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Abstract: Accurate and stable wind speed forecasting is of critical importance in the wind power
industry and has measurable influence on power-system management and the stability of market
economics. However, most traditional wind speed forecasting models require a large amount of
historical data and face restrictions due to assumptions, such as normality postulates. Additionally,
any data volatility leads to increased forecasting instability. Therefore, in this paper, a hybrid
forecasting system, which combines the ‘decomposition and ensemble’ strategy and fuzzy time series
forecasting algorithm, is proposed that comprises two modules—data pre-processing and forecasting.
Moreover, the statistical model, artificial neural network, and Support Vector Regression model
are employed to compare with the proposed hybrid system, which is proven to be very effective
in forecasting wind speed data affected by noise and instability. The results of these comparisons
demonstrate that the hybrid forecasting system can improve the forecasting accuracy and stability
significantly, and supervised discretization methods outperform the unsupervised methods for fuzzy
time series in most cases.

Keywords: wind speed forecasting; hybrid forecasting system; data pre-processing; fuzzy time series;
comprehensive evaluation

1. Introduction

Energy is a vital input for social and economic development [1]. The energy crisis has been
proven to be one of the major factors that limit the development of the economy, and this has been
increasingly emphasized by the increasing energy demands for rapid economic development [2].
With the continuous increase in energy demand, the consumption of non-renewable energy sources,
such as coal and oil, has become alarmingly serious, resulting in an ever-growing energy crisis. This is
due to the fact that fossil fuels, such as coal and oil, are slowly drying up, and non-renewable energy
will become history in the near future [3]. In view of this present situation, people have gradually
turned their attention to the development and utilization of new energy sources and have tried to
change the trend in energy consumption to relieve, to some extent, the double pressure caused by the
dry up of conventional energy and worsening of the global ecological environment [4].

Wind energy, one of the most important renewable energy resources, is drawing increasing
attention by virtue of its prominent characteristics. such as wide distribution and prodigious
reserves [5]. The development of wind energy, as an efficient and clean energy resource, is well
known and establishes a good base for the strategic transformation of economic development from
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relying on traditional fossil fuels to utilization of renewable energy sources [6]. Wind energy utilization
has been around for than a century, and wind power generation has also been substantially explored
by humans in the past. Wind power generation technology has been developed through a long process
has become increasingly mature [7]. Moreover, there is a huge amount of wind energy in the world [8].
By the end of 2016, the worldwide wind capacity reached 486,661 MW, of which, 54,846 MW of energy
were added in 2016. This represents a growth rate of 11.8% (17.2% in 2015). All wind turbines installed
around the globe by the end of 2016 can generate around 5% of the world’s total electricity demand [9].

As we all recognize, China has a large population, and its economy has been predicted to maintain
good momentum of development. Thus, the above problems become more prominent due to the
amazing energy consumption and the growth speed of traditional fossil fuel exploitation. In the near
future, the supply of fossil fuel will not keep up with the demand which may hold back economic
development. At the same time, the pressure of environmental degradation is also a problem that
people have to face. Therefore, it is urgent to rationally adjust the energy structure for the sustainable
development of the economy. In view of these reasons, the research about new energy, especially
the wind power industry becomes more necessary. The wind power industry in China, through the
government’s great attention, is playing a positive role in optimizing the energy structure, promoting
changes in energy production methods, and promoting transformation in the energy consumption of
modern industrial systems [10].

Moreover, in wind data, it is necessary to consider and discuss the frequency of data sampling.
According to State Grid Dispatching arrangement and plan in China, 144 wind speed datapoints
should be obtained per day (24 h). In other words, the sampling interval is supposed to be 10 min.
Ten minute wind speed forecasting has contributed to scientific and rational arrangements for the
shut-down and start-up of the generators in the net so that the system can maintain a rotational reserve
capacity within a reasonable and safe range [11]. Moreover, the minimum time interval recorded by the
anemometer is 10 min at present. Thus, the sampling interval is set to 10 min and sampling frequency
is 144 times per day in most researches [12] to meet the requirement of power grid scheduling in China.

While the potential of wind power as an energy resource is fully ascertained, its controllability
needs to be improved. This controllability of wind power can be improved if the wind speed and the
power output of a wind farm can be forecasted as accurately as possible and changes in wind speed can
be predicted well in advance [13]. This would also help mitigate a series of adverse effects that result
from wind power grid integration. Wind speed is influenced by several factors, such as air pressure,
temperature, and humidity, which lead to randomness and volatility in wind speed prediction [14].
Wind speed forecasting has been an important link in the planning and working of power grid system;
this is a heavy and high repetitive work. Moreover, wind speed forecasting is the basis of wind power
and an important prerequisite for wind-power generation capacity forecasting. Thus, wind speed
forecasting is a significant task and establishing a high accuracy of the wind speed forecasting model
becomes a pressing concern [15].

The rest of this paper is organized as follows: Section 2 reviews and discusses the extant studies
on wind speed forecasting. The methods used in this study are introduced in Section 3. Section 4
describes the datasets and setup. Section 5 describes the experimental results obtained from the
datasets, while Section 6 analyses and discusses the forecasting results. Section 7 discusses parameters
of the hybrid forecasting system. Section 8 further carries out the experiment for hourly time-horizon
wind speed forecasting, and Section 9 gives the conclusion. Figure 1 clearly explains this structure.
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2. Review and Discussion for Previous Works

Based on the discussion presented in Section 1 above, it can be appreciated that wind speed
forecasting is a challenging yet crucial task. The accuracy and stability of such a forecasting is, perhaps,
the single most significant issue, and as such, numerous extant researches have been targeted at
addressing this concern.

Two prominent models used at present for wind speed forecasting include the single model [16–18]
and hybrid model. The single model mainly comprises of a physical model, statistical model and an
artificial neural network model. The physical model essentially utilizes a dynamic atmosphere model
to simulate and forecast the wind speed. In the real-world scenario, hydrodynamic and thermodynamic
equations that model changes in the weather pattern are used along with specified initial and boundary
conditions to model the exact situation to be simulated by a megacomputer [19].
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Time series is a set of values wherein all values of one index are arranged in chronological
order. The main utility of the time series model is to forecast the future based on historical data.
The traditional statistical models, such as Autoregressive (AR) [20,21], Autoregressive Moving Average
(ARMA) [22], Autoregressive Integrated Moving Average (ARIMA) [23], and exponential smoothing
(ES) [24], have widely used and reported in literature for their utility in wind speed forecasting,
which was originally developed by Kendall and Ord [25].

Artificial neural network models have attracted extensive attention of scholars in various fields as
they are capable of modeling linear as well as nonlinear functions arbitrarily. The use of artificial neural
networks is a popular method for wind speed forecasting. Li et al. [26] compared three different neural
networks for wind forecasting, including the adaptive linear element, back propagation, and radial
basis function, and demonstrated that no single model is superior to others for all evaluation metrics.
Hervás-Martínez et al. [27] proposed the hyperbolic tangent basis function neural network for wind
forecasting, and the results demonstrate that their model improved the performance of the previous
multilayer perceptron. Salcedo-Sanz et al. [28] forecasted the short-term wind speed by applying
the Coral Reefs Optimization (CRO) algorithm and an Extreme Learning Machine (ELM). A Feature
Selection Problem (FSP) was carried out to prove that the CRO-ELM approach had an excellent
performance in wind speed forecasting. A further study showed that better results could be obtained by
using ELM in conjunction with a CRO-Harmony Search (HS) optimization algorithm [29]. In addition
to these above-stated models, other popular models employed in wind forecasting include support
vector regression [30–33], Bayesian mode [34], and regression trees [35].

As mentioned above, no single model can obtain optimum results under all situations and perform
better than others on all fronts. Therefore, some hybrid models have been proposed to remedy some of
the weaknesses [36–39]. A hybridization of the fifth generation mesoscale model with neural networks
was employed to address the short-term wind speed forecasting issue [40]. Similarly, the hybridization
of global and mesoscale weather forecasting models with neural networks was also employed for
short-term wind speed forecasting. The results prove that the hybrid weather forecast model’s neural
network approach can achieve great forecasting results for short-term wind speeds under specific
situations [41]. Hervas-Martinez et al. proposed a hybrid model that combines the physical, statistical,
and artificial neural networks, and achieves great forecasting accuracy [42]. Zhang et al. [43] developed
a novel wavelet transform technique (WTT)-seasonal adjustment method (SAM)-radial basis function
neural network (RBFNN) for short-term wind speed forecasting, which was proved to be an effective
approach to improve the forecasting performance. Compared to the single model, the hybrid model
was found to effectively improve the forecasting accuracy.

