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Abstract: An accurate state of charge (SOC) estimation is the basis of the Battery Management System
(BMS). In this paper, a new estimation method which considers fractional calculus is proposed
to estimate the lithium battery state of charge. Firstly, a modified second-order RC model based
on fractional calculus theory is developed to model the lithium battery characteristics. After that,
a pulse characterization test is implemented to obtain the battery terminal voltage and current,
in which the parameter identification is completed based on least square method. Furthermore,
the proposed method based on Fractional Unscented Kalman Filter (FUKF) algorithm is applied to
estimate the battery state of charge value in both static and dynamic battery discharging experiment.
The experimental results have demonstrated that the proposed method shows high accuracy and
efficiency for state of charge estimation and the fractional calculus contributes to the battery state of
charge estimation.

Keywords: second-order RC circuit model; fractional calculus; Fractional Unscented Kalman Filter;
SOC estimation

1. Introduction

In response to the concerns of the energy depleting and environment protection, electric vehicles
and hybrid electric vehicles are proposed as popular substitutions for conventional fossil fuel vehicles
for a wide range [1]. Battery Management System (BMS) is one of the core technologies of electric
vehicles. An advanced BMS can avoid the potential safety hazard and ensure efficient operation as
well [2]. State of charge (SOC) estimation performs as a significant factor of BMS performance, which is
defined as the percentage of the left battery coulomb to the rated capacity and SOC cannot be measured
directly [3], thus, SOC estimation is usually achieved by the measurable battery terminal voltage and
the battery current.

The accurate state estimation with the terminal voltage and the current is a complicated issue [4],
because the battery is a strong non-linear system within the charge and discharge process [5]. In recent
years, many scholars have proposed substantial methods to improve the accuracy of SOC estimation,
such as Ampere hour counting [6], Kalman Filter (KF) [7], H∞ observer [8], sliding model observer [9],
etc. Ampere hour counting is an extensively utilized method, which applies integrals with respect to
the battery current, but it heavily depends on the accuracy of the current measurement and the initial
SOC value [10]. The errors of current measurement and initial SOC value can cause the accumulation
of the SOC estimation error, which cannot be corrected. KF is another widely used method to estimate

Energies 2017, 10, 1313; doi:10.3390/en10091313 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2358-5542
http://dx.doi.org/10.3390/en10091313
http://www.mdpi.com/journal/energies


Energies 2017, 10, 1313 2 of 19

SOC, which sets recursive equations to minimize the state error [11]. KF is not sensitive to the noise
because it considers the mean and covariance of the process noise and measurement noise [12]. Plett
adopted Extended Kalman Filter (EKF) on SOC estimation of Li-ion battery [7]. The SOC estimation
of the battery is a non-linear system problem [13]. EKF linearizes the non-linear battery model with
Taylor expansion. Usually only the first order term of Taylor expansion is used to avert the mass
calculation, thus this causes the accumulation of the state error in the process of iteration and the
derivation of the Jacobian matrices [14]. Unscented Kalman Filter (UKF) has also been investigated for
non-linear system [15,16]. Compared with EKF, UKF with Unscented Transformation (UT) doesn’t
contain the linearization of the system and it provides a series of carefully chosen sigma points [13],
which offers better covariance approximation and higher precision than EKF due to its at least second
order approximation items of nonlinear system [17]. D’Alfonso et al. have utilized UKF in mobile
robot localization problem [18]. Miyabayashi et al. have adopted UKF on state estimation of tubular
microreactors [19]. He et al. have used UKF in battery SOC estimation [20]. All of their papers
demonstrate that UKF shows higher precision than EKF in different real systems.

