium at
750 ◦C and pressure of 1 bar; Fe-based catalysts promote the reaction and low catalyst load in the
reactor is required (Wcat/Ftot = 0.04 kg s mol−1) [25,26]. The thermal catalytic SMR reactor is at
chemical equilibrium at 1000 ◦C and pressure of 1 bar. Ni- and Ru-based catalysts enhance the
reaction at catalyst demand of Wcat/FCH4 = 250 kg s mol−1 [27,28]. The thermal catalytic SCMR
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reactor is also at chemical equilibrium at 1000 ◦C and pressure of 1 bar [29]. A low amount of
Ni-MgO-Ce0.8-Zr0.2O2 catalyst is used (Wcat/FCH4 = 20 kg s mol−1) to enhance the reaction [30].

- The results obtained by the plasma-assisted process models are based on linear extrapolation
of the experimental data, regarding flow rates, conversions and energy input, reported by
Scapinello et al. [31]. In particular, the authors [31] used a nanosecond repetitive pulsed discharge
to dissociate CH4 and CO2 achieving 40% energy efficiency for syngas production, a value that
is among the highest ones achieved with other discharges in the literature. Conversions of
approximately 50% and 42.5% for CH4 and CO2, respectively, are reported. The specific energy
input is approximately 10 kJ/LFEED while the 14% of the carbon in the feed is transformed to coke.

- The hot and cold utility demand and the electricity consumption are expressed in
kWh/kmolsyngas, while the equipment cost is expressed in k$/(kmolsyngas h−1) in order to
facilitate the technology comparison. Since hot/cold utilities and electricity price vary, no specific
values are used; rather, hot/cold utilities and electricity are expressed in kWh/kmol of syngas.
The specific syngas production cost (k$/kmol) may be calculated by multiplication of this ratio
with the cost of kWh.

- The composition of the final syngas stream prior to Fischer-Tropsch unit is required to be at a
temperature of 250 ◦C, pressure of 30 bar and composition of H2/(2CO + 3CO2) ≥ 1 to promote
methanol production reactions:

CO + 2H2 → CH3OH ∆H◦ = −90.77 kJ/mol, (2)

CO2 + 3H2 → CH3OH + H2O ∆H◦ = −49.16 kJ/mol (3)

- Methanol is an important chemical compound. It can be used as fuel and feedstock to synthesize
olefins or it can be blended with gasoline and diesel. The production of methanol is especially
attractive in emerging economies as a liquid fuel to replace conventional sources of energy.

- The temperature of the compressors in the inlet streams does not exceed 50 ◦C in order to
avoid very high temperatures at the outlet after compression. High temperatures may result in
equipment damages. The outlet streams of the thermal reactor are not cooled down in order to
create a very hot stream after the compression that can be used for heat integration purposes.
Moreover, cooling of those streams result in water condensation prior to compression.

- A heat transfer coefficient 0.5 kw/m2 ◦C for gas-to-gas heat exchange is used for the heat exchange
area estimations. A polytropic compression ASME efficiency of 75% is assumed.

The process flow diagram (PFD) and the detailed mass and energy balances of plasma-assisted
and thermal catalytic DMR processes are presented in the Supplementary Materials.

2.2. Thermal Catalytic DMR Process

Purified streams of CH4 and CO2 are fed to the thermal catalytic reactor where the DMR
reaction occurs:

CH4 + CO2 ↔ 2CO + 2H2 ∆H◦ = 261 kJ/mol (4)

The RGIBBS reactor model (minimization of Gibbs free energy) is used to simulate the thermal
catalytic reactor at steady state. Chemical equilibrium is achieved at 750 ◦C and 1 bar. CH4 and CO2

conversion of 85% and 90%, respectively, are achieved at these conditions. CO2 conversion is higher
than CH4 conversion because the reversed water-gas shift (RWGS) reaction occurs concurrently in
the reactor:

CO2 + H2 ↔ CO + H2O ∆H◦ = 41 kJ/mol (5)

Thus, slightly higher amount of CO is produced compared to the stoichiometry of the reaction.
The amount of H2 produced is also slightly higher than that dictated by the stoichiometry due to coke
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formation that occurs simultaneously with DMR. The coke is mainly formed through the following
reactions [32]:

CH4 → C + 2H2 ∆H◦ = 75 kJ/mol (6)

2CO→ C + CO2 ∆H◦ = −172 kJ/mol (7)

The composition of the DMR reactor outlet stream after considering all the aforementioned
side reactions occurring in the reactor are presented in Table 1. The H2/CO molar ratio in the
DMR outlet stream is 0.94. A gas separator (pressure swing adsorption, absorption and membrane)
could be used to separate the two gases, H2 and CO, and afterwards, the two gas streams could
be mixed again in volumetric ratio of FH2/FCO = 2 in order to achieve the targeted molar ratio for
the methanol synthesis reaction. Pressure swing adsorption (PSA) gives high separation efficiency
and is widely used in industry but low H2 recovery [33], especially at streams with low H2 content,
and high gas loss from the pressure release during desorption could be considerable disadvantages [34].
Absorption of CO is a well-known process resulting in high purity and recovery of CO, but the nature
of the solvent (cuprous chloride, hydrochloric acid and water) is associated with technical challenges
(corrosion, safety issues, high reactivity, etc.). Next to that, high pressure and low temperature,
which enhance both the absorption process and solvent recovery, have a significant impact on the
operating and capital costs. Membranes are suitable for H2 purification but practical issues, such as
membrane stability, mass transfer limitations and high costs related to operation, capital investment
and maintenance are considerable limitations for a large-scale, cost-efficient separation [35]. In addition,
half of the produced CO would remain unutilized in methanol synthesis thus resulting in lower
resource efficiency. However, the H2/CO molar ratio can be adjusted to the targeted ratio by co-feeding
water (steam) in the DMR reactor. This reaction is known as combined steam and carbon dioxide
methane reforming (SCMR), or bi-methane reforming (BMR) [36,37]. Since SCMR is an extremely
energy intensive reaction [38] and the focus of the current work is on the study of DMR as main source
of syngas, this scenario is not investigated. However, water (steam) and the DMR outlet stream react
in a WGS reactor, connected in series with the DMR reactor and operating at the same conditions
(T = 750 ◦C; P = 1 bar) [29] to promote heat integration and boost the energy efficiency of the process.
Moreover, operating at lower temperature (i.e., 400–600 ◦C), would lead to CO conversion increase
and consequently to higher amounts of H2 and CO2 and a ratio of H2/(2CO + 3CO2) ≤ 1 in the final
syngas stream. In the latter case, a liquefaction temperature lower than −10 ◦C would be needed to
remove the higher excess of CO2 and yield the targeted ratio of H2/(2CO + 3CO2) ≥ 1 in the final
syngas stream. Such decrease in the liquefaction temperature would have major impact on the energy
consumption of the process. The following reaction, known as water-gas shift (WGS) reaction, takes
place in the WGS reactor:

CO + H2O↔ CO2 + H2 ∆H◦ = −41 kJ/mol (8)

Table 1. Dry methane reforming (DMR) and water-gas shift (WGS) reactor inlet and outlet streams composition.