In addition to the choice of the forecasting model, de-noising of raw data also makes a
significant contribution to the prediction accuracy. Wind signal de-noising methods, such as empirical
mode decomposition [44,45], secondary decomposition [46], and fast ensemble empirical mode
decomposition [47] algorithms, can effectively reduce noise in the wind speed time series signal
and greatly improve the prediction accuracy.

Additionally, in the physical model, results of the numerical simulation greatly influence
forecasting accuracy. The physical model is based on a large amount of historical data and requires
specific and accurate physical information, such as pressure, temperature, and terrain, which may
result in the systematic errors [48].

As for the time series methods, they, too, often require a large amount of historical data and face
restrictions imposed by assumptions, such as normality postulates [49]. At the same time, models
based on artificial intelligence often suffer from over-fitting or the difficulty of parameter setting.
Moreover, over a long period, the existing forecasting models forecast wind speed by mostly using
the original wind speed data recorded directly from wind farms, and as such, the high volatility of
this data and outliers, which are not accounted for in the model, seriously influence the forecasting
accuracy [50,51].



Energies 2017, 10, 1422 5 of 30

Hence, for the more accurate and stable forecasting results, a hybrid forecasting system,
which combines a ‘decomposition and ensemble’ strategy and fuzzy time series model, is proposed
in this paper. The proposed system includes two modules—data pre-processing and forecasting—to
achieve better forecasting performance. In the data pre-processing module, ensemble empirical mode
decomposition is employed to decompose the time series into finite number of intrinsic mode functions
and reconstruct the raw wind data to overcome any non-stationary features. Next, in the forecasting
module, a fuzzy time series, constructed by fuzzy sets, is developed to carry out wind speed forecasting.
In fuzzy time series algorithm, a set of continuous numbers are assigned with linguistic value according
to different interval partitioning methods which will also be discussed and compared in this paper.
Furthermore, a set of comprehensive evaluating indicator system are established to compare different
models’ performance. Accordingly, features of the developed hybrid forecasting system and our main
contributions through this study are as follows:

1. A hybrid forecasting system is developed including two modules—data pre-processing and
forecasting. Unlike previous time series models that dealt with continuous numbers, the fuzzy
time series model is handled by fuzzy sets, which solve the weakness of traditional models
requiring extensive historical data and assumptions. The effectiveness of this hybrid system is
tested and is found to significantly enhance forecasting performance.

2. The pre-processing of raw data for wind speed forecasting makes significant contribution to
forecasting accuracy. However, in most extant studies, the forecasting was often based on
original data, which was not pre-processed. The volatility of and noise in unprocessed data
seriously influence the forecasting accuracy and stability. The proposed hybrid system employs
the ‘decomposition and ensemble’ strategy to effectively reduce noise in the wind speed time
series signal. The results prove that eliminating the noise and uncertainty components from
the original chaotic time series by pre-processing the raw data can remarkably improve the
forecasting performance.

3. The forecasting performance of the fuzzy time series model is always influenced by the interval
length, which in turn, depends on the discretization method. Therefore, to search for the most
suitable discretization method for wind speed forecasting, four different interval partitioning
methods of fuzzy time series have been discussed and compared. The results indicate that
supervised discretization methods outperform unsupervised methods in most cases.

4. To obtain the best settings of the system, sensitivity analysis of the parameters of the hybrid
system is performed, which demonstrates that by appropriately selecting the ensemble number,
the white noise amplitude is found to increase forecasting accuracy.

5. The Diebold–Mariano (DM) test and forecasting effectiveness (FE) have been selected as testing
methods, and the variance in the error is used to measure the stability of the forecasting results
in addition to common evaluation metrics thereby enabling a more thorough evaluation of the
proposed hybrid system.

3. Method

In this section, we describe all methods used in this study.

3.1. Data Pre-Processing Method—Ensemble Empirical Mode Decomposition

Wu and Wang [52] proposed the ensemble empirical mode decomposition in 2008, which was
developed from the previous empirical mode decomposition with an intent to overcome the weakness
of mode mixing. Empirical mode decomposition is a method to handle non-stationary signals, and was
proposed in 1998 by Huang. Compared with wavelet analysis, empirical mode decomposition does
not need to select the base function, and is a self-adaptive decomposition technique. Finite number
of intrinsic mode functions can be obtained during the processing of raw signals. The intrinsic mode
function time series can retain amplitude modulation information of the original signal sequence.
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In addition, it must satisfy both conditions [53]—(1) in the entire sequence, the difference between
the number of all maxima and minima and the number of zero-cross points is less than or equal to 1;
and (2) the arithmetic mean of the upper envelope, obtained by the local maxima, and lower envelope,
consisting of the local minima, is zero at each point.

However, the mode mixing phenomenon exists in empirical mode decomposition to represent
either a single intrinsic mode function that includes components of various scales. On the contrary,
a component of a similar scale may exist in disparate intrinsic mode functions. The ensemble empirical
mode decomposition method eliminates the intermittent situation in the original time series by adding
white noise, which not only improves the accuracy of the decomposed signal but also preserves
the original information characteristics of the signal. The ensemble empirical mode decomposition
is developed on the basis of auxiliary noise signal processing, and equalizes signals by adding
small amplitude white noise effectively to overcome the mode mixing phenomenon of empirical
mode decomposition [54]. The adaptive signal processing characteristics of ensemble empirical
mode decomposition reduces the influence of human factors on the decomposition results. For the
analysis of non-stationary and volatile time series, the ensemble empirical mode decomposition is
especially applicable.

In line with the above description of the two methods, the sequence of steps followed during
ensemble empirical mode decomposition are as follows [55]:

Step 1: Add the normal distribution white noise series to the signal that is to be decomposed.
Step 2: Decompose the signal with the added normal distribution white noise series into several intrinsic

mode functions.
Step 3: Repeat Step 1 and Step 2, and add a new white noise series each time.
Step 4: Regard the ensemble means of intrinsic mode functions that are obtained during decompositions

as the final result.

It can be realized that the above algorithm depends on the amplitude of the added noise and
ensemble times. When the amplitude of the added white noise is too low, the mode mixing problem
cannot be suppressed, while if the amplitude is too high, more pseudo components will appear. In such
a case, empirical mode decomposition is carried out causing the amount of calculation involved to
increase greatly.

3.2. Forecasting Method—Weighted Fuzzy Time Series (FTS) Algorithm

The fuzzy time series algorithm is a common forecasting method owing to its easy calculations
and great performance. Fuzzy time series are widely used in forecasting applications because of
their capability of handling linguistic value datasets to obtain accurate forecasting. At present,
it has been frequently and successfully used for forecasting nonlinear as well as dynamic datasets
in various areas, including stock index [56], energy [57], course enrollment [58], green materials [59],
load consumption [60], and so on. A fuzzy time series is defined by Song and Chissom [61] as follows.

Definition 1. Y(t)(t = 0, 1, 2, . . .) is defined as a set of continuous numbers that is the universe of discourse
and fuzzy sets fj(t) are constructed based on it. Then F(t), a set of f 1(t), f 2(t) . . . , is regarded as the fuzzy time
series which is defined on Y(t).

Definition 2. F(t) is assumed to be only caused by F(t − 1). A forecasting model is described as F(t) = F(t − 1)
* R(t − 1, t), where F(t − 1) and F(t) are fuzzy sets and R(t − 1, t) is the fuzzy logical relationship (FLR).

Definition 3. Let F(t − 1) = Ai and F(t) = Aj. The fuzzy logical relationship (FLR) between two fuzzy values
can be expressed as Ai → Aj where Ai and Aj represent the left-hand side (LHS) and right-hand side (RHS) of
the FLR, respectively.

Definition 4. All single FLRs can be combined into several groups based on the same LHS of the FLR.
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Then, the calculating steps of the weighted fuzzy time series can be described as in [62]:

Step 1: Determine the universe of discourse U = [min − a, max + a], and then partition them into
several intervals according to the interval partitioning methods mentioned above. From this,
continuous data for further observations could be assigned linguistic values.