In recent years, many scholars, such as Monje, found that non-linear systems have fractional
properties [21]. Fractional calculus, which is an expansion of the integer calculus, depicts the
non-integer order integration and derivative, and fractional calculus describes the memorial and
hereditary properties of systems [22]. Ortigueira and Machado point out that fractional models
can describe dynamical behaviour of the systems and they exhibit better capability of fitting
experimental data [23]. Thus, fractional calculus is widely used in non-linear systems, including
signal processing [24], as well as SOC estimation. Zhang et al. established a fractional-order model
using a Walburg-like ultracapacitors, and adopted fractional Kalman filter to estimate the battery
SOC [25]. Liu et al. established a fractional-order PNGV model and Extended Fractional Kalman Filter
(EFKF) to implement the state estimation [26]. These scholars have proved that fractional calculus is
capable of accurately depicting system performance in real system. Thus, considering the advantages of
UKF in contrast to KF and EKF in integer systems mentioned above, it is reasonable and practicable to
combine fractional calculus with UKF to propose a new method, which may be useful for battery SOC
estimation accuracy. Therefore, the main contributions of this paper are: (1) developing an equivalent
second-order resistance-capacitance (RC) circuit model with fractional operator; (2) developing a UKF
algorithm combined with fractional calculus to estimate the battery SOC. The combination of fractional
calculus and UKF takes full advantages of the merits of them. The new proposed algorithm contains
more battery model parameters identified, and this helps the accuracy of SOC estimation. In addition,
the proposed FUKF in this paper is also helpful for other filtering problem, which is meaningful for
practical engineering application.

In this paper, a fractional second-order RC model is established in Section 2 and Fractional
Unscented Kalman Filter (FUKF) is developed in Section 3. The procedure of parameter identification
for the fractional model is given in Section 4. The results in Section 5 confirm that FUKF is advantageous
to SOC estimation.

2. Battery Modeling

SOC estimation is one of the most important issues of an electrical vehicle BMS, and the foundation
of precise SOC estimation is an accurate battery model. The first-order RC model, the simple model
etc. are extensively used in battery SOC estimation [27]. The second-order RC model is utilized in this
paper because it provides an accurate approximation for Li-ion battery dynamics [28].

2.1. Integer Second-Order RC Model

The model contains two capacitors, which are also suitable for the use of fractional calculus.
Meanwhile, because of the model’s simplicity and universality, this model is adopted as equivalent
circuit model in this paper. The structure of second-order RC model is shown as Figure 1. In Figure 1,
E represents the ideal battery electrodynamic force. The battery inner resistor R0 accounts for the
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resistance between the battery plate, electrolyte and electrodes. R1 and C1 describe the resistance
and capacitance of the activation polarization effect, respectively. R2 and C2 depict the resistance and
capacitance of the battery concentration polarization effect, respectively. All parameters are nonlinear
functions of SOC value.

Figure 1. The circuit of the second-order RC model.

The state-space equation of the second-order RC model is:

[
U̇1

U̇2

]
=

[
− 1

R1C1
0

0 − 1
R2C2

] [
U1

U2

]
+

[
1

C1
1

C2

]
I(t)

U =
[
−1 −1

] [ U1

U2

]
− I(t)R0 + E

(1)

where I and U are the battery current and the terminal voltage, respectively. U0 is the voltage of R0.
U1 and U2 are the voltages of the two RC loops, respectively.

2.2. The Definition of Fractional Capacitor

Westerlund and Ekstam pointed out that the majority of capacitors shows fractional characteristics
in practical dynamic conditions [29]. A fractional capacitor model, which is formed in frequency
domain, is established to represent the fractional properties of the capacitors. The definition of the
fractional capacitor is given as:

Z(jω) =
1

C f (jω)n , 0 < n < 1 (2)

where C f is the capacitance of the capacitor, and n is the fractional order of the fractional capacitor.

2.3. The Definition and Properties of Fractional-Order Calculus

The fractional order Grünwald-Letnikov calculus formulation is given by the following
equation [26]:

Dα
t f (t) = lim

h→0
h−α

L

∑
j = 0

wα
j f (t− jh) (3)

where Dα
t represents the fractional calculus operator with respect to the variable t; α is the order of the

system; h is the sampling interval time; L is memory or window length. The factor wα
j = (−1)j(

α

j
),

and (
α

j
) is Newton binomial coefficient, thus this derives wα

0 = 1; wα
j = (1− α+1

j )wα
j−1, j = 1, 2, ..., k.



