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Abstract: Instability caused by low inertia and constant power loads is a major challenge of DC
distribution grids. Previous research uses oversimplified models or does not provide general rules
for stability. Therefore, a comprehensive approach to analyze the stability of DC distribution
systems is desired. This paper presents a method to algebraically analyze the stability of any
DC distribution system through the eigenvalues of its state-space matrices. Furthermore, using this
method, requirements are found for the stability of three example systems. Additionally, a sensitivity
analysis is performed, which considers the effect of several system parameters on the stability and
disputes some overgeneralized conclusions of previous research. Moreover, various simulations are
performed to illustrate the dynamic behavior of a stable and an unstable DC distribution system.
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1. Introduction

The adoption of DC distribution systems is growing rapidly. The utilization of DC distribution
systems for applications such as high voltage distribution [1,2], data centers [2,3], telecommunications [4],
commercial [5,6] and residential buildings [7–9], and street lighting [10,11] is ever increasing. Moreover,
a variety of novel applications, such as microgrids and device level distribution, have recently been
identified [12,13].

A challenge for future distribution grids is instability, which is caused by the (anticipated)
low inertia of future grids and the interaction between power electronic converters. Conventional
generation provides (virtual) inertia to the grid by naturally governing the kinetic energy of its angular
mass or via the control of its power electronic converter. With the increasing share of renewable
(distributed) energy sources, this (virtual) inertia of distribution grids is decreased significantly [14].
Moreover, tightly regulated load converters behave as constant power loads (CPLs). Constant power
loads exhibit a negative incremental input impedance, which has a destabilizing effect on distribution
systems [15].

Two current methods have been identified to counteract instability caused by CPLs in DC
distribution systems. First, passive stabilization methods utilize passive elements (e.g., resistance,
filters or storage) to dampen the oscillations in the system [16,17]. However, passive stabilization
methods increase the cost, complexity and losses of the system. Second, active stabilization methods
utilize advanced control methods to improve stability. Examples of different active stabilization
techniques can be found in literature [18,19]. However, it is more appealing to ensure inherent stability
(if possible).
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To analyze the stability of DC distribution systems, several models of the network and converters
have been reported in literature. Most methods average and linearize the power electronic converters
in the DC distribution grid. Since these small-signal models are valid for frequencies up to half of the
switching frequencies, and the bandwidths of practical converters are typically lower than one-tenth
of the switching frequency, these models provide reasonable accuracy around the operating point [18].

Four main approaches to the stability analysis of DC distribution grids can be identified. Firstly,
the minor loop gain (the relationship between the complex load and source impedance) can be
analyzed. Different limits on the minor loop gain have been proposed to ensure stability. However, this
approach assumes unidirectional power flow and measurements are essential for accurate impedance
estimations [18,20–22]. Secondly, a root locus analysis of the system can be performed and the locations
of the poles can be analyzed [23–27]. This approach does not provide rules for stability and often
provides little (mathematical) insight into the origin of the (in)stability. Thirdly, an analysis based on
Lyapunov methods can be conducted [28–32]. However, these are not easily applied and require a
suitable construction of the Lyapunov storage function. Lastly, the roots of the system can be derived
from the eigenvalues of its state-space matrix [19,33–36]. This approach, which is also used in this
paper, relies on the validity of averaging, linearizing, and simplifying the power electronic converter.

Previous research, however, only analyzes specific systems, uses oversimplified models and/or
does not provide general rules for stability. For example, only star type systems with a source at the
central node are analyzed [35], the node capacitance is not considered in the equations [37], or no
(general) rules for stability are provided [25]. Therefore, any conclusions on the effect of system
parameters (e.g., inductance, capacitance and droop coefficients) on the distribution system’s stability
can not be generalized.

The contribution of this paper is a generalized method to algebraically analyze the stability of
DC distribution systems, regardless of configuration. The method derives necessary and sufficient
conditions for the stability by determining the system’s eigenvalues algebraically. Furthermore,
the presented model is used to prove and refute some of the common conclusions on the effect of
certain system parameters on stability.