Step 2: Set a fuzzy membership function, and obtain the fuzzy set for actual continuous values.
The fuzzy set Ai is defined based on intervals, as in [63].

A1 = 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10

A2 = 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10
...

A10 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0.5/u9 + 1/u10

Step 3: Fuzzify observations. For example, the fuzzified result of one data is Aj when the maximum
degree of membership of this data is in Aj.

Step 4: Determine the fuzzy logical relationships and group them. For example, if Ai → Aj, Ai → Ak,
Ai → Al can be grouped as Ai → Aj, Ak, Al .

Step 5: Establish weights. From step 4 above, the weight matrix can be obtained and further
standardized. The defuzzified matrix can then be calculated by applying the centroid
defuzzification method.

Step 6: Calculate forecasting results. Forecasting results can be calculated by multiplication of the
defuzzified and standardized weighting matrices defined as follows:

W_s(t) =
(
Ŵ1, Ŵ2, · · · , Ŵk

)
Ŵi = Wi/

k
∑

i=1
Wi

(1)

F(t) = D(t− 1) ∗W_s(t− 1) (2)

Here, W_s is the standardized weighting matrix, D is the defuzzified matrix. Wi represents the
unstandardized weighting matrix elements, while Ŵi represents standardized ones, and F(t) is
the forecasting result.

Step 7: Lastly, forecasted values obtained above are amended by employing Equation (3) to obtain the
ultimate forecasting result.

F_u(t) = y(t− 1) + α ∗ (F(t)− y(t− 1)) (3)

where y(t − 1) is the actual value on time t − 1, and F_s is the ultimate forecasting value.

3.3. Interval Partitioning Methods

The forecasting performance of the fuzzy time series model is influenced by interval length,
and determination of the appropriate interval partitioning method is supposedly a challenging task [64].
However, interval partitioning methods, in turn, depend upon discretization methods and the selection
of cut points [65].

Data discretization is a vital method that can reduce the actual demand of storage space for an
obtained continuous data set by dividing it into finite number of intervals, which possess a high level
of class coherence, and then assigning linguistic values to these intervals [66]. Data discretization
comprises two main tasks—(1) determination of the number of disjoint intervals or cut points, which are
generally obtained according to a heuristic rule; (2) finding boundaries of the intervals; that is,
the interval range.

To date, various discretization methods have been developed owing to different needs, and these
can be roughly classified into supervised and unsupervised methods. Supervised methods partition the
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continuous data depending upon class information, while unsupervised methods need not follow the
same methodology. Supervised discretization can be further divided into entropy or Chi-square-based
discretization, while unsupervised discretization includes equal width and equal frequency interval
discretization methods [67–70]. In the current fuzzy time series model, the equal width interval
discretization method is frequently employed, and the supervised discretization methods are seldom
used [71].

3.3.1. Equal Width Interval Algorithm

The equal-width (EW) interval algorithm is the simplest unsupervised discretization method.
According to the number of intervals designated by the user, the range of the sorted numerical attributes
denoted as (Xmin, Xmax) is divided into K equal sized intervals. Thus, the width of each interval is
(Xmax − Xmin)/K. However, when there exist points with considerable skewness, this method is not
adaptive. The disadvantage of this method, caused by the uneven distribution of the time series, is that
the data count in different intervals may vary significantly [72].

3.3.2. Equal Frequency Interval Algorithm

The equal frequency (EF) interval algorithm is similar to the equal width interval algorithm in
that it also divides the sorted numerical attributes into K intervals. The difference, in this method,
is that each interval now includes the same number (i.e., n/k) of objects with adjacent values, where n
is the total data count [72]. In the equal frequency method, the same data point that occurs many
times could be divided into different intervals. The method, known as the proportional k-interval
discretization, attempts to avoid this restriction of the equal-width interval discretization. It separates
the domain in intervals using similar data point distribution. The data points with the same value are
assigned to the same interval. Therefore, some intervals may not always possess equal frequencies.

3.3.3. Entropy-Based Discretization Algorithm

The entropy-based discretization algorithm, proposed by Fayyad and Irani, relies on the class
information of continuous numerical attributes, which is used for calculating and determining the
cut points [73]. As it adopts a top-down splitting technique, this method partitions the interval into
smaller intervals recursively until the stopping criterion, such as the Minimum Description Length
Principle or Mutual Information Theory, is met [74].

The entropy-based method selects points for discretization depending on the class information
entropy of candidate partitions. Information entropy is a measure of the degree of ordering of
the system, and class information entropy measures the quantity of information that is required to
determine which class a sample should belong to.

The steps of this algorithm can be described as follows:

Step 1: Define the entropy of intervals. For an object set T, the entropy function is calculated as under:

Entropy(T) = −
n

∑
i=1

pi · log(pi) (4)

where n is the number of the data in set T and pi is the probability of class i.
Step 2: Apply all possible cut points to divide the data into two parts, and from all possible cut methods,

find the one with minimum entropy. For each cut point, the entropy of each split is defined as:

Entropy(T|split) = ple f t · Entropy
(

Tle f t

)
+ pright · Entropy

(
Tright

)
(5)

where pleft and pright represent probabilities of the left (Tleft) and right (Tright) sets, respectively.

Step 3: Regard the two intervals obtained in step 2 as independent intervals and then repeat step 1.
Step 4: Run iterations, but stop the process when the set criterion is achieved.



Energies 2017, 10, 1422 9 of 30

3.3.4. Chi-Square-Based Discretization Algorithm

Chi-square (χ2) is a discretization algorithm based on the value of Chi-square, which measures
the relationship between a class and adjacent intervals. The Chi-square-based discretization algorithm
splits the data set based on user-defined significance levels. This algorithm includes the top-down
(Chi-split) and bottom-up (Chi-merge) methods, both of which are based on Chi-square. The top-down
method regards the entire interval value as a discrete value and then split this interval into two adjacent
sub-intervals. The process then runs into iterations and stops once a set criterion is achieved. When the
Chi-square test is significant, the split must continue; otherwise, it should be stopped. contrary to
the top-down approach, the bottom-up method regards each attribute value as a discrete value and
then repeatedly merges adjacent attribute values, if the two are statistically similar, until the stopping
condition is met. The stopping criterion is determined by a Chi-square threshold defined by user to
stop the merge operation when two adjacent intervals cannot be proven to be sufficiently similar [66].

Chi-square (χ2) is a statistic to test the independence between row and column variables in a
contingency table, as presented in Table 1. In the Chi-Square-based discretization algorithm, the formula
to calculate χ2 statistic at a cut point for two adjacent intervals is described in Equation (6) [75].

χ2 =
2

∑
i=1

c

∑
j=1

(
Oij − Eij

)2

Eij
(6)

c is the classes number.
Oij is the example number in the ith interval and jth class.

Eij is the expected frequency in the ith interval and jth class, computed by Eij = (Ri Cj)/N.

Ri represents the example number in the ith interval.
Cj represents the examples number in the jth class.

When we apply the Chi-square to test the statistical independence of two variables, the confidence
level is supposed to be artificially set. Too high confidence level will lead to excessive discretization,
whereas it will lead to insufficient discretization. Moreover, a common deficiency of the Chi-merge
approach is that it can only merge two adjacent intervals in each loop; thus, the discretization speed is
slow when the number of samples is very large.

Table 1. The contingency table of Chi-square analysis.

Class 1 Class 2 . . . . . . Class c Sum

Interval 1 O11 O12 . . . . . . O1c R1
Interval 2 O21 O22 . . . . . . O2c R2

Sum C1 C2 . . . . . . Cc N

4. Data Description and Setup

To specifically evaluate and compare the ability and performance of the fuzzy time series models
under different interval partitioning methods, three primary different wind speed time series datasets
obtained from a wind farm located at Penglai in Shandong Province of China are selected. Shandong is
surrounded by the sea on three sides, and is located in China’s coastal wind belt, where wind resources
are very rich. As such, prospects of wind power development in this region are extremely broad.
The installed wind energy capacity of this region is about 67 million KW. Penglai, a part of Yantai,
Shandong Province, located at 37◦48′ N and 129◦45′ E, belongs to the Northern temperate East Asian
monsoon region continental climate and hilly area, which is south-high and north-low, possessing
rich wind resources and many wind farms. The installed wind capacity of Yantai was 2104.15 MW
in July 2016, and the wind power scale is the largest among power grids in the Shandong peninsula.
Thus, it is crucial to accurately forecast the wind speed in this region. Accordingly, two thousand data
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points with the sampling interval is 10 min and sampling frequency is 144 times per day were selected
from each dataset recoded from 10:00, 1 January 2011 to 7:10, 15 January 2011 including training set
(1500 samples) and the testing set (500 samples).