Energies 2017, 10, 1313 4 of 19

In Equation (3), the value of α determines the type of the function. When α > 0, the function is
differential. When α = 0, the function is the original function. When α < 0, the function is integral.
The formula is shown as the followings:

Dα
t f (t) =



dα

dtα
f (t) = lim

h→0
h−α

k

∑
j = 0

wα
j f (t− jh) α > 0

f (t) α = 0∫ t

0
f (τ)(dτ)−α = lim

h→0
hα

k

∑
j = 0

w−α
j f (t− jh) α < 0

(4)

2.4. Fractional Second-Order RC Model

According to the equivalent circuit shown as Figure 1, the fractional second-order RC model is
established when the capacitors of the second-order RC model are replaced by the fractional order
capacitors. Then the state-space equation is derived as the followings:[

dα

dtα U1
dβ

dtβ U2

]
=

[
− 1

R1C1
0

0 − 1
R2C2

] [
U1

U2

]
+

[
1

C1
1

C2

]
I(t)

U =
[
−1 −1

] [ U1

U2

]
− I(t)R0 + E

(5)

The widely used SOC estimation method is the Ah (amper/hour) counting method shown as
the followings:

SOC(t) = SOC0 +

∫ t
0 ηi(t)
QN

dt (6)

where SOC0 is the initial SOC value. QN is the rated battery capacity. η is the charge-discharge
efficiency, which is related to the battery working temperature, charge and discharge rate etc. The value
of η can be set into the range of 0.92 to 0.998 [30]. In this paper, it is set to 0.98 for the convenience of
the calculation.

Equation (5) with Equation (6) are combined, and the discrete fractional second-order RC model
is obtained as the followings:

xk = Ak−1xk−1 + Bk−1 Ik−1 + wk−1 −
k

∑
j = 1

Kjxk−j

Uk = Ckxk − IkR0 + E + vk

(7)

where Ak−1 = diag{− hα

R1C1
,− hβ

R2C2
, 1}, Bk−1 = [ hα

C1
, hβ

C2
,− ηk−1h

QN
]T , Ck = [−1,−1, 0]. The state vector

xk = [U1(k), U2(k), SOC(k)]T , and the fractional order factor Kj = diag{wα
j , wβ

j , 0}. Theoretically,
the entire past estimated states should be considered. However, this may cause the computation
burden in real system, thus the past states are shortened to avoid the computation burden according to
short memory principle proposed by Caponetto et al. [31]. E is the electromotive force of the battery.
wk and vk are the system noise and measurement noise, respectively. They obey normal distribution
and both of them are independent zero-mean Gauss white noise with covariance matrices Qk and
Rk, respectively. In Equation (7), all the parameters including R0, R1, R2, C1, C2, E vary with the
SOC value, thus, the model is nonlinear. FUKF is then proposed by applying UKF to this nonlinear
fractional second-order RC model.
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3. Fractional Unscented Kalman Filter

For fractional second-order RC model, normal integer UKF is not applicable, thus UKF needs
to be modified to fit the fractional second-order RC model. FUKF is a method based on fractional
calculus and UKF and it is specially proposed in this section for the fractional battery model, including
fractional second-order RC model. The observability is discussed and the detail process of FUKF is
presented in this section.

3.1. The Observability of the Battery Model

As Equation (7) shows, the battery SOC value is included in the state vector. This explains that
the estimation of the battery SOC value equals the observation of the state vector, thus it is important
to ensure the observability of the model before the SOC estimation. For the discrete-time model,
the model is observable if for any initial state x0 and some final time k f the initial state x0 can be
uniquely determined by knowledge of the input Ik and output Uk for all i ∈ [0, k f ] [32].