Stream
1 2 3 4

Feed DMR Outlet Water (Steam) WGS Outlet

Component kg/h kmol/h kg/h kmol/h kg/h kmol/h kg/h kmol/h

CO2 13,753 312.5 1315 30 - - 7739 176
CO - - 15,246 544 - - 12,281 438

H2O - - 377 21 7251 403 4276 237
H2 - - 1013 503 - - 1576 782

CH4 5013 312.5 815 51 - - 107 7
Total 18,766 625 18,766 1149 7251 403 25,979 1640

Volume flow (m3/h) 15,451 97,722 34,236 139,509
Pressure (bara) 1.0 1.0 1.0 1.0

Temperature (◦C) 25 750 750 750
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The RGIBBS reactor model is also used to simulate the WGS reactor at steady state. Chemical
equilibrium is also achieved at 750 ◦C and 1 bar. The amount of steam that is added to promote
the WGS reaction has been defined after a sensitivity analysis, setting as objective the molar ratio
of H2/CO to be equal to 2 at the WGS outlet stream (Figure 1). Co-feeding of 14,502 kg/h of water
(steam) results in the targeted ratio. However, it has been noticed that, only in the thermal catalytic
process, even lower water amount (7251 kg/h) can be fed in WGS and still meet the targeted syngas
composition at the end of the process. This is possible since the SMR controls the H2/CO ratio, thus,
it is not necessary the H2/CO to be equal to 2 at the WGS outlet stream. Therefore, co-feeding of
7251 kg/h steam (2974 kg/h of fresh water and 4277 kg/h of water recycled from the compression
section) are fed in the WGS.
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CO and H2O conversion of 19.5% and 41.2%, respectively, are achieved at those conditions in the
WGS reactor. The composition of the WGS reactor outlet stream is presented in Table 1. The combined
DMR and WGS constitutes the upstream part (reaction section) that is common for all thermal catalytic
process alternatives. The upstream part is presented in Figure 2.
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Since considerable differences have been reported between the experimental and theoretical
equilibrium constants (Keq) of the WGS reaction [39–41], a sensitivity analysis has been performed to
investigate the effect of Keq at 750 ◦C on H2/CO and H2/(2CO + 3CO2) (Figure 3). Figure 3 shows that,
when Keq varies from 0.45 to 1.3, the ratios H2/CO and H2/(2CO + 3CO2) (process targets) remain
practically unaffected.Energies 2017, 10, 1429 7 of 27 
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at 750 ◦C. The effect of the experimental equilibrium constants reported by Herguido et al. [39] and
Khan et al. [40], the theoretical one reported by Twigg [41], and the theoretical one calculated by
Aspen Plus process simulator V8.8 (this work) on the H2/CO and H2/(2CO + 3CO2) ratio of the WGS
outlet and final syngas stream, respectively, is shown.

The WGS reactor outlet stream flows towards the downstream part of the process in order to be
purified prior to being fed into the FT process. A considerable amount of CO2 is produced after the
WGS reaction; thus, it needs to be separated from the entire gas mixture to achieve the targeted stream
composition of H2/(2CO + 3CO2) ≥ 1.

Absorption (both chemical and physical absorption), adsorption, membrane separation and
cryogenic processes are well-studied carbon capture and storage (CCS) processes. Chemical and
physical absorption (i.e., amine process and Selexol solvent, respectively) have drawn considerable
attention due to their relatively high technical maturity and feasibility for large scale capacities.
However, challenges, such as solvents chemical instability and high energy requirements for solvent
regeneration [42] should be taken into account. The adsorption and membrane processes are also
considered promising CCS technologies due to their potential for lower energy consumption for
CO2 separation compared to absorption. However, capacity limitations, high capital investment and
lower separation efficiency compared to absorption (lower CO2 purity and recovery) are important
disadvantages [43–46]. The cryogenic separation process attains high separation efficiency and
compression and refrigeration systems are well-established at large scale. Nevertheless, extremely
low temperature and high compression rates increase substantially the operation cost [47] and many
efforts are currently devoted to process optimization and energy requirement reduction [48,49].

Considering the strengths and weaknesses of the aforementioned CCS technologies as well as
their technology readiness level and maturity at large scale capacities, CO2 absorption using amines
and cryogenic separation are selected as downstream process sections in a thermal catalytic DMR
process for syngas production. Two PBDs are developed and evaluated below.

2.2.1. Thermal Catalytic DMR Process with CO2 Absorption (Amine Process)

In this scenario, the excess of CO2 is captured in an absorber using monoethanolamine (MEA) [50].
The WGS reactor outlet stream enters from the bottom of the absorber and comes in contact with an
aqueous MEA solution, which enters from the top and flows counter-currently to the WGS reactor
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outlet stream. CO2 reacts exothermically with MEA and form a water-soluble salt. The released heat is
absorbed by the fresh streams that enter the column. The temperature and pressure of the column are
~57 ◦C and 3.4 bar, respectively. The rich in salt MEA stream exits the absorber from the bottom of the
column, while the free of CO2 stream exits from the top. The rich MEA stream is preheated in a heat
exchanger by the regenerated MEA stream from the stripper (heat integration to reduce the energy
cost) and enters the stripper where the salt formation reaction is reversed by supplying additional
heat. The temperature and pressure of the stripper column are 110–120 ◦C and 2 bar, respectively.
In the stripper, CO2 is degassed from the MEA stream and gets off from the top of the stripper column,
whereas the regenerated MEA stream gets off from the bottom. Consequently, CO2 and MEA are
recycled back to the DMR reactor and the absorber, respectively. The PBD of the process and the
process flow diagram of this downstream process alternative are presented in Figure 4.
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Absorption of CO2 using MEA has been extensively studied and simulated [52,53]. The economic
potential of the process has also been evaluated and compared with other peer CO2 capture
technologies [54]. Recently, Luyben [51] designed a DMR process for syngas production. He developed
and evaluated two process alternatives: one without CO2 recycle, thus no separation section was
included, and one with CO2 recycle, therefore an absorber with aqueous MEA solution and a stripper
for solvent regeneration was included. He concluded that the scenario of CO2 recycle results in
lower total annual cost than the scenario without CO2 recycle and notably, the total annual cost is
minimized when the reactor pressure is at 4 bar. Approximately 5.6 kWh/kmolsyngas cold utility,
2.6 kWh/kmolsyngas hot utility, 2.4 kWh/kmolsyngas of electrical power and 6.6 k$/(kmolsyngas h−1)
are required for syngas purification when adopting this process alternative.

2.2.2. Thermal Catalytic DMR Process with CO2 Liquefaction (Cryogenic Separation)

In this scenario, a cryogenic process is employed for CO2 excess removal. The WGS reactor outlet
stream is initially compressed to 30 bar, a suitable pressure for the Fischer-Tropsch process. Moreover,
pressure increase facilitates the cryogenic separation as the liquefaction temperature increases too.
Almost all H2O is condensed and removed after the first compression stage; the compressed stream at
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5 bar is cooled down to 20 ◦C and flashed in a knock-out drum (vapor–liquid separators). The stream is
further compressed to 15 bar and cooled down firstly by the liquid stream coming from the knock-out
drum and consequently, by an external cold utility. Part of the CO2 is liquefied and recovered from
the drum. The stream is further pressurized to 30 bar, cooled down to −115 ◦C and flashed. Under
such conditions, almost the entire amount of CO2 is liquefied and removed from the stream. The cold
purified syngas stream can be integrated in the process and be used as cold utility. The PBD of the
process and the process flow diagram of this downstream process alternative are presented in Figure 5.Energies 2017, 10, 1429 9 of 27 
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(DMR) process with cryogenic separation process [55] (CO2 liquefaction process).