Features of the three wind speed datasets are listed in Table 2 and are visualized via the box and
line charts in Figure 2. As described, all three datasets possess large fluctuations and are divided into
training and testing samples. From the box chart, it is seen that Dataset III possesses the maximum
degree of dispersion and the opposite is true for Dataset I. Table 2 presents numerical values of some
statistical indicators; the standard deviations are approximately 2 m/s, and the interquartile ranges are
mostly above 3 m/s. Both these values indicate significant fluctuations in the wind speed. This evident
fluctuation in the wind speed datasets verifies the challenges involved in wind speed forecasting.
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Figure 2. Data description of study sites in Penglai, Shandong Province of China.

For the fuzzy time series model and subsequent interval partitioning methods, the universe of
discourse for wind data is defined as (2, 16.5). Wind-data intervals corresponding to four different
interval partitioning methods are listed in Table 3.

The continuous values are transformed into 10 linguistic values A1–A10. Taking the Chi-square-
based discretization of Dataset III, the fuzzy relationship groups are summarized in Table 4. Each number
in the matrix indicates the occurrence of a fuzzy logic relationship. Based on this matrix and
Equation (1), the weight matrix can be calculated, as presented in Tables 4 and 5. Ultimately, forecasting
values can be calculated by Equations (2) and (3). After repeated tests, the weight in Equation (3) was
set as 0.5.
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Table 2. Some statistical indicators of the Datasets.

Datasets Numbers
Statistical Indicators

Maximum (m/s) Minimum (m/s) Mean (m/s) Interquartile Range (m/s) Std. (m/s)

Equation - - -
Mean =

N
∑

i=1
xi

N
Qd = QU−QL S =

√
1
N

N
∑

i=1
(xi − x)2

Dataset I
All 2000 12.8 2.1 6.9815 2.7 1.8202

Training 1500 12.8 2.1 7.2781 2.7 1.8852
Testing 500 10.2 3.1 6.0918 1.5 1.2401

Dataset II
All 2000 15.3 2.6 8.7764 3.7 2.3675

Training 1500 15.3 2.6 9.1389 3.9 2.4516
Testing 500 12.2 3.9 7.6890 2.8 1.6787

Dataset III
All 2000 16.2 2.9 8.7374 4.9 2.8693

Training 1500 16.2 2.9 9.1703 4.9 2.9067
Testing 500 15.9 3.7 7.4384 3.5 2.312

Table 3. The intervals of the four interval partitioning methods.

Methods Equal Width Equal Frequency Entropy Based Chi-Square Based

u1 (2.00, 3.45) (2.00, 5.00) (2.00, 3.90) (2.00, 3.90)
u2 (3.45, 4.90) (5.00, 5.80) (3.90, 5.00) (3.90, 5.10)
u3 (4.90, 6.35) (5.80, 6.50) (5.00, 6.40) (5.10, 6.20)
u4 (6.35, 7.80) (6.50, 7.10) (6.40, 7.40) (6.20, 7.30)
u5 (7.80, 9.25) (7.10, 7.80) (7.40, 8.90) (7.30, 8.80)
u6 (9.25, 10.70) (7.80, 8.60) (8.90, 9.80) (8.80, 9.70)
u7 (10.70, 12.15) (8.60, 9.50) (9.80, 10.90) (9.70, 10.60)
u8 (12.15, 13,60) (9.50, 10.40) (10.90, 12.80) (10.60, 11.90)
u9 (13.60, 15.05) (10.40, 11.70) (12.80, 15.30) (11.90, 13.60)
u10 (15.05, 16.50) (11.70, 16.20) (15.30, 16.20) (13.60, 16.20)
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Table 4. Fuzzy relationship groups and weight matrix before standardization.

Pt-1 Pt

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 10 7 0 0 0 0 0 0 0 0
A2 6 114 18 3 0 0 0 0 0 0
A3 1 20 119 29 3 0 0 0 0 0
A4 0 0 32 97 27 1 0 1 0 0
A5 0 0 3 29 106 26 7 0 0 0
A6 0 0 0 0 31 60 35 8 0 0
A7 0 0 0 0 4 34 50 52 5 0
A8 0 0 0 0 0 13 50 137 56 2
A9 0 0 0 0 0 0 4 56 145 27
A10 0 0 0 0 0 0 0 4 25 42

Table 5. The standardized weight matrix.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0.5882 0.4118 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A2 0.0426 0.8085 0.1277 0.0213 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A3 0.0058 0.1163 0.6919 0.1686 0.0174 0.0000 0.0000 0.0000 0.0000 0.0000
A4 0.0000 0.0000 0.2025 0.6139 0.1709 0.0063 0.0000 0.0063 0.0000 0.0000
A5 0.0000 0.0000 0.0175 0.1696 0.6199 0.1520 0.0409 0.0000 0.0000 0.0000
A6 0.0000 0.0000 0.0000 0.0000 0.2313 0.4478 0.2612 0.0597 0.0000 0.0000
A7 0.0000 0.0000 0.0000 0.0000 0.0276 0.2345 0.3448 0.3586 0.0345 0.0000
A8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0504 0.1938 0.5310 0.2171 0.0078
A9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0172 0.2414 0.6250 0.1164
A10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0563 0.3521
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5. Experimental Results for Datasets

For the simulation, wind speed data was recorded at 10-min intervals thereby obtaining three
different datasets—Datasets I, II, and III. By considering Dataset I in our analysis, line charts of the
fuzzy time series forecasted values, with different interval lengths, are shown in Figure 3.

(1) The top half of Figure 3 presents forecasting results of the original data and that of data preprocessed
via ensemble empirical mode decomposition employing fuzzy time series forecasting methods—
entropy-based discretization, Chi-square-based discretization, equal frequency interval discretization,
and equal width interval discretization. It is obvious that forecasting results obtained using fuzzy
time series under supervised discretization methods tend to match actual values more closely
compared to the unsupervised methods. The details of parts A and B in Figure 3 illustrate the
local enlargement comparison of the different methods.

(a) As shown in Figure 3, compared to equal width interval discretization, forecasting curves
of the entropy- and Chi-square-based discretization more closely follow the shape of
the actual testing curve. Equal frequency interval discretization demonstrates the worst
performance. Thus, supervised discretization methods are, in general, found to be superior
to unsupervised methods.

(b) Better forecasting is achieved when the wind speed is steady without any sudden change.
Evidently, the forecasting system perform better between sample numbers 130–170 and
300–350, and better follow the shape of the actual testing curve.

(c) Comparing the curves of the original and pre-pre-processing data, the degree of overlap
of the curves in the second picture is evidently superior to that in the first. Thus, it can be
seen that data pre-processing plays a vital role in wind speed forecasting.

(d) As shown in parts A and B in Figure 3, the degree of overlap of the curves near the local
maximum forecasting value is better than that near the local minimum forecasting value.
Near the local minimum forecasting value, the curve corresponding to equal frequency
interval discretization, when compared to other curves, deviates considerably from the
actual value curve.

(2) The lower part of Figure 3 demonstrates the forecasting error (forecast value minus actual value)
for the four different interval partitioning methods described in this paper.

(a) In terms of individual forecasting values, the forecasting error is notably large, such as that
calculated for sample numbers 100, 250, and 300, wherein there exist large fluctuations
in wind speed. It is conclude that the performance of forecasting methods is poor when
large fluctuations are present in data.

(b) It is noteworthy that the forecasting error for pre-processed data is significantly less
compared to original data. All points distribute around a zero-scale line. The points in
the right image are also more concentrated than in the left one. It is to be noted that
most points, which deviate from the zero-scale line, further belong to the equal frequency
interval discretization method.
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Figure 3. Forecasting results and error in fuzzy time series with different interval lengths using original
and pre-processing data in Dataset I.