The remainder of this paper is organized as follows: in Section 2, the model which is used for
each component is described. Section 3 discusses the stability of the simplest DC distribution systems.
A method to analyze the stability of any DC distribution grid is presented in Section 4. Subsequently,
in Section 5, the presented method is applied to three different examples. Section 6 illustrates the stable
and unstable dynamic behavior of DC distribution grids via various simulations. Finally, conclusions
are drawn in Section 7.

2. DC Distribution System Model

In Figure 1, an example of a DC distribution system is shown. Any DC distribution system
consists of n nodes, l distribution lines, o phase conductors, and m sources and loads connected to
nodes via power electronic converters. For the sake of simplicity, the DC distribution systems in
this paper are assumed to be monopolar (i.e., have a single phase conductor), but the model can be
extended. The interconnectivity of the system can then be described by the incidence matrix Γ [38]:

Γ(j, i) =


1, if Ij is flowing from node i,

−1, if Ij is flowing in node i,

0, otherwise,

(1)

where j and i are the indices for each distribution line and node, respectively, and Ij is the current
flowing in line j. Furthermore, the boldface of a variable indicates that it is a vector or matrix.
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Figure 1. Bipolar DC distribution system containing storage, sources and loads.

2.1. Nodes

The voltages at the system’s nodes are determined by the set of differential equations

CU̇N = IM − ΓT IL, (2)

where C is the (diagonal) capacitance matrix, UN are the voltages at each node, IL are the currents in
each distribution line, and IM are the sums of the currents from the converters connected to each node.

2.2. Distribution Lines

The currents in the system’s distribution lines are determined by the set of differential equations

LİL = ΓUN − RIL, (3)

where L and R are the (diagonal) inductance and resistance matrices, respectively.

2.3. Sources

It is assumed that the source and load converters have a large enough bandwidth that they react
instantaneously to changes in the system. The equivalent circuits of droop controlled sources and
constant power loads are given in Figure 2. The current flowing from a droop controlled source into a
node is then

Is =
U0 −Un

Zs
, (4)

where U0 is the reference voltage, Un is the node voltage, and Zs is the (virtual) impedance of the
droop controller.

Zs

CsU0

Zl

Cl2Ul

Figure 2. Equivalent circuits of droop controlled sources (left) and constant power loads (right).



Energies 2017, 10, 1412 4 of 17

2.4. Loads

The linearized load current of constant power loads, assuming a large enough bandwidth of the
converter, is

Il = −
2Pl
Ul

+
Pl

U2
l

Un =
2Ul −Un

Zl
= I0 −

Un

Zl
, (5)

where

Zl = −
U2

l
Pl

, (6)

Pl is the load’s power, Ul is the voltage at which the load is linearized, and Zl is the (negative)
impedance of the load [26].

3. Stability of Simple DC Distribution Systems

The simplest (potentially unstable) DC distribution grid is a voltage source connected to a
constant power load via a distribution line, which is shown in Figure 3. The differential equations of
this system are

CU̇C = IL + Il , (7)

LİL = US −UC − RIL, (8)

where UC is the voltage of the capacitor and IL is the current flowing in the inductor.
By substituting Equation (5) into the differential equations, the state-space formulation is derived to be[

U̇C
İL

]
=

[
−1
ZlC

1
C

− 1
L − R

L

] [
UC
IL

]
+

[
1
C 0
0 1

L

] [
I0

US

]
. (9)

Zl

C 2Ul

L R

US

IL

Figure 3. Simple DC distribution grid containing a constant power load and a voltage source connected
via a distribution line.

The poles of any state-space system can be found by determining the eigenvalues of the “A”
matrix (the left matrix in Equation (9)). In fact, the eigenvalues of this matrix can be found by solving
|A− λI| = 0. The characteristic equation (|A− λI|) of this system is

λ2 + λ

(
R
L
+

1
CZl

)
+

1
LC

+
R

LCZl
. (10)

Therefore, the poles of this system are

λ =− R
2L
− 1

2CZl
±

√
1
4

(
R
L
+

1
CZl

)2
−
(

1
LC

+
R

LCZl

)
. (11)
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Any system is considered stable if all poles have negative real parts. Consequently, this system is
stable if and only if

R
L
+

1
CZl

> 0, (12)

1
R
+

1
Zl

> 0. (13)

C1I1

L R

C2 I2

IL

Figure 4. Simple DC distribution grid containing a constant power load and a droop controlled source
connected via a distribution line.