Cryogenic separation is not only used in oil and gas industry for light hydrocarbons separation [56,57],
but also for synthetic natural gas purification [47,58]. Although cryogenic separation requires no
chemical agents, the extreme operating conditions require high energy consumption, which is a major
drawback. Especially when gases with lower boiling points (H2, CH4, and CO) are present, the phase
transition temperature of CO2 drops to values even lower than −80 ◦C and the refrigeration energy
becomes the main cost driver of the separation. The effect of CO2 concentration on the phase transition
temperature is presented in Figure 6.
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Simulating this scenario in the Aspen Plus process simulator V8.8, it is found that the CO2 phase
transition temperature in the syngas stream (14.4% CO2, 28.7% CO and 56.9% H2) at a pressure of 30 bar
is −115 ◦C for 99.2% recovery, result which is in accordance with Figure 6b. Based on the simulation
results, ~5.3 kWh/kmolsyngas cold utility, 3.1 kWh/kmolsyngas hot utility and 7.9 kWh/kmolsyngas

electrical power are required for syngas purification. The capital investment of the CO2 liquefaction
process is lower than the MEA absorption process and similar to SelexolTM absorption process [55].
Xu et al. [47] have also compared the total capital investments of a CO2 liquefaction process over
the SelexolTM process and concluded that the first is about 40% less expensive than the second
one. Thus, the capital investment of the CO2 liquefaction process is about 4 k$/(kmolsyngas h−1)
including the compression section and the refrigeration system needed to achieve the required
operating temperatures.

2.2.3. Thermal Catalytic DMR Process Integrated with SMR

Removal of CO2 from the WGS outlet reactor stream increases the syngas production cost.
Avoidance of implementation of CO2 separation processes might increase the economic potential
of syngas production. Additional gas conditioning units can be used instead of the energy and
capital-intensive CCS technologies. In this scenario, steam methane reforming (SMR) is implemented
in the process as an additional conditioning unit to tune the final syngas composition. Water (steam)
reacts with CH4 according to the following reaction:

CH4 + H2O↔ CO + 3H2 ∆H◦ = 206 kJ/mol (9)

Syngas with different ratio than the WGS reactor outlet stream is produced in the SMR reactor.
The two syngas streams are mixed and the final syngas composition attains the targeted molar ratio.

The RGIBBS reactor model is also used to simulate the SMR reactor at steady state. Chemical
equilibrium is achieved at 1000 ◦C and 1 bar. Equimolar feed stream is assumed at the inlet of SMR
reactor. The amount of methane and steam that is added to promote the SMR reaction has been defined
after a sensitivity analysis, setting as objective the targeted molar ratio H2/(2CO + 3CO2) ≥ 1 at the
final syngas stream. A feed of 22,351 kg/h of methane and steam (10,528 kg/h of CH4 and 11,823 kg/h
of steam) results in achieving the targeted ratio. Conversion of 98.5% and 98.8% of CH4 and H2O
(steam), respectively, are achieved at these conditions in the SMR reactor. The PBD and the process
flow diagram of this downstream process alternative are presented in Figure 7.

Combination of DMR, WGS and SMR also in one step, known as combined steam-CO2 methane
reforming (SCMR), has been studied elsewhere [59,60] as a possible route for syngas production.
Gangadharan et al. [61] concluded that a process combining dry methane reforming with steam
methane reforming has comparable economic potential with the well-established SMR for syngas
production and lower carbon footprint. Basini and Piovesan [62] showed that this hybrid process is
the most economical route to produce syngas with molar ratio of H2/CO equal to 2. Based on the
simulation results in the Aspen Plus process simulator V8.8, ~22.8 kW/(kmolsyngas h−1) cold utility,
16.5 kW/(kmolsyngas h−1) hot utility and 15.8 kWh/kmolsyngas electrical power are required for syngas
purification. It is worth mentioning that there is high potential of heat integration in this process,
which will radically reduce the operating cost [63]. The capital investment of this process alternative
is ~5.5 k$/(kmolsyngas h−1); it includes the cost of compression section, which has been estimated
at 5.4 k$/(kmolsyngas h−1) by Luyben [51], and the SMR reactor cost, which has been estimated at
0.06 k$/(kmolsyngas h−1) by Gangadharan et al. [61].
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2.2.4. Process Alternatives Evaluation for Thermal Catalytic DMR Process

In this section, the syngas purification process alternatives are evaluated based on their
performance and the most competitive one is selected for the detailed design. The performance
of each alternative is presented in Table 2.

Table 2. Table 2. Performance criteria of the downstream process alternatives for thermal catalytic dry
methane reforming (DMR) process.

Purification
Processes

Cold Duty
kW/kmolsyngas h−1

Hot Duty
kW/kmolsyngas h−1

Electricity
kWh/kmolsyngas

Capital Investment
k$/(kmol h−1)

Resource Efficiency
kmolsyngas/kmolCH4

MEA
absorption 5.6 2.6 2.4 6.6 4.00

CO2
liquefaction 5.3 3.1 7.9 4.0 3.91

Combined
DMR + SMR 22.8 16.5 15.8 5.5 4.14

The MEA absorption process alternative requires the lowest amount of hot utility and electricity
while the cold utility demand is almost the same as the CO2 liquefaction process. The utilization of
CH4 to syngas is high too. However, it is the most capital-intensive process among the others, mainly
due to distillation and stripping columns needed. Moreover, use of aqueous MEA solvents increases
the environmental impact of the process. The CO2 liquefaction process requires low cold and hot utility.
Even though the cold duty is similar to the MEA absorption process, the actual cost is significantly
higher because the operating temperatures are well below zero, so refrigerants as cooling media are
required; in the other cases, cooling water is used since the operating temperatures are close to ambient.
Considerable amount of electricity is required due to refrigeration system operation. No complex
equipment is needed; therefore, the capital investment is low. Syngas losses due to purge streams,
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however, result in the lowest resource efficiency among the other process alternatives. The combined
DMR + SMR process requires the highest cold and hot utility. In addition, ambient temperatures are
targeted so cooling water can be used. High electrical power is required due to high flow rates of
the process (steam is also added to promote the SMR reaction). The capital investment is relatively
low since conventional equipment is used. The combined DMR + SMR process achieves the highest
resource efficiency since syngas is the only product that is formed in the reformers and few separation
steps are involved in the process, thus minimizing the material losses. Generally, the process design
focus is on high resource efficiency (since raw material is the cost driver) and low capital investment.
Low utility cost is also preferable but it is not a significant cost in syngas production cost as compared
with the first two [19,64]. Based on the process evaluation, the combined SMR + DMR process is the
most promising alternative. The economic potential of this process has been studied elsewhere [61,64].