6. Analysis and Discussion

In this section, the performance of the different methods from computational aspect is discussed.
Moreover, the frequency of data sampling plays a vital role in wind data. According to State Grid
Dispatching scheduling and the energy industry standard NB/T31046-2013 which was formulated
by National energy administration in China, 144 wind speed data should be obtained per day (24 h).
And the wind energy measurement rule was set in 2013. The time interval of wind speed data obtained
from wind farm is supposed to be no less than ten minute. Due to the non-storage of wind energy,
short wind speed forecasting can warn dispatchers to carry out some necessary operation in a critical
state to avoid economic losses and safety accidents as much as possible for the stable operation of
power system. Accordingly, in this section, ten min wind speed data from three sites is selected to
evaluate the performance of the models.

Several metrics have been employed by researchers in extant studies for error evaluation.
However, there is no common standard to evaluate the forecasting performance of different methods.
Therefore, various criteria are utilized to compare the forecasting performance. These criteria are
defined in Table 6. MAE measures the difference between the forecasting values and observations;
RMSE measures the deviation between observations and forecasted values, and it is more easily
affected by extreme values than MAE; MAPE is the average of absolute percentage error to evaluate
the forecasting accuracy in statistics; IA is a dimensionless index to compare different models and is
selected as a substitutes for R or R2; and VAR measures the stability of the methods. Furthermore, MAE,
RMSE, MAPE, and VAR are negative indicators; i.e., the lower the better, while IA is a positive indicator.
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Table 6. Specific definitions of error criteria.

Metric Definition Equation

MAE The mean absolute error of forecasting results MAE = 1
N

N
∑

i=1
|yi − ŷi|

RMSE The root mean square value of the errors RMSE =

√
1
N ×

N
∑

i=1
(yi − ŷi)

2

MAPE The average of absolute percentage error MAPE = 1
N

N
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× 100%

IA The index of agreement of forecasting results IA = 1−
N
∑

i=1
(ŷi − yi)

2/
N
∑

i=1
(|ŷi − y|+ |yi + y|)2

VAR The variance of the forecasting error Var = E(ŷ− E(ŷ))2

6.1. Experiment I: The Data Pre-Processing for Fuzzy Time Series Forecasting

The high volatility and instability of wind speed data undoubtedly increases the challenge in
accurate forecasting. As a consequence, in the process of data analysis, it is necessary to process
the original data according to specific analysis requirements. In this study, the ensemble empirical
mode decomposition is utilized to pre-process original data thereby effectively reducing the influence
of instability and noise. We set the ensemble number as 100 and noise amplitude as 0.2. As can
be seen in Figure 4a, it is obvious that pre-processing data achieves better forecasting performance,
and the variance in forecasting errors drops significantly. For a more direct and clear cognition,
the improvement ratio of the indexes can be calculated using Equation (7):∣∣∣∣∣ Indexcompared − Indexproposed

Indexcompared

∣∣∣∣∣× 100% (7)

Table 7 quantitatively summarizes the improvement in forecasting performance through data
pre-processing. In terms of MAE, RMSE, and MAPE, the average improvement ratio is about 30–40%,
the highest being 38.86%, which is achieved under equal width interval discretization. In terms of IA,
the average improvement ratio is relatively low—about 2% for Datasets II and III and 5% for Dataset I.
This may be due to values of this index being large originally. Variance (VAR) demonstrates the highest
average improvement ratio (about 60%) with the highest individual value being 62.43%. This proves
that data pre-processing significantly improves the forecasting stability.

Remark 1: The high volatility and instability of wind speed data affects the forecasting results significantly.
Thus, suitable data pre-processing method can improve the forecasting performance greatly especially the stability
of the forecasting results.

Table 7. Improvement ratios of the different error criteria for the pre-processing strategy.

MAE RMSE MAPE IA VAR

Dataset I
FTS-Chi2 36.82% 37.89% 37.14% 4.69% 61.33%

FTS-Entropy 36.68% 35.16% 35.63% 4.54% 58.92%
FTS-EF 35.46% 37.29% 35.66% 4.73% 60.59%
FTS-EW 37.65% 38.86% 37.90% 5.30% 62.43%

Dataset II
FTS-Chi2 31.81% 33.64% 31.17% 1.79% 55.94%

FTS-Entropy 33.13% 34.61% 31.89% 1.79% 57.23%
FTS-EF 29.62% 31.38% 29.09% 1.66% 52.89%
FTS-EW 28.27% 29.99% 26.99% 1.76% 50.86%

Dataset III
FTS-Chi2 32.09% 33.65% 29.93% 1.12% 55.97%

FTS-Entropy 34.54% 35.82% 31.22% 1.28% 59.58%
FTS-EF 32.25% 33.15% 30.72% 1.15% 55.31%
FTS-EW 32.08% 33.45% 31.17% 1.16% 55.56%
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6.2. Experiment II: The Comparison of Fuzzy Time Series, Artificial Neural Network, Statistical Models and
Support Vector Regression

Owing to the widespread popularity of artificial intelligence, statistical models, and Support
Vector Regression (SVR), this experiment was designed to compare the performance of the proposed
hybrid forecasting system against artificial intelligence (Back Propagation Neural Network (BPNN),
Extreme Learning Machine (ELM), and Elman) and statistical (Double Exponential Smoothing (DES)
and Autoregressive Integrated Moving Average (ARIMA) models. In all artificial intelligence models,
the node-point numbers of input and output layers are set as 5 and 1, respectively. For hidden layers
in BPNN, ELM, and Elman, the node-point numbers are, respectively, set as 2, 20, and 14. For the
ARIMA (p, d, q) model, values of p, d, and q are set as 4, 1, and 5, respectively, in confirmation with
the A-Information Criterion (AIC) and the stationary test. In SVR, the radial basis function (RBF) is
selected as kernel function. The precise parameter settings are listed in Table 8 and other parameters
use the default setting.

Table 8. Experimental parameter values in different models.

Model Experimental Parameter Value

BPNN

Maximum number of iteration times 1000
Learning rate 0.01

Training accuracy goal 0.00001
Node-point number of input layer 5

Node-point number of hidden layer 2
Node-point number of output layer 1

ELM
Node-point number of input layer 5

Node-point number of hidden layer 20
Node-point number of output layer 1

Elman

Node-point number of input layer 5
Node-point number of hidden layer 14
Node-point number of output layer 1

Iteration number of display once in an image 20
Maximum number of iteration times 1000

SVR

Node point number of input layer 5
Node point number of output layer 1

Type of SVR model epsilon-SVR
Type of kernel function RBF

Parameter of epsilon-SVR 4

ARIMA (p, d, q)
Autoregressive term (p) 4

Moving average number (q) 5
Difference times (d) 1

DES Smoothing coefficient 0.9

Results of the abovementioned comparison are presented in Table 9. Considering Dataset I,
the proposed hybrid forecasting system achieves the optimum MAPE value amongst the models
compared. As shown in Figure 4c, we can easily see that DES demonstrates the worst performance and
its corresponding MAPE increases by about 5% when compared to the proposed hybrid forecasting
system. The proposed system betters the performance of all models in terms of other indexes too.
Amongst artificial neural networks, ELM achieves better forecasting accuracy and stability, while Elman
performs relatively poorly. DES also exhibits the largest variance of the forecasting error indicating
that the forecasting accuracy of the DES is unstable when compared to, both, the proposed forecasting
system as well as artificial neural networks.
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Table 9. Comparison of the hybrid forecasting system against artificial intelligence, statistical, and persistence model.