From Equation (7), the derivation is performed to separate x0 out as the followings:

x1 = (A0 − K1)x0 + B0 I0

U1 = C1 A0x0 + C1B0 I0 − R0 I1 + E1 − C1K1x0

x2 = (A1 − K2)x1 + B1 I1

= A1 A0x0 + A1B0 I0 + B1 I1 − A1K1x0 −
2

∑
j = 1

Kjx2−j

U2 = C2(A1 A0x0 + A1B0 I0 + B1 I1)− R0 I2 + E2 − C2 A1K1x0 − C2

2

∑
j = 1

Kjx2−j

· · ·

xk = Ak−1xk−1 + Bk−1 Ik−1 −
k

∑
j = 1

Kjxk−j

=
k−1

∏
i = 0

Aix0 + Bk−1 Ik−1 +
k−2

∑
i = 0

(
k−1

∏
j = i + 1

Aj)Bi Ii + G(x)

Uk = Ck

k−1

∏
i = 0

Aix0 + Ck[Bk−1 Ik−1 +
k−2

∑
i = 0

(
k−1

∏
j = i + 1

Aj)Bi Ii] + R0 Ik + Ek + CkGk

Thus, the nonlinear equation can be obtained as:

Y = Mx0 + F(I, E) + G(x) (8)

where

Y =



U0

U1

U2

· · ·
Uk



M =



C0

C1 A0

C2 A1 A0

· · ·

Ck(
k−1

∏
i = 0

Ai)


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F(I, E) =



R0 I0 + E0

C1B0 I0 + R0 I1 + E1

C2(B1 I1 + A1B0 I0) + R0 I2 + E2

· · ·

Ck[Bk−1 Ik−1 +
k−2

∑
i = 0

(
k−1

∏
j = i + 1

Aj)Bi Ii + R0 Ik + Ek


Noticing that M is the linear part of the model, and G(x) is the nonlinear part of the model. MT M

is an invertible matrix, thus,

x0 = (MT M)−1MT [Y− F(I, E)− G(x)]

As Brouwer Fixed Point Theorem illustrates, every continuous function mapping the disk to itself
has a fixed point [33], thus the nonlinear equation Equation (8) has a unique solution, which means
the initial state x0 can be uniquely determined. This demonstrates that the discrete-time model in
Equation (7) is observable.

3.2. Details of Fractional Unscented Kalman Filter

FUKF is based on unscented transformation which approximates the probability distribution of
the variable by using sigma points [34]. For convenience, the n-dimensional discrete fractional model
in Equation (7) is rewritten as Equation (9).

xk = f (xk−1, uk−1) + wk−1

yk = h(xk, uk) + vk
(9)

where uk is the input of the model, which is equal to ik in Equation (7). yk is the output of the model,
which is equal to Uk in Equation (7). and the process steps of FUKF are given as the followings:

Step 1: Initialize the state vector and the covariance matrix:

x̂+0 = E(x0)

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ]

(10)

Step 2: In FUKF, a series of sigma points are adopted to estimate the system mean and covariance
matrix at time k according to the optimal mean and covariance estimation at time k− 1. The number
of the sigma points is 2n + 1, where n is the scaling parameter of the state vector.

x̂(0)k−1 = x̂+k−1

x̂(i)k−1 = x̂+k−1 + (
√
(n + λ)P+

k−1)i i = 1, ..., n

x̂(i)k−1 = x̂+k−1 − (
√
(n + λ)P+

k−1)i−n i = n + 1, ..., 2n

(11)

where λ = a2(n + κ), and a is the parameter that determines the distribution of the sigma points.

The constant κ is generally set to 3 − n. (
√
(n + λ)P+

k−1)i is the ith column of the Cholesky

decomposition of the matrix (n + λ)P+
k−1 [35].