A slightly more complex DC distribution grid is given in Figure 4, where the voltage source of the
previous example is replaced by a droop controlled source. To generalize droop controlled sources
and constant power loads, the current flowing from any converter into the node it is connected to is
given by

Ii = Ii,0 −
1
Zi

UC, (14)

where Ii,0 and Zi are positive for droop controlled sources, and negative for constant power loads.
The state-space formulation of this DC distribution system is thenU̇1

U̇2

İL

 =


−1

Z1C1
0 −1

C1

0 −1
Z2C2

1
C2

1
L

−1
L

−R
L


U1

U2

IL

+


1

C1
0

0 1
C2

0 0

 [I1,0

I2,0

]
. (15)

Once again, the characteristic equation is derived by determining |A− λI|:

λ3 + λ2
(

R
L
+

1
C1Z1

+
1

C2Z2

)
+

λ
1

LC1C2

(
L

Z1Z2
+

C2R
Z1

+
C1R
Z2

+ C2 + C1

)
+

1
LC1C2

(
R

Z1Z2
+

1
Z1

+
1

Z2

)
. (16)

It is required, but not sufficient, that all coefficients of a polynomial are positive for it to have only
poles with negative real parts; therefore,

R
L
+

1
C1Z1

+
1

C2Z2
> 0, (17)

L
Z1Z2

+
C2R
Z1

+
C1R
Z2

+ C2 + C1 > 0, (18)

R
Z1Z2

+
1

Z1
+

1
Z2

> 0. (19)

To make the conditions sufficient, in this third order case, one additional condition (that the
product of the second and third coefficients is greater than the fourth) is required.
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If, for the sake of simplicity, the resistance (R) is neglected and the source is located at node 1, the
system presented in Figure 4 is stable if and only if

|Z2| > |Z1|, (20)

C2|Z2| > C1|Z1|, (21)

C2 + C1 >
L

|Z1Z2|
, (22)

L
C2Z1Z2

2
+

C2

C1Z1
>

L
C1Z2

1 |Z2|
+

C1

C2|Z2|
. (23)

4. Stability of Any DC Distribution System

The approach used in the previous section is in this section extended for any DC distribution
system. By combining Equations (2), (3) and (14) the state-space formulation for any DC distribution
consisting of nodes, distribution lines, droop controlled sources and (constant power) loads is derived
to be [

U̇N

İL

]
=

[
−C−1Z−1 −C−1ΓT

L−1Γ −L−1R

] [
UN

IL

]
+

[
C−1

∅

]
IM,0, (24)

where Z is the matrix containing source and load impedance and IM,0 is the vector of the constant
term currents (Ii,0) from the converters connected to each node.

4.1. The Location of the Equilibrium

Besides the stability, the equilibrium (steady state) of the system can be derived from the
state-space equations. In steady state, the time derivatives in the system are 0. The steady state
voltages and currents can therefore be calculated by

∅ =

[
−C−1Z−1 −C−1ΓT

L−1Γ −L−1R

] [
UN

IL

]
+

[
C−1

∅

]
IM,0, (25)

[
UN

IL

]
=

[
−C−1Z−1 −C−1ΓT

L−1Γ −L−1R

]−1 [
−C−1

∅

]
IM,0. (26)

The inverse of the left-hand matrix (A) can be decomposed as

A−1 =

[
Z−1 ΓT

Γ −R

]−1 [
−C 0

0 L

]
. (27)

By substituting Equation (27) into Equation (26), the steady state node voltages and line currents
are derived to be [

UN

IL

]
=

[
Z−1 ΓT

Γ −R

]−1 [
IM,0

∅

]
. (28)

Since the matrix of Equation (28) is a block matrix, the node voltages at the equilibrium are

UN = (Z−1 + ΓT R−1Γ)−1 IM,0, (29)

which is equivalent to multiplying the constant term currents by the equivalent impedance of
the network.
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4.2. Stability from the Characteristic Equation

The stability of DC distribution systems can be evaluated by determining the eigenvalues of the
A matrix. For the ease of computation, this matrix is represented by

A =

[
−C−1Z−1 −C−1ΓT

L−1Γ −L−1R

]
=

[
E F
G H

]
, (30)

where F and G are not necessarily square matrices.
The characteristic equation of this matrix (|A− λI|) will always have the form of

a1λN+L + a2λN+L−1 + a3λN+L−2 . . . aN+L = 0, (31)

where N and L are the number of nodes and number of distribution lines, respectively. Therefore, this
characteristic equation has N + L coefficients and N + L zeros.