Dataset I
Hybrid Forecasting System Artificial Neural Network

SVR
Statistical

Persistence Model
Chi2 Entropy EF EW BPNN ELM Elman ARIMA (4,1,5) DES

MAE 0.304745 0.314015 0.310712 0.311066 0.480500 0.464689 0.488986 0.474854 0.468817 0.618175 0.458800
RMSE 0.393810 0.398935 0.422710 0.396898 0.624371 0.612871 0.626326 0.633335 0.608993 0.860441 0.617997

MAPE (%) 5.199317 5.384246 5.300246 5.310732 8.313917 7.834408 8.664982 8.114452 7.966683 10.328762 7.749842
IA 0.973831 0.973006 0.971658 0.973076 0.925417 0.930872 0.921294 0.927558 0.931646 0.890443 0.934266

VAR 0.155138 0.159302 0.173445 0.156431 0.382100 0.374668 0.370987 0.399316 0.371603 0.741841 0.382683

Dataset II
Hybrid Forecasting System Artificial Neural Network

SVR
Statistical

Persistence Model
Chi2 Entropy EF EW BPNN ELM Elman ARIMA (4,1,5) DES

MAE 0.303159 0.305047 0.292344 0.327601 0.429400 0.419508 0.485842 0.437043 0.422248 0.531832 0.411800
RMSE 0.385926 0.394417 0.382119 0.420453 0.572332 0.559468 0.623497 0.598708 0.563047 0.722019 0.554923

MAPE (%) 4.040435 4.063754 3.933468 4.372152 5.727318 5.513481 8.556761 5.842899 5.607781 6.913070 5.417698
IA 0.986645 0.986254 0.987135 0.984222 0.969177 0.970732 0.923628 0.966562 0.969659 0.955681 0.971915

VAR 0.149199 0.155871 0.146307 0.177116 0.325634 0.312639 0.374678 0.356416 0.317654 0.522351 0.308557

Dataset III
Hybrid forecasting System Artificial Neural Network

SVR
Statistical

Persistence Model
Chi2 Entropy EF EW BPNN ELM Elman ARIMA (4,1,5) DES

MAE 0.319252 0.326514 0.336218 0.334258 0.465963 0.452667 0.521913 0.489951 0.465122 0.601174 0.456400
RMSE 0.419349 0.431265 0.435344 0.425761 0.628820 0.613350 0.695743 0.650611 0.623680 0.829816 0.618935

MAPE (%) 4.655949 4.692781 5.037214 4.771814 6.583105 6.338355 7.535347 6.924305 6.555370 8.308627 6.386741
IA 0.991649 0.991099 0.991225 0.991315 0.980192 0.981376 0.974440 0.979072 0.971571 0.968741 0.981649

VAR 0.176199 0.186327 0.184881 0.181607 0.396132 0.376780 0.481291 0.423972 0.389664 0.689968 0.383807
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In real world forecasting applications, the conventional statistical model may not be suitable owing
to its inherent nonlinearity and instability. The use of artificial neural networks usually requires setting
of many parameter values which significantly affects the forecasting performance; also, the forecasting
results are different for several experiments conducted using the same sample. Additionally, in certain
complex networks, the response time of the model substantially long. This may be considered as a
drawback, since the timeliness of forecasting results is of critical importance in modern economic and
industrial applications, especially in the energy sector.

To further demonstrate the performance of the proposed forecasting system, the persistence
model, one of the most popular and frequently utilized benchmark methods, has been used as the
benchmark test in our study. The persistence model simply assumes that forecasted value at any time t
is identical to the last observation. The model does not require any parameter setting nor does it involve
exogenous variables. Nonetheless, it usually demonstrates great performance [76,77]. Comparison
results presented in Table 9 indicate that the proposed hybrid forecasting system demonstrates better
forecasting performance in terms of all five model evaluation criteria. It can, thus, be concluded that
the proposed hybrid forecasting system performs better than the benchmark persistence model.

Remark 2: Comparing with the artificial neural network, statistical models, Support Vector Regression and
persistence model, the proposed hybrid forecasting system possesses the better forecasting accuracy and stability
than others. Moreover, unlike the traditional time series models which need a large amount of historical data
and have restrictions of linear or normality postulates assumptions, and artificial neural network which have
many parameters and complex structure, the proposed hybrid forecasting system has the advantage of the simple
calculation and stable result ensuring the timeliness and reliability of the forecasting results.

6.3. Experiment III: Forecasting Performance of the Fuzzy Time Series with Different Interval
Partitioning Methods

Table 10 enlists the forecasting results in terms of MAE, RMSE, MAPE, VAR, and IA for
original as well as pre-processed data using the four previously described discretization algorithms—
Chi-square-based discretization (χ2), entropy based discretization, equal frequency interval
discretization, and equal width interval discretization. Most of the metrics indicate that the Chi-square-
based discretization performs the best for Datasets I and III. For dataset II, the entropy-based
discretization method demonstrates the best forecasting performance for original data, while the
equal frequency interval discretization rules the roost in handling pre-processed data. Figure 4
shows the forecasting results graphic of the three datasets. From Table 10 and Figure 4a, it can
be concluded that supervised discretization methods possess better stability and forecasting accuracy
compared to unsupervised methods. In Figure 4b, scatter plot of the observations and values
forecasted by the proposed hybrid forecasting system indicates that the proposed system demonstrates
great performance.

Remark 3: The forecasting results of the fuzzy time series with four different interval partitioning methods do
not have large difference but the supervised discretization methods outperform than unsupervised discretization
methods and the equal frequency interval discretization has the worst performance in general.
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Table 10. Comparison of fuzzy time series using different interval partitioning methods.

Dataset I
Original Data Hybrid Forecasting System

FTS-Chi2 FTS-Entropy FTS-EF FTS-EW EEMD-FTS-Chi2 EEMD-FTS-Entropy EEMD-FTS-EF EEMD-FTS-EW

MAE 0.482308 0.486552 0.490665 0.498894 0.304745 0.314015 0.310712 0.311066
RMSE 0.634074 0.651953 0.636203 0.649179 0.39381 0.42271 0.398935 0.396898

MAPE (%) 8.270632 8.36813 8.234151 8.551709 5.199317 5.384246 5.300246 5.310732
IA 0.930179 0.929037 0.929454 0.924069 0.973831 0.973006 0.971658 0.973076

VAR 0.401151 0.404214 0.422243 0.416326 0.155138 0.159302 0.173445 0.156431

Dataset II
Original Data Hybrid Forecasting System

FTS-Chi2 FTS-Entropy FTS-EF FTS-EW EEMD-FTS-Chi2 EEMD-FTS-Entropy EEMD-FTS-EF EEMD-FTS-EW

MAE 0.444548 0.433445 0.437201 0.456687 0.303159 0.305047 0.292344 0.327601
RMSE 0.581522 0.584344 0.57475 0.600577 0.385926 0.382119 0.394417 0.420453

MAPE (%) 5.870509 5.730971 5.774887 5.988826 4.040435 4.063754 3.933468 4.372152
IA 0.969249 0.970143 0.96978 0.967156 0.986645 0.986254 0.987135 0.984222

VAR 0.338608 0.330869 0.34208 0.360426 0.149199 0.155871 0.146307 0.177116

Dataset III
Original Data Hybrid Forecasting System

FTS-Chi2 FTS-Entropy FTS-EF FTS-EW EEMD-FTS-Chi2 EEMD-FTS-Entropy EEMD-FTS-EF EEMD-FTS-EW

MAE 0.470124 0.481921 0.513594 0.492126 0.319252 0.326514 0.336218 0.334258
RMSE 0.632072 0.678365 0.645095 0.639762 0.419349 0.435344 0.431265 0.425761

MAPE (%) 6.644708 6.774126 7.323562 6.932627 4.655949 4.692781 5.037214 4.771814
IA 0.980658 0.979836 0.97873 0.979918 0.991649 0.991099 0.991225 0.991315

VAR 0.400191 0.416966 0.457436 0.408696 0.176199 0.186327 0.184881 0.181607
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6.4. Experiment IV: Testing Based on the DM Test and Forecasting Effectiveness

Although the evaluation metrics presented in experiment II have been well compared to evaluate
the forecasting performance of the different forecasting models, the performance of these models
has been further studied using statistical testing methods based on the DM test and forecasting
effectiveness (FE). This section discusses these methods thereby enabling a more comprehensive test
and comparison of the models’ performance.

6.4.1. DM Test

The Diebold–Mariano test, which focuses on forecasting accuracy, is used to test the difference
between the proposed system’s forecasting accuracy and that of other methods [78].