2.3. Plasma-Assisted DMR Process

Purified streams of CH4 and CO2 are fed in the plasma reactor powered by a repetitive nanosecond
pulsed power generator, where plasma-assisted dry methane reforming (P-DMR) occurs. The most
important electron impact reactions, which take place inside the plasma reactor are described
elsewhere [65].

To develop the process flow diagram and evaluate the P-DMR process, the results obtained
by Scapinello et al. [31] are linearly extrapolated at industrial capacities. This is a valid assumption
considering that the industrial scale plasma reactors are bundles of small scale plasma reactor units [66],
as it can be seen in Figure 8.
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Therefore, the RSTOIC reactor model (stoichiometry and molar extent is known for each reaction)
is used to simulate the plasma reactor at steady state. The temperature and pressure in the plasma
reactor is 200 ◦C and 1 bar. CH4 and CO2 conversion of approximately 51% and 42.5%, respectively are
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achieved at specific energy input of 10 kJ/Lfeed. CH4 conversion of is higher than that of CO2 because
the dissociation energy of C-H bond (337.2 kJ/mol) is lower than the one of C=O (749 kJ/mol).
Consequently, both high- and low-energy electrons may result in CH4 dissociation, while only
high energy electrons may result in CO2 dissociation. Considering that the number of high energy
electrons is lower than the number of low energy electrons in non-equilibrium plasma, the rate of
CH4 dissociation reactions is higher than that of CO2. Thus, higher CH4 conversion is observed in the
P-DMR process.

The composition of the P-DMR reactor outlet stream after considering all the important plasma
activated reactions are presented in Table 3. The H2/CO molar ratio in the P-DMR outlet stream is 1.1.
However, the molar ratio should be increased in order to reach the targeted value while unconverted
reactants still need to be recovered from the stream and recycled back to the reactor.

Table 3. Plasma-assisted dry methane reforming (P-DMR) reactor inlet and outlet streams composition.

Stream
1 2 3 4

Feed P-DMR Outlet Water (Steam) SCMR Outlet

Component kg/h kmol/h kg/h kmol/h kg/h kmol/h kg/h kmol/h

CO2 22,005 500 12,595 286 - - 14,171 322
CO - - 8095 289 - - 16,445 587

H2O - - 2450 136 24,321 1350 20,110 1116
H2 - - 647 321 - - 2503 1242

CH4 8021 500 3979 248 - - 2 × 10−1 1 × 10−2

C2H6 - - 75 2.5 - - - -
C2H4 - - 175 6.25 - - - -
C2H2 - - 879 33.8 - - - -
C3H8 - - 14 3 × 10−1 - - - -
Coke - - 1117 - - - - -
Total 30,026 1000 30,026 1323 24,321 1350 53,229 3267

Vol. Flow (m3/h) 24,721 52,027 105,861 345,771
Pressure (bara) 1.0 1.0 1.0 1.0

Temperature (◦C) 25 200 1000 1000

The above-mentioned CCS technologies can be used for the unreacted CO2 removal. Chemical
absorption, membranes and adsorption technologies are mature and applicable to CH4 removal. Even
hybrid solutions (membrane and absorption based technologies) have been proposed and explicitly
designed for this purpose [67]. Once the P-DMR outlet stream is purified and the targeted molar ratio
is achieved (H2/CO ≥ 2), syngas may be fed in the FT process for methanol production.

Reactants removal can also be realized by secondary reactions; in this study, CH4 can be further
converted in a SCMR reactor into syngas simply by adding steam. Except for CH4, a small amount
of CO2 also reacts with H2 (RWGS reaction). Simultaneously, CO is converted to H2 (WGS reaction)
resulting in H2/CO molar ratio increase. Eventually, the whole CH4 amount is converted to syngas in
one reactor pass, while less CO2 needs to be removed from the syngas stream prior to FT.

Two PBDs, which correspond to the above-mentioned separation alternatives, are developed and
evaluated below.

2.3.1. Plasma-Assisted DMR Process with CH4 and CO2 Removal

This process configuration is initially simulated in the Aspen Plus process simulator V8.8.
The P-DMR outlet stream is compressed in two steps. First, it is compressed from atmospheric
pressure to 30 bar to facilitate CO2 removal by liquefaction; the stream is simultaneously cooled down
to −100 ◦C. The liquid CO2 is recovered from the bottom of a knock-out drum. The separation of
CH4 from H2 and CO is accomplished by an absorption/stripping process [68] at industrial scale.
The cooled, free-of-CO2 stream is further compressed to 33 bar to enhance the solubility of CH4 in the
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liquid C3H8, which is chosen as suitable solvent; the solubility of CH4 in liquid C3H8 is the highest
among the organic solvents, such as C4H10, C5H12, C6H14 and C8H18 [68]. The free-of-CO2 stream
enters the absorption column from the bottom and flows counter-currently with the solvent stream,
which enters form the top. CH4 is selectively dissolved and the rich-in-CH4 stream leaves from the
bottom of the column. The purified syngas stream escapes from the top. The solvent is regenerated
in a stripping column at 30 bar where 80.5% of CH4 is recovered. The stripper outlet stream is
depressurized down to 10 bar and stripped further in a second stripping column where all the amount
of CH4 is recovered. Inevitably, ~15% of C3H8 is contained in the CH4 stream; the remaining 85% of
C3H8 is recycled back to the absorber. A third stripper, operating at 25 bar, is employed to recover
the remaining amount of solvent, since C3H8 losses drive the economic viability of this separation
process. It has been estimated that the separation is not economically viable for solvent losses higher
than 6% [68]. In this process simulation, 99% of the solvent is recovered. Eventually, CH4 and C3H8,
which are separated in the last stripping tower, are recycled back to the plasma reactor and absorber,
respectively. The excess of CO2 is further removed in a CO2 liquefaction process and the targeted
molar ratio (H2/(2CO + 3CO2) ≥ 1) is attained. The PBD and the respective process flow diagram are
presented in Figure 9.
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2.3.2. Plasma-Assisted DMR Process Integrated with SCMR

Steam-CO2 combined methane reforming (SCMR) is chosen in this scenario as a process alternative
to “purify” the P-DMR outlet stream by adding water, thus, SCMR is promoted according to the
following reaction:

3CH4 + CO2 + 2H2O↔ 4CO + 8H2 ∆H◦ = 659 kJ/mol (10)
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SCMR is a process with high industrial interest since syngas with H2/CO = 2 molar ratio is
produced that is suitable for gas-to-liquids [69] and catalysts have been synthesized to boost the
reaction performance [59,60,70].