The coefficients of the characteristic equation can be determined from the A matrix by utilizing
traces of powers or the principal minors of the matrix [39,40]:

a1 = 1, (32)

a1+k = −
1
k

m=k

∑
m=1

am Tr(Ak−m+1), (33)

a1+k = (−1)k ∑ ∆k, (34)

where Tr is the trace of a matrix, and ∆k is the k-th order principal minor of A.
Utilizing Equations (33) and (30), the algebraic representation of the first five coefficients of the

characteristic equation are determined to be

a1 =1, (35)

a2 =−∑
i

Aii, (36)

a3 =
1
2 ∑

i 6=j
Aii Ajj −∑

i
(FG)ii, (37)

a4 =− 1
6 ∑

i 6=j 6=k
Aii Ajj Akk

+
1
2 ∑

i 6=j
Eii(FG)jj +

1
2 ∑

i 6=j
H ii(GF)jj, (38)

a5 =
1

24 ∑
i 6=j 6=k 6=l

Aii Ajj Akk All

− 1
6 ∑

i 6=j 6=k
EiiEjj(FG)kk −

1
6 ∑

i 6=j 6=k
H ii H jj(GF)kk

− 1
6 ∑ Eii H jj(FG)kk

− 1
2 ∑(EFHG)ii −

1
2 ∑(HGEF)ii

+
1
2 ∑ Eii(FHG)jj +

1
2 ∑ H ii(GEF)jj

− 1
2 ∑(FG)2

ii +
1
4 ∑(FG)ii(FG)jj. (39)
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From Equations (35) to (39), it becomes apparent that the coefficients relate to the combinations of
the sources’, loads’ and distribution lines’ time coefficients, of increasing order with each subsequent
coefficient (without creating loops).

For these systems to be stable, it is required, but not sufficient, that all coefficients are larger than
0 [41]. To make the conditions sufficient (N + L− 2) additional coefficients need to be added [42].
These Routh coefficients can be found in the leftmost column of the Routh array [42]:

B =



a1 a3 a5 . . . ax

a2 a4 a6 . . . ax

b1,1 b1,2 b1,3 . . . b1,x/2
b2,1 b2,2 b2,3 . . . b2,x/2

...
...

...
...

...
bx−2,1 bx−2,2 bx−2,3 . . . bx−2,x/2


, (40)

where x is equal to N + L, and the bi,j elements are recursively determined by

bi,j =
B1+i,1Bi,1+j − Bi,1B1+i,1+j

B1+i,1
. (41)

For example, the first two Routh coefficients are

b1,1 = a2a3 − a4, (42)

b2,1 = a2a3a4 + a2a6 − a2
2a5 − a2

4. (43)

Any DC distribution system is stable if and only if all the coefficients of the characteristic equation
and the Routh coefficients (b1,j) are larger than zero.

5. Stability Analysis of Example Systems

To demonstrate the utility of the presented method, the stability of three DC distribution systems
in different configurations is analyzed. For these examples, it is assumed that the source is located at
node N1 of each configuration; however, moving the source to a different node yields similar results.
Furthermore, a sensitivity analysis is performed and a few general misconceptions concerning the
stability of DC distribution systems are discussed.

5.1. Bus Configuration

An example of a DC distribution system in a bus configuration is shown in Figure 5. The idea of
such a configuration is one “bus”, or set of distribution lines, without branches or meshes. For the
shown example, it is assumed that a source is situated at N1 and a load is situated at both N2 and N3.
However, the derivation for other configurations is analogous. For the sake of simplicity, the resistance
of the distribution lines is neglected.