The test is described as follows:

H0 : E(dh) = 0 , ∀n

H1 : E(dh) 6= 0 , ∃n (8)

Statistic values of the DM test are described by:

DM =

k
∑

h=1

(
L
(

ε
(i)
t+h

)
− L

(
ε
(j)
t+h

))
/k

√
S2/k

s2 (9)

εt+h denotes the forecasting error

S2 denotes the estimation value for the variance of dh = L
(

ε
(i)
t+h

)
− L

(
ε
(j)
t+h

)
L denotes a loss function that is utilized to represent the forecasting accuracy of the model.

Absolute deviation error loss and square error loss are two popular loss functions, which are
widely employed.

Absolute deviation loss:
L
(

ε
(i)
t+h

)
=
∣∣∣ε(i)t+h

∣∣∣ (10)

Square error loss:

L
(

ε
(i)
t+h

)
=
(

ε
(i)
t+h

)2
(11)

When there is no significant difference between forecasting performance of the compared models,
we will reject the null hypothesis given by

|DM| > zα/2 (12)

where Zα/2 is the critical value of the standard normal distribution when the significance level is α.
In our analysis, we used the DM test to investigate significant differences in performance between

the proposed hybrid system and traditional models. The results of the DM test on the basis of the
square error loss function are presented in Table 11, which indicate that the DM statistical values for all
models far exceed the critical value at 1% significance level. As obvious, the proposed hybrid system
performs differently when compared to the traditional models at 1% significance level. Combining
this with the evaluation criteria in Experiment II, the proposed hybrid system is outright better than
the traditional models and potentially meets the requirements of wind speed forecasting.

6.4.2. Forecasting Effectiveness

In this section, forecasting effectiveness is introduced, which evaluates the performance of models
by using the sum of the squared errors as well as the mean and mean squared deviation of the
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forecasting accuracy. Furthermore, the skewness and kurtosis of the forecasting accuracy distribution
need to be considered in practical circumstances. The general form of forecasting effectiveness is
described as follows [79].

The kth-order forecasting effectiveness unit is described as:

mk =
N

∑
n=1

Qn A k
n

N

∑
n=1

Q n = 1 (13)

where Qn denotes the discrete probability distribution at time n. As any prior information of the
discrete probability distribution is unknown, Qn is defined as 1/N. An is the forecasting accuracy
defined as:

An = 1− |εn| (14)

εn =


−1,

(yn − ŷn)/yn,
1,

(yn − ŷn)/yn < −1
−1 ≤ (yn − ŷn)/yn < 1

(yn − ŷn)/yn > 1
(15)

The k-order forecasting effectiveness is defined as:

H
(

m1, m2, · · · , mk
)

(16)

When H(x) = x is a continuous function in one-variable, the first-order forecasting effectiveness
is the expected forecasting accuracy sequence defined as H

(
m1) = m1. Similarly, when H(x, y) =

x
(

1−
√

y− x2
)

is a continuous function in two variables, the second-order forecasting effectiveness
is the difference between the standard deviation and expectation, which can be described as

H
(

m1, m2
)
= m1

(
1−

√
m2 − (m1)

2
)

(17)

In this study, forecasting effectiveness was also used to evaluate the performance of different
models. The model which possesses greater forecasting effectiveness is said to perform better.
The first-order forecasting effectiveness is based on the expected value of the forecasting accuracy
sequence, while the second-order forecasting effectiveness is related to the difference between the
standard deviation and expectation of the forecasting accuracy sequence. Detailed results of the first-
and second-order forecasting effectiveness are presented in Table 12. It can be easily seen that the
proposed hybrid forecasting system outperforms the other models, for the value of the forecasting
effectiveness of the proposed system far exceeds that corresponding to other models in all cases.
Take dataset I for example, the first-order forecasting effectiveness of BPNN, ELM, Elman, SVR,
ARIMA, and DES models are, respectively, 0.9209, 0.922, 0.9205, 0.9189, 0.9203, and 0.8967. At the same
time, corresponding values of the proposed hybrid forecasting system with four different discretization
methods are 0.9480, 0.9462, 0.9470, and 0.9469. Further, the second-order forecasting effectiveness
values for the above methods and the proposed hybrid system are 0.8558, 0.8563, 0.8557, 0.8487, 0.8565,
and 0.8086 and 0.9069, 0.9049, 0.8994, 0.9063, respectively.

Remark 4: The results obtained from the DM test and forecasting effectiveness indicate that the forecasting
accuracy of the proposed system is remarkably higher than the BPNN, ELM, Elman, SVR, ARIMA, and DES
models, and the developed hybrid forecasting system is more viable and significantly superior to the traditional
forecasting models.
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Table 11. DM test results of different models for the three datasets.

Datasets Models BPNN ELM Elman SVR ARIMA DES

Dataset I Hybrid
system1

9.5759 6.9282 9.6694 8.6703 9.6704 9.4034
Dataset II 8.1057 5.2140 14.5774 6.4442 8.0502 8.9632
Dataset III 8.5758 6.8089 12.069 9.5842 8.5689 9.5542

Dataset I Hybrid
system2

8.2046 9.1922 8.2829 7.4465 8.3739 9.2545
Dataset II 8.5994 7.8156 14.7021 6.6676 8.5149 8.9278
Dataset III 7.4355 8.0469 11.9691 8.4399 7.3988 8.9997

Dataset I Hybrid
system3

9.2870 7.9969 9.3517 8.4294 9.3695 9.3582
Dataset II 7.9956 8.2683 14.2859 6.2895 7.8031 8.8359
Dataset III 8.3252 6.9085 12.1188 9.0679 8.2286 9.3185

Dataset I Hybrid
system4

9.5094 8.9113 9.5849 8.5284 9.6266 9.3763
Dataset II 7.4392 7.5030 13.8997 5.7378 7.1529 8.2366
Dataset III 7.7251 7.6462 11.9581 8.8024 7.6623 9.1974

Table 12. Forecasting effectiveness of different models for the three datasets.

Models
Dataset I Dataset II Data III

First-Order Second-Order First-Order Second-Order First-Order Second-Order

Compared
Models

BPNN 0.9209 0.8558 0.9429 0.8943 0.9338 0.8789
ELM 0.922 0.8563 0.9442 0.8986 0.9362 0.8825

Elman 0.9205 0.8557 0.8908 0.8028 0.8736 0.7760
SVR 0.9189 0.8487 0.9416 0.8868 0.9308 0.8740

ARIMA 0.9203 0.8565 0.9439 0.8969 0.9344 0.8803
DES 0.8967 0.8086 0.9309 0.8741 0.9169 0.8463

Hybrid
Forecasting

System

Chi 0.9480 0.9069 0.9596 0.9284 0.9534 0.9151
Entropy 0.9462 0.9049 0.9594 0.9267 0.9531 0.9143

EF 0.9470 0.8994 0.9607 0.9272 0.9496 0.9058
EW 0.9469 0.9063 0.9563 0.9219 0.9523 0.9151

7. Sensitivity Analysis of Parameters in the Proposed Hybrid Forecasting System

The proposed hybrid forecasting system involves two parameters—ensemble number and noise
amplitude—that need to be predefined [80]. To investigate the sensitivity of these parameters,
Dataset I was processed using the proposed hybrid forecasting system with the Chi-square-based
discretization algorithm.

7.1. Setting the Ensemble Number for Ensemble Empirical Mode Decomposition

In this case, the noise amplitude is maintained constant, and the number of ensembles is varied.
However, there is no unified standard for the size of these parameters. By referring to several
experiments and literature [4,81,82], we set the amplitude of white noise as 0.2 and the ensemble
number as 50, 100, and 200. Table 13 compares the forecasting results obtained with the use of
different ensemble numbers. The results indicate that when the ensemble number is 100, the system
demonstrates the best forecasting performance. The forecasting accuracy decreases as we go above or
below this value. As an illustration of this fact, MAPE values corresponding to ensemble numbers of
50, 100, and 200 were found to be 5.7744%, 5.1993%, and 5.7811%, respectively.

7.2. Setting Amplitude of Added Noise

The influence of added white noise amplitude on the forecasting performance is explored in this
section. Here, the ensemble number is kept constant, and the amplitude of added noise is varied.
By referring to literature [80], we set the amplitudes of the added white noise as 0.1, 0.2, and 0.5,
while ensemble number was maintained at 100. Table 13 represents the forecasting results obtained
using proposed system with different values of the added noise amplitude. In terms of the criteria
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mentioned in Section 6, best forecasting results are achieved when the amplitude of added noise is
maintained as 0.2. The results in Table 13 indicate that a change in amplitude of the added noise
influences the forecasting accuracy. If too small amplitude is selected for the added noise, a series
of smooth and stable data may not be introduced. On the other hand, if we select too large a noise
amplitude, some frequency information could be lost in the noise, and the forecasting accuracy
will decrease.