The RGIBBS reactor model is used to simulate the SCMR reactor at steady state. Chemical
equilibrium is achieved at 1000 ◦C and 1 bar. The amount of steam that is added to promote the SCMR
reaction has been defined after a sensitivity analysis, setting as objective the molar ratio of H2/CO to
be at least equal to 2 at the SCMR outlet stream. According to Jang et al. [30], (CO2 + H2O)/CH4 molar
ratio higher than 1.2 (8.5 in this simulation), CO2/H2O ratio higher than 0.47 (0.6 in this simulation)
and a temperature higher than 850 ◦C (1000 ◦C in the simulation) are preferable reaction conditions for
syngas preparation suitable for GTL processes. Co-feeding of 18015 kg/h of water (steam) results in the
targeted ratio. CH4, CO2 and H2O conversion of 99.9%, 10% and 23.1%, respectively, are achieved at
these conditions in the SCMR reactor. The composition of the SCMR reactor outlet stream is presented
in Table 3. The excess of CO2 is further removed in a CO2 liquefaction process and the targeted molar
ratio (H2/(2CO + 3CO2) ≥ 1) is attained. The respective PBD as well as the process flow diagram are
presented in Figure 10.Energies 2017, 10, 1429 15 of 27 
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2.3.3. Process Alternatives Evaluation for Plasma-Assisted DMR Process

The process alternative of CH4 and CO2 removal comprises eight process steps. Each process step
requires unique process equipment while the feed throughputs are high; thus, the capital investment
is foreseen to be high. Consequently, maintenance cost, which is assumed to be a fixed percentage
of capital investment [71], is expected to be high, too, in this scenario. Moreover, temperature and
pressure swing, which aim at solvent recovery together with high flow rate streams due to solvent use,
increase the electricity demand, hot and cold duty in the process. This process certainly leads to highly
complex process design.

The plasma-assisted DMR integrated with SCMR seems to be simpler process than P-DMR with
CH4 and CO2 removal since it comprises four process steps. The capital investment and maintenance
cost are foreseen to be lower due to less pieces of equipment, while constant pressure and temperature
profiles mitigate the utility demand. In addition, higher CH4 and CO2 conversion is reached per
reactor pas, which leads to higher resource efficiency. Collectively, plasma-assisted DMR integrated
with SCMR is the most promising process alternative and is selected for the detailed design.

2.4. Heat Integration

Heat integration is performed in both thermal catalytic and plasma-assisted DMR process to
recover and efficiently utilize all the available hot and cold process streams, thus, simulate a more
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relevant industrial environment. The hot and cold utility demand is minimized and a more realistic
energy comparison between the two processes is conducted. Eventually, the respective heat exchanger
network is designed with respect to the pinch analysis principles. The following assumptions
are considered:

- The minimum temperature difference (∆Tmin) is set at 20 ◦C
- The streams enthalpy is based on energy balances obtained by the process simulation.
- For the streams where phase change occurs during heating up, a pseudo CPM is calculated

comprising the required energy both for evaporation and heating; the total stream enthalpy (∆H)
is divided by the respective temperature difference.

In a thermal catalytic DMR process, five cold and six hot process streams are integrated to reduce
the total hot and cold utility demand (Table 4). The total hot and cold utility demand before heat
integration is 45.7 MW and 56.7 MW, respectively. The heat balances for the temperature intervals
(Table 5) show that high surplus of energy is accumulated in the process. This fact is confirmed by the
grand composite curve (GCC) (Figure 11) where the net heat flow against the shifted temperature is
presented. A considerable energy pocket occurs in the process and proves the high potential of energy
integration in thermal catalytic DMR process. The problem table algorithm for the required utilities
(Table 6) reveals that ideally no hot utility is required to preheat the process streams at steady state.
Heat is required only for the endothermic DMR, WGS and SMR reactions.
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Table 4. Available process streams for heat integration in thermal catalytic dry methane reforming (DMR) process.

Streams
Actual Temperature Interval Temperature CPM ∆H Total Demand

◦C ◦C
kW/◦C kW MW

Tsup Ttarg Tsup Ttarg

FEED Cold 1 25 750 35 760 9.0 6496

45.7
(Hot utility)

WATER to WGS Cold 2 25 750 35 760 11.0 7945
CH4 to SMR Cold 3 25 1000 35 1010 11.2 10,901
H2O to SMR Cold 4 25 1000 35 1010 15.3 14,920

Syngas Cold 5 88 250 98 260 33.6 5441

Comp1 Hot 1 1342 20 1332 10 18.1 −23,883

−56.7
(Cold Utility)

Comp2 Hot 2 162 20 152 10 12.4 −1767
Comp3 Hot 3 104 −10 94 −20 12.6 −1436

SMR-OUT Hot 4 1000 50 990 40 22.1 −20,967
CompSMR1 Hot 5 299 50 289 40 21.3 −5302
CompSMR2 Hot 6 208 50 198 40 21.3 −3368
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Table 5. Heat balances for the temperature intervals in thermal catalytic dry methane reforming (DMR) process.

Temperature
(◦C) Stream Overlapping ∆T

(◦C)
∆Cp(H,C)
(kW/◦C)

∆H
(kW) Surplus/Deficit

1332
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  

0

∆H = −5817.2 kW

1010

Energies 2017, 10, 1429 17 of 27 

 

Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 

 ΔΗ = 2951.0 kW  

289  5838.1 

 ΔΗ = −435.8 kW  

260  6273.9 

 ΔΗ = 1150.6 kW  

198  5123.3 

 ΔΗ = −126.9 kW  

152  5250.1 

 ΔΗ = −820.9 kW  

98  6071.0 

 ΔΗ = −195.2 kW  

94  6266.2 

 ΔΗ = −3314 W  

40  9580.9 

 ΔΗ = 16.5 kW  

35  9564.5 

 ΔΗ = −1077.6kW  

10  10,642.1 

 ΔΗ = −377.9 kW  

−20  11,020.0 

 Cold utility  

The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  

5817.2

∆H = 168.3 kW

990

Energies 2017, 10, 1429 17 of 27 

 

Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 

 ΔΗ = 2951.0 kW  

289  5838.1 

 ΔΗ = −435.8 kW  

260  6273.9 

 ΔΗ = 1150.6 kW  

198  5123.3 

 ΔΗ = −126.9 kW  

152  5250.1 

 ΔΗ = −820.9 kW  

98  6071.0 

 ΔΗ = −195.2 kW  

94  6266.2 

 ΔΗ = −3314 W  

40  9580.9 

 ΔΗ = 16.5 kW  

35  9564.5 

 ΔΗ = −1077.6kW  

10  10,642.1 

 ΔΗ = −377.9 kW  

−20  11,020.0 

 Cold utility  

The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  

5648.8

∆H = −3140.2 kW

760

Energies 2017, 10, 1429 17 of 27 

 

Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 

 ΔΗ = 2951.0 kW  

289  5838.1 

 ΔΗ = −435.8 kW  

260  6273.9 

 ΔΗ = 1150.6 kW  

198  5123.3 

 ΔΗ = −126.9 kW  

152  5250.1 

 ΔΗ = −820.9 kW  

98  6071.0 

 ΔΗ = −195.2 kW  

94  6266.2 

 ΔΗ = −3314 W  

40  9580.9 

 ΔΗ = 16.5 kW  

35  9564.5 

 ΔΗ = −1077.6kW  

10  10,642.1 

 ΔΗ = −377.9 kW  

−20  11,020.0 

 Cold utility  

The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  

8789.1

∆H = 2951.0 kW

289

Energies 2017, 10, 1429 17 of 27 

 

Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 

 ΔΗ = 2951.0 kW  

289  5838.1 

 ΔΗ = −435.8 kW  

260  6273.9 

 ΔΗ = 1150.6 kW  

198  5123.3 

 ΔΗ = −126.9 kW  

152  5250.1 

 ΔΗ = −820.9 kW  

98  6071.0 

 ΔΗ = −195.2 kW  

94  6266.2 

 ΔΗ = −3314 W  

40  9580.9 

 ΔΗ = 16.5 kW  

35  9564.5 

 ΔΗ = −1077.6kW  

10  10,642.1 

 ΔΗ = −377.9 kW  

−20  11,020.0 

 Cold utility  

The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  

6266.2

∆H = −3314 W

40

Energies 2017, 10, 1429 17 of 27 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12.
Nine process-to-process streams heat exchangers and five coolers are required for the heat integration.
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the
CH4 stream to SMR reactor needs to be heated from 847 ◦C to 1000 ◦C by an external heat source,
even though there is still an amount of heat in the process, which could be used to satisfy this heat
deficit. It has been estimated that two more heat exchangers should have been placed in the network
to achieve that resulting in higher capital investment. Instead of designing a more expensive and
complicated network, it is preferred to heat the stream up to 1000 ◦C in the SMR.Energies 2017, 10, 1429 18 of 27 
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(Table 8) show that there is a surplus of energy in the process that can be used for heating. This energy 
pocket gets noticeable in GCC (Figure 13) and is high enough to satisfy the heating requirements as 
it is shown in the problem table algorithm (Table 9). Eventually, no extra source of energy is required 
to preheat the streams at steady state; heat is required only for the endothermic SCMR reaction. 
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S12 Cold 2 0 25 10 35 24.0 600 
S15 Cold 3 −44 250 −34 260 15.3 4494 
S1 Cold 4 200 1000 210 1010 16.3 13,013 
S9 Hot 1 1552 0 1542 −10 42.7 −66,213 −72.8 

(Cold Utility) S10 Hot 2 126 −100 116 −110 29.0 −6555 

  

Figure 12. Heat exchanger network for the thermal catalytic dry methane reforming (DMR) process: in
white, coolers for the hot process streams; and, in grey, the steam methane reforming (SMR) reactor.

In plasma-assisted DMR process, four cold and two hot process streams are integrated to reduce
the total hot and cold utility demand (Table 7). The total hot and cold utility demand before heat
integration is 48.8 MW and 72.8 MW, respectively. The heat balances for the temperature intervals
(Table 8) show that there is a surplus of energy in the process that can be used for heating. This energy
pocket gets noticeable in GCC (Figure 13) and is high enough to satisfy the heating requirements as it
is shown in the problem table algorithm (Table 9). Eventually, no extra source of energy is required to
preheat the streams at steady state; heat is required only for the endothermic SCMR reaction.

Energies 2017, 10, 1429 18 of 27 

 

 
Figure 12. Heat exchanger network for the thermal catalytic dry methane reforming (DMR) process: 
in white, coolers for the hot process streams; and, in grey, the steam methane reforming (SMR) reactor. 

In plasma-assisted DMR process, four cold and two hot process streams are integrated to reduce 
the total hot and cold utility demand (Table 7). The total hot and cold utility demand before heat 
integration is 48.8 MW and 72.8 MW, respectively. The heat balances for the temperature intervals 
(Table 8) show that there is a surplus of energy in the process that can be used for heating. This energy 
pocket gets noticeable in GCC (Figure 13) and is high enough to satisfy the heating requirements as 
it is shown in the problem table algorithm (Table 9). Eventually, no extra source of energy is required 
to preheat the streams at steady state; heat is required only for the endothermic SCMR reaction. 

 
Figure 13. Grand composite curve of the plasma-assisted dry methane reforming (P-DMR) process. 
An energy pocket can be used to heat up the cold streams without needing an extra heat source. 

Table 7. Available process streams for heat integration in the plasma-assisted dry methane reforming 
(P-DMR) process. 

Stream Name 
(Suppl. Material) 

Stream Type 
Actual Temperature Interval Temperature CPM ΔΗ Total Demand

°C °C
kW/°C kW MW 

Tsup Ttarg Tsup Ttarg

S4 Cold 1 25 1000 35 1010 31.5 30,692 
48.8 

(Hot Utility) 
S12 Cold 2 0 25 10 35 24.0 600 
S15 Cold 3 −44 250 −34 260 15.3 4494 
S1 Cold 4 200 1000 210 1010 16.3 13,013 
S9 Hot 1 1552 0 1542 −10 42.7 −66,213 −72.8 

(Cold Utility) S10 Hot 2 126 −100 116 −110 29.0 −6555 

  

Figure 13. Grand composite curve of the plasma-assisted dry methane reforming (P-DMR) process.
An energy pocket can be used to heat up the cold streams without needing an extra heat source.



Energies 2017, 10, 1429 19 of 27

Table 7. Available process streams for heat integration in the plasma-assisted dry methane reforming
(P-DMR) process.

Stream Name
(Suppl. Material)

Stream
Type

Actual Temperature Interval Temperature CPM ∆H Total Demand
◦C ◦C

kW/◦C kW MW
Tsup Ttarg Tsup Ttarg

S4 Cold 1 25 1000 35 1010 31.5 30,692
48.8

(Hot Utility)
S12 Cold 2 0 25 10 35 24.0 600
S15 Cold 3 −44 250 −34 260 15.3 4494
S1 Cold 4 200 1000 210 1010 16.3 13,013

S9 Hot 1 1552 0 1542 −10 42.7 −66,213 −72.8
(Cold Utility)S10 Hot 2 126 −100 116 −110 29.0 −6555

Table 8. Heat balances for the temperature intervals in the plasma-assisted dry methane reforming
(P-DMR) process.

Temperature
(◦C) Stream Overlapping ∆T

(◦C)
∆Cp(H,C)
(kW/◦C)

∆H
(kW) Surplus/Deficit

1542
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though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 

 ΔΗ = 2951.0 kW  

289  5838.1 

 ΔΗ = −435.8 kW  

260  6273.9 

 ΔΗ = 1150.6 kW  

198  5123.3 

 ΔΗ = −126.9 kW  
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 ΔΗ = −820.9 kW  
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 ΔΗ = −377.9 kW  

−20  11,020.0 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 
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289  5838.1 

 ΔΗ = −435.8 kW  
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  
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 ΔΗ = 168.3 kW  
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−20  11,020.0 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  

760  8789.1 

 ΔΗ = 2951.0 kW  
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 ΔΗ = −435.8 kW  
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 ΔΗ = 1150.6 kW  
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 ΔΗ = −820.9 kW  
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 ΔΗ = −195.2 kW  
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 ΔΗ = −3314 W  

40  9580.9 

 ΔΗ = 16.5 kW  

35  9564.5 

 ΔΗ = −1077.6kW  

10  10,642.1 

 ΔΗ = −377.9 kW  

−20  11,020.0 

 Cold utility  

The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  
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Table 6. Problem table algorithm for the required utilities in thermal catalytic dry methane reforming 
(DMR) process. 