N2 N3L2N1 L1

Figure 5. Example of a DC distribution grid with three nodes and two lines in a bus configuration.
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Using Equations (30) and (33), the coefficients of the characteristic equation are derived to be

a1 = 1, (44)

a2 =
1

C1Z1
+

1
C2Z2

+
1

C3Z3
, (45)

a3 =
1

C1L1
+

1
C2L1

+
1

C2L2
+

1
C3L2

+

1
C1Z1C2Z2

+
1

C1Z1C3Z3
+

1
C2Z2C3Z3

, (46)

a4 =
1

C1Z1C2Z2C3Z3
+

1
C1L1C2Z2

+
1

C1L1C3Z3
+

1
C2L1C3Z3

+
1

C2L1C1Z1
+

1
C2L2C1Z1

+

1
C2L2C3Z3

+
1

C3L2C2Z2
+

1
C3L2C1Z1

, (47)

a5 =
1

C1Z1C2Z2C3L2
+

1
C1Z1C3Z3C2L1

+

1
C1Z1C3Z3C2L2

+
1

C2Z2C3Z3C1L1
+

1
C1L1C2L2

+
1

C1L1C3L2
+

1
C2L1C3L2

, (48)

a6 =
1

C1Z1C2L1C3L2
+

1
C2Z2C1L1C3L2

+

1
C3Z3C1L1C2L2

. (49)

Now if, for simplicity, we assume that the capacitance in each node (Ci) and inductance in each
distribution line (Lj) are equal, we arrive at two simple requirements for the stability of this system

Z1 <
−1

1
Z2

+ 1
Z3

, (50)

Z1 >
−2Z2 − Z3

1 + 3CZ2Z3
L

, (51)

where the first requirement is derived from the even coefficients, and the second requirement follows
from the odd coefficients. Interestingly, from these requirements, a constraint on the capacitance and
inductance follows:

3C
L

>
2

Z2
3
+

1
Z2

2
+

2
Z2Z3

, (52)

which defines a minimum on the ratio between the capacitance and inductance for feasible stability.
The derived requirements are necessary but not sufficient for stability. To make the set of

requirements sufficient additional constraints can be derived from the Routh coefficients. In general,
the requirements derived from the Routh coefficients are more complex, but similar to the requirements
derived from the characteristic equation’s coefficients (see (23)). For this example, according to
Equations (40) and (41), if the ratio between the capacitance and inductance is large enough, it is
sufficient if

Z1 <
−1

1
Z2

+ 4
Z3

, (53)

which, agreeably, is a stricter version of Equation (50) derived from the characteristic
equation’s coefficients.
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5.2. Ring Configuration

The second example is a DC distribution system in a “ring” configuration shown in Figure 6.
In this case, the ring configuration does not have any branches, but it is meshed. In this example,
the source is located at N1 and loads are located at N2 and N3.

N1

N3

N2L1

L3L2

Figure 6. Example of a DC distribution grid with three nodes and three lines in a ring configuration.

Analogous to the bus configuration, the requirements for stability of this system can be derived
from the characteristic equation. These requirements are derived to be

−Z2 − Z3

1 + 9CZ2Z3
2L

< Z1 <
−1

1
Z2

+ 1
Z3

. (54)

5.3. Star Configuration

The last example is a DC distribution system in a “star” configuration, which is shown in Figure 7.
In this case, the star configuration has branches, but no meshes. Since, in most cases, the source is
situated in the center node, and it is assumed that the system has a source placed at N1 and a load is
placed at N2, N3 and N4.

N2

N1

N3

L2L1

L3

N4

Figure 7. Example of a DC distribution grid with four nodes and three lines in a star configuration.

Analogous to the previous configurations, the requirements for stability of this system are derived
to be

1
2 (−Z2Z3 − Z2Z4 − Z3Z4)

Z2 + Z3 + Z4 +
2CZ2Z3Z4

L

< Z1 <
−3

5
Z2

+ 5
Z3

+ 5
Z4

. (55)

The stability requirements for the three examples show strong congruence with respect to the
sensitivity towards, for example, inductance and capacitance. Therefore, it becomes viable to make
some general conclusions.
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5.4. Sensitivity Analysis

Similar results with respect to previous work are found for some parameters. With respect to
inductance, the results of this paper are congruent with previous works [26,37], where a decrease
in inductance leads to increased stability. Furthermore, from the equations in the previous section,
it can be observed that the impedance (slope) of the droop controlled source has an upper and lower
bound. The upper bound is related to the constant power loads in the system, while the lower bound is
related to the oscillations in the system. These oscillations originate from the interaction of capacitance
at different nodes through the lines’ inductance. These results are also congruent with previous
work [43,44].