Step 3: Transform sigma points from time k− 1 to time k:

x̂(i)k = f (x̂(i)k−1, uk) (12)
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Step 4: Calculate the mean and the covariance matrix of the sigma points for the prior state
estimation at time k and it needs optimal state variable x̂+1 , ..., x̂+k−1:

x̂−k =E(xk|x̂+1 , ..., x̂+k−1)

=E( f (x̂(i)k−1, uk)−
k

∑
j = 1

Kj x̂+k−j)

=
2n

∑
i = 0

W(m)
i x̂(i)k −

k

∑
j = 1

Kj x̂+k−j

(13)

where the weights of the sigma points are given as the followings:

W(m)
0 =

λ

n + λ

W(c)
0 =

λ

n + λ
+ 1− a2 + b

W(m)
i = W(c)

i =
1

2(n + λ)
i = 1, ..., 2n

(14)

where b is set to 2, as the optimal value to incorporate the prior knowledge of Gauss distribution of the
state vector [35]. In addition, the covariance matrix is:

P−k = E((x̂(i)k − x̂−k )(x̂(i)k − x̂−k )
T) + Qk

= E(( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)) +
k

∑
j = 1

Kj x̂+k−j)·

( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)) +
k

∑
j = 1

Kj x̂+k−j)
T) + Qk

= E(( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)))( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)))
T

+
k

∑
j = 1

Kj x̂+k−j( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)))
T + ( f (x̂(i)k−1, uk)

− E( f (x̂(i)k−1, uk)))(
k

∑
j = 1

Kj x̂+k−j)
T +

k

∑
j = 1

Kj x̂+k−j(x̂+k−j)
T(Kj)

T) + Qk

= E(( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)))( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)))
T)

+
k

∑
j = 1

Kj x̂+k−jE(( f (x̂(i)k−1, uk)− E( f (x̂(i)k−1, uk)))
T) + E( f (x̂(i)k−1, uk)

− E( f (x̂(i)k−1, uk)))(
k

∑
j = 1

Kj x̂+k−j)
T +

k

∑
j = 1

Kj x̂+k−j(x̂+k−j)
T(Kj)

T + Qk

= E(( f (x̂(i)k−1, uk)−
2n

∑
i = 0

W(m)
i x̂(i)k )( f (x̂(i)k−1, uk)−

2n

∑
i = 0

W(m)
i x̂(i)k )T)

+
k

∑
j = 1

Kj x̂+k−jE(( f (x̂(i)k−1, uk)−
2n

∑
i = 0

W(m)
i x̂(i)k )T) + E( f (x̂(i)k−1, uk)

−
2n

∑
i = 0

W(m)
i x̂(i)k )(

k

∑
j = 1

Kj x̂+k−j)
T +

k

∑
j = 1

Kj x̂+k−j(x̂+k−j)
T(Kj)

T + Qk
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According to Equation (12), we substitute f (x̂(i)k−1, uk) with x̂(i)k in the equation and expand the

expectation in the equation, substitute E() with ∑2n
i = 0 W(c)

i , thus, the covariance matrix can finally be
displayed as:

P−k =
2n

∑
i = 0

W(c)
i (x̂(i)k −

2n

∑
i = 0

W(m)
i x̂(i)k )(x̂(i)k −

2n

∑
i = 0

W(m)
i x̂(i)k )T

+
k

∑
i = 1

(Kjxk−j

2n

∑
i = 0

W(c)
i (x̂(i)k −

2n

∑
i = 0

W(m)
i x̂(i)k )T)

+
k

∑
i = 1

2n

∑
i = 0

W(c)
i (x̂(i)k −

2n

∑
i = 0

W(m)
i x̂(i)k )(x̂+k−j)

T(Kj)
T

+
k

∑
j = 1

Kj x̂+k−j(x̂+k−j)
T(Kj)

T + Qk

(15)

Step 5: Transform the sigma points to the measurement estimation points:

ŷ(i)k = h(x̂(i)k , uk) (16)

Step 6: Calculate the mean and the covariance matrix of the measurement estimation:

ŷk =
2n

∑
i = 0

W(m)
i ŷ(i)k (17)

and the covariance matrix of the measurement estimation is:

Py =
2n

∑
i = 0

W(c)
i (ŷ(i)k − ŷk)(ŷ

(i)
k − ŷk)

T + Rk (18)

Step 7: Calculate the covariance between x̂−k and ŷk:

Pxy =
2n

∑
i = 0

W(c)
i (x̂(i)k − x̂k)(ŷ

(i)
k − ŷk)

T (19)

Step 8: The process of the state measurement update is:

Kk = PxyP−1
y

x̂+k = x̂−k + Kk(yk − ŷk)

P+
k = P−k − KkPyKT

k

(20)

4. Model Parameter Identification

The accuracy of SOC estimation depends heavily on the estimation accuracy of the battery
capacity and precise model parameters. The battery parameters R0, R1, C1, R2, C2, α and β shown in
Equation (7) are related to SOC value. The battery parameters cannot be measured directly. Thus,
the unknown parameters are to be identified and calculated in this section to acquire the equivalent
circuit information.
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4.1. Test Bench

A test bench is established to verify the effectiveness of the proposed method. The test bench is
taken under the temperature at 25 ± 2 ◦C and by the laboratory equipments of the BTS-4000 battery
testing system(BTS-4000-6V4A-CCDC-USB, NEWARE Electronic Co., Ltd, Shenzhen, China), which
have a measurement current range of 0–3000 A and voltage range of 0–110 V and temperature range of
−25–100 ◦C with the sampling period 100 ms. Moreover, the SOC value can be obtained through the
Ah counting by the software after configuring some test profiles and parameters. The test object is a
ternary manganese-nickel-cobalt (MNC) lithium battery (Sony Corporation, Tokyo, Japan) pack shown
in the red oval coil of Figure 2, which consists of ten Sony commercial cells (US18650GR G7, Sony
Corporation, Tokyo, Japan) in parallels and has a nominal capacity of 24 Ah, a nominal voltage of 3.7 V,
a charging cut-off voltage of 4.2 V and a discharging cut-off voltage of 3.0 V. Some prior discussions
are provided firstly as followings:

1. When the battery capacity is measured with 1 C, 2 C and 3 C discharge rates. The corresponding
results are 23.587 Ah, 23.294 Ah and 22.460 Ah, respectively. It is shown that the discharge
capacity at higher rates is lower than that at low rates and it is different from the nominal value
24 Ah. For the non-fresh lithium battery pack, it is acceptable that the discharge capacity is slightly
less than 24 Ah of the nominal capacity. Hence, the rated capacity of the battery is considered as
23.587 Ah instead of 24 Ah.

2. Since the measurement error of the current and voltage of the test platform is less than 0.1% of full
scale, it is feasible to assume that the battery SOC value can be obtained by this high-precision
battery testing system BTS-4000. Hence, the obtained SOC is used as a true SOC value although
some sensor errors exist.

3. For convenience, the integer order model can be obtained by setting the orders of the fractional
capacitors α = β = 1. The physical meanings of all the seven parameters of the battery
second-order RC model are identical no matter whether the model is a fractional order model or
an integer order model.

A universal method to identify the battery model parameter is the battery pulse characterization
experiment. A pulse characterization experiment which is derived from discharging and standing
process is intended, and it is shown as Figure 3. With the voltage and current curves of the pulse
characterization experiment, the seven unknown parameters can be determined and this is the previous
work of the battery SOC estimation with FUKF.

Figure 2. Test bench and battery.



Energies 2017, 10, 1313 10 of 19

Figure 3. The part of the pulse characterization profile.