T (°C) Hot Utility ΔH (kW) 

1332  0 

 ΔΗ = −5817.2 kW  

1010  5817.2 

 ΔΗ = 168.3 kW  

990  5648.8 

 ΔΗ = −3140.2 kW  
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 ΔΗ = 2951.0 kW  
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 ΔΗ = 1150.6 kW  
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 ΔΗ = −1077.6kW  
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−20  11,020.0 
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The heat exchanger network of the thermal catalytic DMR process is presented in Figure 12. Nine 
process-to-process streams heat exchangers and five coolers are required for the heat integration. 
Ideally, no hot utility demand is required. However, in the proposed heat exchanger network the 
CH4 stream to SMR reactor needs to be heated from 847 °C to 1000 °C by an external heat source, even 
though there is still an amount of heat in the process, which could be used to satisfy this heat deficit. 
It has been estimated that two more heat exchangers should have been placed in the network to 
achieve that resulting in higher capital investment. Instead of designing a more expensive and 
complicated network, it is preferred to heat the stream up to 1000 °C in the SMR.  

23,968.7

Cold utility
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The heat exchanger network of the plasma-assisted DMR process is presented in Figure 14. Five
process-to-process streams heat exchangers and two coolers are required for the heat integration.
The cold streams are heated up to the target temperature without extra hot utility. The two extra
coolers cool the hot streams down to the target temperature.
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Both processes manage to reduce the utilities demand after the heat integration. In Table 10, the 
hot and cold utility demand before and after heat integration is presented; 95.4% and 79.7% less hot 
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utility by 67% is required in the plasma-assisted DMR process. The utility demand reduction is 
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investment increases too. However, the objective is to attain highly energy efficient DMR processes 
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2.5. Equipment Cost Estimation 

The cost of the process equipment needed for syngas production through thermal catalytic and 
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Figure 14. Heat exchanger network for the plasma-assisted dry methane reforming (P-DMR) process.

Both processes manage to reduce the utilities demand after the heat integration. In Table 10,
the hot and cold utility demand before and after heat integration is presented; 95.4% and 79.7% less
hot and cold utility, respectively, is required in thermal catalytic DMR; no hot utility and reduced
cold utility by 67% is required in the plasma-assisted DMR process. The utility demand reduction is
attained at the expense of capital investment. The number of heat exchangers increases, thus capital
investment increases too. However, the objective is to attain highly energy efficient DMR processes
and the heat exchangers cost is not expected to significantly raise the capital investment.

Table 10. Hot and cold utility demand before and after heat integration.

DMR Processes

Hot Utility, MW Cold Utility, MW

Before Heat
Integration

After Heat
Integration

Before Heat
Integration

After Heat
Integration

Thermal catalytic DMR process 45.7 2.1 56.7 11.0
Plasma-assisted DMR process 48.8 - 72.8 24

2.5. Equipment Cost Estimation

The cost of the process equipment needed for syngas production through thermal catalytic and
plasma-assisted DMR is estimated. The equipment cost is estimated using cost equations, which are
based on the key characteristic of each piece of equipment [71]. The key characteristic of each piece of
equipment is obtained from the process simulation.

The cost of thermal catalytic DMR, SMR, WGS and SCMR reactors is estimated by the
following equation:

C = 1.218× k× (1 + f d + fp
)
×Q0.86 (11)

The reactors are fired heaters, box type reformers, made of carbon steel and operating at moderate
pressure. The key characteristic of the thermal catalytic reactors is the net heat duty.

The cost of compressors is estimated by the following equation:

C = 7.19× (HP)0.61 (12)

Reciprocating compressors are used for the gas transportation and compression. The key
characteristic of the compressors is the indicated horsepower required for gas transportation and
compression to the target pressure.

Shell-and-tube heat exchangers made of carbon steel are employed to build the heat exchanger
network. The key characteristic is the heat exchange area and the cost is estimated by the equation:
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C = 1.218× fd × fm × fp ×Cb (13)

where Cb = exp
[
8.821− 0.30863× lnA + 0.0681× (lnA)2

]
; fd = exp[−1.1156 + 0.0906× lnA];

fm = 1; fp = 1.
The cost of coolers which operate at 20 ◦C is given by the same equation as the heat exchangers

cost. The cost of the coolers, which operate at lower temperature (0 ◦C, −10 ◦C and −100 ◦C), is
given by:

C = 178× F×Q0.61 (14)

where F is 1, 1.55 and 4 for 0 ◦C, −10 ◦C and −100 ◦C, respectively.
The cost of the plasma reactor is based on the lab scale plasma reactor cost, which was used

by Scapinello et al. [31] and reached ~8 k$. The cost also takes into account the cost of repetitive
nanosecond pulsed power unit and the six-tenth power rule is used to estimate the installed cost of
the plasma reactor at industrial scale. Eventually, using installation factors, the purchase equipment
costs are converted into installed costs. The purchase and installed process equipment cost for thermal
catalytic and plasma-assisted DMR process are presented in Tables 11 and 12 respectively. Regarding
the thermal catalytic process, compressors have the highest contribution to the equipment cost. SMR
and DMR reactors are also significant costs. In the plasma-assisted process, the plasma reactor is
the most expensive piece of equipment. Compressors and refrigeration systems are also expensive
equipment units.

Table 11. Total equipment cost of the thermal catalytic DMR process.

Thermal Catalytic DMR Process

Equipment Purchase Cost, M$ Installation Factor Installed Cost, M$

DMR - - 1.522
SMR - - 3.056
WGS - - 0.132

Comp1 2.376 1.3 3.089
Comp2 0.806 1.3 1.047
Comp3 0.589 1.3 0.765
Comp4 1.609 1.3 2.091
Comp5 1.266 1.3 1.645
Comp6 0.895 1.3 1.163
HX-1 0.004 2.0 0.008
HX-2 0.020 2.0 0.040
HX-3 0.013 2.0 0.027
HX-4 0.004 2.0 0.008
HX-5 0.003 2.0 0.006
HX-6 0.007 2.0 0.014
HX-7 0.018 2.0 0.035
HX-8 0.005 2.0 0.009
HX-9 0.007 2.0 0.014

Cooler-1 0.049 2.0 0.098
Cooler-2 0.017 2.0 0.035
Cooler-4 0.015 2.0 0.030
Cooler-5 0.012 2.0 0.024

Cooler-3 (Refrigeration system) - - 0.785
Total equipment cost 15.644
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Table 12. Total equipment cost of the plasma-assisted DMR process.

Plasma-Assisted DMR Process

Equipment Purchase Cost, M$ Installation Factor Installed Cost, M$

SCMR - - 1.339
P-DMR - - 7.100
Comp1 3.658 1.3 4.755
Comp2 0.974 1.3 1.266
Comp3 0.494 1.3 0.643
HX-1 0.014 2.0 0.028
HX-2 0.006 2.0 0.012
HX-3 0.008 2.0 0.016
HX-4 0.010 2.0 0.021
HX-5 0.003 2.0 0.006

Cooler-1 (Refrigeration system) - - 4.119
Cooler-2 (Refrigeration system) - - 4.490

Total equipment cost 23.795

3. Comparison of Thermal Catalytic and Plasma-Assisted DMR

Thermal catalytic and plasma-assisted DMR differentiate in many aspects, which makes a fair
comparison between the two processes very challenging. The aim of the comparison herein is not to
propose the most promising process, but rather to address the strengths and weaknesses of each
one. Specific performance criteria have been quantified and presented in Table 13 to this end.
The estimated values have been based on the mass and energy balances that have been obtained
through the simulations.