Generally, it is thought that an increase in capacitance is beneficial for the stability of the system.
From Equations (52), (54) and (55), it is clear that there is a minimum required capacitance and further
increase of capacitance leads to an increased stability margin. However, Equations (45) and (49) suggest
a negative effect on the overall damping of the system. The second (a2) and last (aN+L) coefficients
are the sum and product of all eigenvalues, respectively. Therefore, when the capacitance is increased
the sum and product of all eigenvalues are decreased leading to decreased damping in the system.
Conceptually, this can also be understood, a voltage deviation with larger capacitance means a larger
disparity in energy, which will take a long(er) time to be damped.

Interestingly, Equations (45) and (49) suggest that decreasing the source capacitance compared
to the load capacitance has a positive influence on the damping in the system. However, this not
necessarily infinitely valid since the decrease of source impedance also has a negative effect on some of
the coefficients (e.g., a3). As validation of this observation, the maximum real part of the eigenvalues as
function of the source capacitance is shown in Figure 8, in which it can be seen that a reduction of the
source capacitance leads to increased stability, but only up until a certain capacitance. The parameters
used for both numerical calculations, unless otherwise specified, are given in Table 1.

Table 1. System parameters for the sensitivity analysis.

R [Ω] L [mH] C [µF] Z1 [Ω] Z2 [Ω]

0 0.36 50 5 −125

0 1 2

C
1
 [F] #10-4

-2000

-1500

-1000

-500

0

M
ax

(R
e(
6

))

0 10 20 30 40 50

R [+]

-1200

-1000

-800

-600

-400

-200

0

M
ax

(R
e(
6

))

Figure 8. Maximum real part of the eigenvalues of A as function of the source capacitance (left) and
the line resistance (right) for the bus example.

Moreover, since the effect of the resistance has been excluded from the mathematical derivations
(for the sake of simplicity), another numerical calculation was performed to show the effect of resistance
on the damping in the system. Figure 8 shows that some resistance is beneficial for the stability, while
larger values deteriorate stability. The positive effect can be explained by the additional damping
in the system while the negative effect on stability stems from the current limiting characteristic of
the resistance.
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6. Simulation Results

In this section, two simulations are performed for all three example systems to illustrate the results
of the previous sections. Firstly, the configurations are simulated with a too high droop impedance
to illustrate one of the unstable conditions of DC distribution systems. Secondly, the configurations
are simulated with an acceptable droop impedance to illustrate the behavior of stable DC distribution
systems and to compare it to the previous simulations.

For the simulations the example configurations, shown in Figures 5–7, are used. For each
configuration, the source is situated at node N1, while loads are situated at N2, N3 and N4. The system
parameters, which are used for all simulations, are given in Table 2. In the table, Rl , Ll and Cl are the
resistance, inductance and capacitance of the distribution lines, respectively. Furthermore, Cc is the
(grid-side) output capacitance of the source and load converters.

Table 2. System parameters for the stability simulations.

Rl [Ω] Ll [mH] Cl [µF] Cc [µF]

4.61 0.36 0.172 5.0

For the first set of simulations, the source reference voltage is initially set at 350 V with a droop
impedance of 22 Ω. At t = 5 ms, the reference voltage of the source is changed to 375 V. Subsequently,
at t = 10 ms a (constant power) load of 500 W is switched on at N2. Lastly, at t = 15 ms, a load of
1000 W is switched on at N3.