4.2. The Identification for Resistor R0

The instantaneous voltage drop at the beginning of the discharging process is caused by the
resistor R0. The terminal voltage before the current discharge pulse appears is considered as the
battery electrodynamic force, E, because the voltages of the capacitors C1 and C2 can be considered to
0 V. Thus, with the terminal voltage U at the beginning of the discharging process, the resistor can be
determined as:

R0 =
E−U

I
(21)

4.3. RC Loop Identification

The responses of the two RC loops in Figure 1 are as:

U1(t) = U1(t0)e
− t−t0

τ1 + IR1(1− e−
t−t0

τ1 )

U2(t) = U2(t0)e
− t−t0

τ2 + IR2(1− e−
t−t0

τ2 )

(22)

The response consists of the zero-input response and the zero-state response, and the parameters
τ1 = R1C1 and τ2 = R2C2 are the time constants of the two RC loops. These two time constants
represent the rate of convergency of the terminal voltage curve at the discharge process and
standing process.

At the discharging process, U1(t0) and U2(t0) equal zero, and according to the model voltage in
Equation (1), the battery voltage are:

Ui(t) = E(SOC)− IR1(1− e−
t−t0

τ1 )− IR2(1− e−
t−t0

τ2 ), (23)

thus the least square method [36] is used to fit the terminal voltage U(t) of discharging process curve.
With the exponential fitting, the time constants τ1 and τ2 can be determined. At t f , which is the time of
the end of the discharging process, U1(t f ) and U2(t f ) can be determined, thus, R1, R2, C1, C2 can all
be identified.
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Then considering the voltage U1(t) and U2(t) with the fractional order α and β, and integrating
Equation (5), this derives:

U f 1(t) = hα
k

∑
j = 0

w−α
j

R1 I(t− jh)−U1(t− jh)
R1C1

U f 2(t) = hβ
k

∑
j = 0

w−β
j

R2 I(t− jh)−U2(t− jh)
R2C2

(24)

According to Equation (5), the battery terminal voltage in fractional form at the standing process
can be derived as:

U f (t) =E(SOC)−U f 1(t)−U f 2(t)− IR0

=E(SOC)− hα
k

∑
j = 0

w−α
j

R1 I(t− jh)−U1(t− jh)
R1C1

− hβ
k

∑
j = 0

w−β
j

R2 I(t− jh)−U2(t− jh)
R2C2

(25)

and also the least square method is used to find a group of values of α and β. The values aim to
minimize the error between Ui(t) and U f (t) with the performance indicator [26]:

J = min
∫ +∞

0
||U f (t)−Ui(t)||2dt. (26)

5. Experimental Verification

To illustrate the effectiveness of fractional second-order RC model and FUKF, three experiments
are developed on the battery test bench for the MNC lithium battery pack. The three experiments are
pulse characterization experiment, static discharge experiment and dynamic discharge experiment,
respectively. Pulse characterization experiment is performed for the parameter identification of the
battery model, and static discharge experiment and dynamic discharge experiment are performed to
validate the proposed SOC estimation method based on FUKF. These two experiments are operated
with a discharge current rate of 1C and the dynamic pulse condition, respectively.

5.1. Pulse Characterization Experiment

A pulse characterization experiment such as in Figure 3 is developed to identify the battery model
parameters. The battery initial SOC is set to 100%. The current of the discharging process is set to 1 C.
The discharging time is set to 180 s to bring the battery SOC with a 0.05 reduction. The standing process
time after the discharging process is set to be 1500 s. According to Equations (21)–(23), R0, R1, C1, R2,
C2 can be identified. The results of the parameter identification are shown as Figure 4. The capacitances
and resistances in the model are treated as identical for both the integer and fractional models, because
the difference of the integer and fractional model is the orders of the capacitors according to the
definition of the fractional capacitor model. According to Equation (24), the orders of C1 and C2 are
determined by minimizing the performance indicator in Equation (26). From Figure 4, the battery
model parameters vary with the value of SOC. When the SOC value decreases from 1 to 0, the
resistances of the battery model including R0, R1 and R2 fluctuate slightly. However, the capacitances
of the battery model including C1 and C2 ascend first and then descend and the peak values appear
when SOC value is 0.6. This phenomenon is caused by the battery polarization effect and the capacitors
of the second-order RC model successfully explains the effect. When the SOC value is less than 0.2,
the battery dynamic becomes different, thus the parameters, especially R1 and R2 fluctuate steeply.
The orders of the two capacitors, α and β, hint a bigger time constant, thus the second-order model can
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depict a more obvious polarization effect with the fractional order calculus. In addition, the results
of the orders α and β of capacitors C1 and C2 are given as Figure 5. The parameter identification is
developed by the discharging process curve, thus the orders remain constant within a circle of the
discharging process. From Figure 5, the order of C1 is larger than 1 mostly. Radwan et al. have pointed
out that fractional capacitors whose order is larger than 1 are still fractional capacitors and C1 can be
regarded as a fractional capacitor whose order is less than 1 in series with an integer capacitor [37].