Table 13. Quantified performance criteria for thermal catalytic and plasma-assisted DMR process.

Process Resource Efficiency
kmolsyngas/kmoli

Hot Utility
kWh/kmolsyngas

Electricity
kWh/kmolsyngas

Investment
k$/kmolsyngas h−1

- CH4 CO2 H2O - - -
Thermal catalytic DMR 4.14 12.83 4.88 15.7 5.4 3.9
Plasma-assisted DMR 3.69 9.15 7.90 - 37 + 12.7 = 49.7 12.9

Raw material (resource) is the cost driver of the syngas production process [19]. Thus, resource
efficiency constitutes a key criterion of process performance. For each mole of CH4 that is cracked,
12.2% more syngas is produced by the thermal catalytic process due to less coke formation as compared
with the plasma-assisted process. For each mole of CO2 cracked, 40.2% more syngas is produced
globally in the thermal catalytic DMR. CO2 is not only cracked in DMR reactor but also produced in
WGS reactor. However, when the WGS outlet stream is mixed with the syngas produced in the SMR
reactor, the stream meets the targeted ratio of H2/(2CO + 3CO2) ≥ 1. All CO2 is going to be consumed
in the methanol synthesis process, thus it is considered that CO2 is fully utilized in the thermal catalytic
DMR process. In the plasma-assisted DMR, only 42.5% of CO2 is converted per pass and lower amount
of syngas is finally formed in the process. From the economic perspective, there is not a considerable
impact on process economics since in the latter case, CO2 is reclaimed and reused. Considering that
resource efficiency estimation (Table 13) includes only the CO2 amount that has been cracked for
syngas production, it is concluded that higher amount of CO2 is consumed in the plasma-assisted
process for a kmol of syngas production. From the environmental point of view, plasma-assisted DMR
is more sustainable and, thus, favorable since a higher amount of CO2 is depleted. Eventually, for each
mole of H2O consumed in the process, a higher amount of syngas is produced in the plasma-assisted
process implying that H2O saving is higher in the plasma-assisted process.

Expectantly, the electricity demand for the plasma-assisted DMR process is ten times the demand
of the thermal catalytic one; the highest portion (approximately 74%) of electricity is consumed in
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electron impact reactions occurring in the plasma zone. The capital investment for the plasma-assisted
DMR process is rather high. Refrigeration systems, compressors and the plasma reactor form the major
capital expenditures.

Other aspects that could be counted as crucial performance criteria are the catalyst demand,
by-products formation and the process complexity. In thermal catalytic DMR, three different catalysts
are used for the DMR, WGS and SMR reactions while in the plasma-assisted process, catalyst is used
to enhance only the SCMR reaction. Less catalyst demand may considerably decrease the syngas
production cost. In addition, no auxiliary equipment is required for catalyst regeneration. Ethylene,
acetylene and ethane are formed as by-products in the plasma zone. Depending on the production
rate and the separation cost, these C2 species can potentially be reclaimed and sold, increasing the
economic potential of the plasma-assisted DMR process. Further, the electricity required for plasma
initiation may be drawn by onshore or offshore electricity production systems.

4. Conclusions

Dry methane reforming (DMR) is considered a promising chemical process with high economic
and environmental interest. In the conventional DMR process, activation of CH4 and CO2 is promoted
by catalysts and relatively high temperature. Alternatively, electricity can be utilized to initiate plasma,
which will lead to reactants bond cracking. Undoubtedly, thermal catalytic and plasma-assisted
DMR have strengths and downsides. In the current work, plasma-assisted DMR performed by
Scapinello et al. [31] resulted in H2/CO molar ratio equal to 1.1, while thermal catalytic DMR
performed by Theofanidis et al. [24] resulted in H2/CO = 1. Considering that syngas suitable
for methanol synthesis is the targeted product in this work and the molar ratio required by the
Fischer–Tropsch process for methanol production is 2/1, the H2/CO ratio should be increased in
both cases. However, in plasma-assisted DMR, less intensive downstream processing is required
in terms of equipment. Particularly, plasma-assisted DMR integrated with combined steam/carbon
dioxide methane reforming (SCMR) is an effective way to produce syngas for methanol, ethanol or
ethylene where a H2/CO molar ratio equal to 2 is required. Its performance is comparable with the
performance of integrated thermal catalytic DMR and steam methane reforming (SMR), which has
also been proposed for H2/CO ≥ 2 syngas production.

Higher amount of CO2 (40% more) per mol of produced syngas is consumed in the plasma-assisted
DMR process, as compared with the combined DMR and SMR thermal catalytic process. Concurrently,
higher amount of H2O (62% more) per mol of produced syngas is consumed in the latter case.
Plasma-assisted DMR is more sustainable than the combined DMR and SMR thermal catalytic process
as it increases CO2 capture; it reduces H2O scarcity by utilizing more efficiently H2O input streams,
and it is compatible with renewable energy technologies from which the electricity needed for the
plasma initiation may be harvested.

As a follow up, the plasma-assisted process may be more easily integrated with existing processes
since it is relatively more compact than the thermal catalytic one. Moreover, except for electricity, no
utilities are required since the cold utility demand is satisfied by the refrigerant, while, in the thermal
catalytic processes, cooling water is required. Regarding the electricity demand, plasma reactors
may draw the electricity produced by renewable energy systems. In this case, the gains are that no
additional power supply systems are required, no NOx are released and the plasma reactor absorbs
the overproduction of electricity picks contributing to grid stabilization. Short start-up/shut-down
periods are also counted as unique technology features compared to the thermal catalytic process.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/9/1429/s1.
Figure S1: Plasma assisted DMR process simulation: in black, the process streams; and, in blue, the heat
exchangers and the refrigeration systems, Table S1: Mass and energy balances for all the streams of plasma
assisted DMR process, Figure S2: Thermal catalytic DMR process simulation (combined DMR and SMR): in black,
the process streams; and, in blue, the heat exchangers and the refrigeration systems, Table S2: Mass and energy
balances for all the streams of thermal catalytic DMR process

www.mdpi.com/1996-1073/10/9/1429/s1
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Glossary

FT Fischer-Tropsch process
DMR Dry methane reforming
DBD Dielectric barrier discharge
GTL Gas to liquid
PBD Process block diagram
RGIBBS Reactor; equilibrium calculations is based on that minimizes Gibbs free energy
RWGS Reversed water gas shift
PSA Pressure swing adsorption
SCMR Combined steam/carbon dioxide methane reforming
WGS Water gas shift
CCS Carbon capture and storage
MEA Monoethanolamine process
SMR Steam methane reforming
P-DMR Plasma-assisted dry methane reforming
RSTOIC Reactor for known reaction stoichiometry
PFD Process flow diagram
∆Tmin Minimum temperature approach
∆H Enthalpy
GCC Grand composite curve
CPM Mass heat capacity
C Equipment cost
Q Heat duty
Comp Compressor
HX Heat exchanger
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