The results of these simulations are shown in Figure 9. It is seen that the system reacts stably to
changes in load and voltage reference until the total load exceeds the stability conditions. Consequently,
after t = 15 ms, the current rises exponentially over time and the voltage falls to zero.
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Figure 9. Node voltages and distribution line currents of the bus (left), ring (middle) and star (right)
example systems under changing loads and reference voltages, with a droop impedance of 22 Ω.
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For the second simulations, the source reference voltage is initially set at 350 V with a droop
impedance of 2 Ω. At t = 5 ms, the reference voltage of the source is changed to 375 V. Afterwards,
at t = 10, 15, 20 ms loads of 500, 1000 and 750 W are switched on at N2, N3 and N4, respectively.

The results of these simulations are shown in Figure 10. Firstly, it is seen that the voltage deviation
from the reference voltage is lower compared to the previous simulations. Secondly, due to the
lower droop impedance, the systems achieve their steady state faster than in the previous simulations
(but this also causes some oscillations). Lastly, the systems are stable as the oscillations damp out and
the voltages remain stably at their operating point.

In Figure 9, it was seen that instability occurs when the source impedance is too high. In this case,
there does not exist a steady state voltage as a result of the interaction between the droop controlled
source and the constant power load. Furthermore, the systems reach a state where they are no longer
stable (and have eigenvalue(s) with a positive real part).

Figure 10 shows that, since the droop controlled source has a low impedance, the system reaches
a steady state faster. The second simulations also show oscillations, which are caused by the stronger
reaction of the source to a deviation in voltage. These oscillations originate from the interaction
between the capacitance of the nodes through the inductance of the distribution lines. If the source
impedance and line resistance are too low, these oscillations might not be sufficiently damped out and
a different type of instability can occur. In this case, the steady state voltage might exist, but oscillations
around this steady state voltage increase or are not damped (enough). Conceptually, this can also be
explained. If the impedance of the droop-controlled source is small, it will approximately behave as a
constant voltage source. Consequently, the source will provide no damping in the system at all (see
the first example in Section 3). In other words, for DC distribution systems to be called (sufficiently)
stable, there should exist a stable steady state and there should be enough damping on the oscillations
in the system.
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Figure 10. Node voltages and distribution line currents of the bus (left), ring (middle) and star (right)
example systems under changing loads and reference voltages, with a droop impedance of 2 Ω.
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7. Conclusions

This paper introduced a state-space model that represents any DC distribution system by its
nodes, distribution lines, and source and load converters. The model allows for straightforward
formulation of the state-space matrices, which relies on the validity of averaging, linearization and
simplification of the electronic power converters.

The stability of DC distribution systems is derived from the eigenvalues of their state-space
matrices. The stability of two simple examples was derived to illustrate the approach. Furthermore,
a generalized method was presented to algebraically analyze the stability of any DC distribution
system. To guarantee that the eigenvalues have only negative real parts, and thus guarantee stability,
a method to derive the necessary and sufficient conditions was presented.

Subsequently, three examples were used to demonstrate how the presented method can lead
to requirements for the stability of DC distribution systems. The three example systems showed
strong congruency with respect to their sensitivity towards, for example, inductance and capacitance.
Moreover, a sensitivity analysis was performed to verify the relationship between the inductance, droop
source impedance, capacitance and resistance to the stability (and damping) of a system. The results
showed that increasing inductance has a negative effect on stability, that increasing load capacitance
has a positive effect, and that the droop impedance has a upper and lower limit (in agreement with
previous research). However, it was also shown that both large and small values of the resistance and
source capacitance have a negative effect on the stability of the system. This algebraically appends
and verifies conclusions on parameter sensitivity of previous research for a large variety of DC
distribution systems.

Additionally, various simulations were performed to show the dynamic behavior of a DC
distribution system under stable and unstable conditions. These simulations showed two main
modes of instability. Firstly, when the droop controlled sources’ impedance is too large. In this case,
the constant power loads’ current increases as the voltage drops, and, as a result, the voltage of the
entire system drops to 0 V. Secondly, if there is not enough damping from the source (and distribution
lines’ resistance). In the latter case, the insufficient damping results in increasing oscillations (which
originate from the interactions between the different node capacitance).

In the future, the developed method could be used to evaluate and improve the stability of DC
distribution systems. Furthermore, it could be used by the control system to, for example, assess if
loads are allowed to turn on, if loads should switch off, or to change the control settings of sources.
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