Table 13. Results of sensitivity analysis of parameters in the proposed hybrid forecasting system.

The Value of the Ensemble Number Is 200 MAE RMSE MAPE (%) IA VAR

The amplitude of added
noise

0.1 0.356060 0.469598 6.013668 0.961840 0.220853
0.2 0.304745 0.393810 5.199317 0.973831 0.155138
0.5 0.335544 0.432928 5.720263 0.967039 0.187473

White noise is 0.5 MAE RMSE MAPE (%) IA VAR

The value of ensemble
number

50 0.340148 0.438051 5.774439 0.966492 0.192129
100 0.304745 0.393810 5.199317 0.973831 0.155138
200 0.342039 0.441753 5.781073 0.966076 0.195446

8. Further Experiments for Hourly Time Horizon

In order to support the merits of the proposed hybrid system in comparison to other forecasting
models, we performed a further experiment comprising the hourly time-horizon wind speed
forecasting. The results of this experiment, in terms of evaluation criteria, are presented in Table 14,
and the results of the DM test and forecasting effectiveness are listed in Tables 15 and 16, respectively.
It is easily recognized that MAPE of the proposed system is about 7%, while for the compared models,
this value varies in the range of 15–20%. Corresponding VAR values are about 0.3 and above 1,
respectively, indicating that forecasting results of the proposed system have better accuracy and
stability. The performance of artificial neural networks is only slightly different from each other,
while DES is evidently poor compared to ARIMA amongst statistical models.

The DM statistical values of all models are about 5, which is higher than the critical value at the 1%
significance level. We can, thus, conclude that the proposed hybrid system is obviously different and
performs better compared to other models at the 1% significance level. Combining this with the results
based on evaluation criteria, the proposed hybrid system can be seen to outperform traditional models.

It can be inferred from Table 16 that the forecasting effectiveness of the proposed system exceeds
that of the compared models under all cases. The first-order forecasting effectiveness offered by BPNN,
ELM, Elman, SVR, ARIMA, and DES is about 0.85, while that corresponding to the proposed hybrid
forecasting system with four different interval partitioning methods is about 0.93. The respective
second-order values are about 0.88 and 0.75. Amongst the models being compared, DES has the
worst performance with respective first- and second-order forecasting effectiveness values of 0.799
and 0.6614.

Remark 5: As for the hourly time-horizon wind speed forecasting, the evaluation criteria and testing results
which are obtained by DM test the forecasting effectiveness all show that the level of forecasting accuracy of
the proposed system is remarkably higher than the compared model. But, the forecasting performance for the
10 min-horizon wind speed are overall superior to the hourly time-horizon wind speed for the same model. Based
on the above analysis, we can conclude that the proposed system has general applicability and great performance.
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Table 14. Comparison of different models for the hourly time horizon wind speed forecasting.

MODELS MAE RMSE MAPE IA VAR

Hybrid
forecasting

system

Chi2 0.390194 0.055946 6.411913 0.953606 0.260964
Entropy 0.416678 0.058084 6.928242 0.950354 0.264313

EF 0.437427 0.061288 7.264912 0.949147 0.312299
EW 0.432544 0.061552 7.003766 0.943157 0.315089

Artificial
Neural

Network

BPNN 0.825827 1.068416 14.24583 0.718107 1.154761
ELM 0.859881 1.100304 14.36884 0.714523 1.221836

Elman 0.843463 1.083612 14.61775 0.72943 1.177776

Statistical
ARIMA 0.791711 1.024048 13.37103 0.727751 1.061284

DES 1.205944 1.563405 20.08901 0.68189 2.472686

SVR 0.948013 1.225591 16.6055 0.646858 1.499271

Table 15. DM test results of different models for hourly time horizon wind speed forecasting.

DM Test BP ELM Elman SVR ARIMA DES

Hybrid system 1 Chi2 4.877626 4.950937 4.90825 4.686209 4.909181 5.366497
Hybrid system 2 Entropy 4.737063 4.798341 4.770708 4.573673 4.735968 5.327807
Hybrid system 3 EF 4.475986 4.527564 4.495222 4.397966 4.445831 5.258996
Hybrid system 4 EW 4.571886 4.634924 4.605242 4.467959 4.522839 5.257129

Table 16. Forecasting effectiveness of different forecasting models for hourly time horizon wind
speed forecasting.

Forecasting Effectiveness Chi2 Entropy EF EW BPNN

first-order 0.93588 0.930718 0.927351 0.929962 0.855717
second-order 0.88826 0.88145 0.870173 0.878382 0.747753

Forecasting effectiveness ELM Elman SVR ARIMA DES
first-order 0.857697 0.853565 0.833945 0.862438 0.79911

second-order 0.749865 0.745601 0.713875 0.758843 0.661372

9. Conclusions

Data pre-processing and future forecasting are crucial tasks in modern national and regional
economic development, especially in the energy sector. Poor energy forecasting may lead to wastage
of the already scarce energy sources. As such, both accuracy and stability are important objectives
to be achieved in energy forecasting. Nevertheless, accurate energy forecasting is considered to
be a challenging task because of various influencing factors, such as noise and high data volatility.
Conventional statistical models require a large amount of historical data and face restrictions, such as
linear or normality postulates. On the other hand, use of artificial neural networks involves several
parameters and requires substantial response time. To overcome the limitations and challenges in these
methods, we proposed the hybrid forecasting system with four different interval partitioning methods.

By comparing the forecasting accuracy, stability, and effectiveness of the proposed system
against conventional statistical models and artificial neural networks via the data from three sites,
it is concluded that the proposed system significantly outperforms the other models. Especially,
the variance criterion (VAR) for the DES model is significantly larger compared to that for the proposed
hybrid forecasting system thereby reducing the stability and reliability of DES forecasting results.
Also, because the proposed system involves simple calculations and results do not change with time
for the same sample, the forecasting efficiency and stability is evidently improved.

The volatility and instability of raw data increase the difficulties involved in wind speed
forecasting; thus, the pre-processing the data prior to forecasting is essential. Experiments performed in
this study indicate that the ‘decomposition and ensemble’ strategy for raw data remarkably improves
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the forecasting performance. The comparison of forecasting results obtained using four different
interval partitioning methods indicate that although forecasting accuracy does vary significantly
between them, the supervised discretization methods are superior to unsupervised methods.

Additionally, sensitivity analysis of parameters used in the proposed forecasting system indicates
that by appropriately setting the ensemble number and white noise amplitude, the forecasting accuracy
can be greatly improved. In order to prove the superiority of the proposed hybrid system over other
forecasting models, the hourly time-horizon wind speed was further simulated. Results of this
simulation indicate that the proposed system has better performance compared to all other models
for different time-horizon datasets. Further, forecasting performance of the proposed system for the
10 min-horizon wind speed is superior to the forecasting performance for the hourly time-horizon wind
speed. In conclusion, the proposed hybrid forecasting system demonstrates better forecasting accuracy,
effectiveness, and stability while handling noisy and insufficient datasets in the wind energy system.
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Abbreviations in this manuscript are summed up as follows:

AIC A-Information Criterion
ARIMA Autoregressive Integrated Moving Average
BPNN Back Propagation Neural Network
Chi2 Chi-square
CRO Coral Reefs Optimization
DES Double Exponential Smoothing
DM Diebold–Mariano
EF equal frequency
ELM Extreme Learning Machine
EW equal width
FE forecasting effectiveness
FLR Fuzzy Logical Relationship
FSP Feature Selection Problem
FTS Fuzzy time series algorithm
HS Harmony Search
IA Index of agreement of forecasting results
LHS Left-hand side
MAE Mean absolute error
MAPE Mean Absolute Percentage Error
R Correlation coefficient
RBFNN Radial Basis Function Neural Network
RHS Right-hand side
RMSE Root Mean Square Error
SAM Seasonal Adjustment Method
SVR Support Vector Regression
VAR Variance of the error
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