(a) (b)

(c) (d)

(e)

Figure 4. The results of parameter identification. (a) The curve of R0 with respect to SOC; (b) The curve
of R1 with respect to SOC; (c) The curve of C1 with respect to SOC; (d) The curve of R2 with respect to
SOC; (e) The curve of C2 with respect to SOC.
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(a)

(b)

Figure 5. The orders of the capacitors. (a) The order α of C1 with respect to SOC; (b) The order β of C2

with respect to SOC.

5.2. Static Discharge Experiment

To prove the static characteristic of the battery model and FUKF, the static experiment with a
discharge current rate of 1 C is adopted. The static experimental validation current profile is shown as
Figure 6.

To validate the convergent properties of FUKF and UKF, it is assumed that the initial SOC value
is unknown, thus the estimation values of initial SOC are both set to 0.9 intentionally while the actual
SOC value is 1.0, which means an initial SOC value error exists. The results under static discharge
experiment are given as Figure 7. From Figure 7, the static discharge experiment result comparison of
FUKF and UKF is shown as Table 1.
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Figure 6. Static experimental validation current profile.

(a) (b)

(c) (d)

Figure 7. The results of static discharge experiment. (a) The results of SOC estimation; (b) The results of
battery terminal voltage estimation; (c) The errors of SOC estimation; (d) The errors of battery terminal
voltage estimation.
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Table 1. Static discharge experiment result comparison.

Method SOC Error Maximum Terminal Voltage Error
Maximum Error Mean Error

FUKF 5.36% 2.56% 0.0296 V
UKF 9.47% 3.65% 0.0328 V

In static discharging experiment, the fractional second-order RC model and FUKF algorithm
show a more accurate performance on the estimation of battery SOC and battery terminal voltage,
where the SOC error and the battery terminal voltage error are 5.36% bound and 0.0296 V bound,
respectively. However, the SOC error and the battery terminal voltage error of the integer model and
UKF are 9.47% bound and 0.0328 V bound, respectively. In real system, to illustrate the robustness and
stability of SOC estimation for most of the working time, mean error is utilized as an indicator instead
of maximum estimation error. Thus, the mean errors of SOC estimation of FUKF algorithm and UKF
algorithm are given as 2.56% and 3.65%, respectively.

5.3. Dynamic Discharge Experiment

To verify the dynamic characteristic of the battery model and FUKF, the dynamic pulse condition
is adopted. The magnitude of the current profile is scaled to obtain the voltage response with respect
to the whole SOC range. The current profile of dynamic experimental validation is shown as Figure 8.
The results under dynamic discharge experiment are given as Figure 9. The dynamic discharge
experiment result comparison of FUKF and UKF is shown as Table 2.

Figure 8. The current profile of dynamic experimental validation.
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(a) (b)

(c) (d)

(e)

Figure 9. The results of dynamic discharge experiment. (a) The results of SOC estimation; (b) The errors
of SOC estimation; (c) The results of battery terminal voltage estimation; (d) The errors of battery
terminal voltage estimation; (e) The distribution of the estimation error.

Table 2. Dynamic discharge experiment result comparison.

Method SOC Error Maximum Terminal Voltage Error
Maximum Error Mean Error

FUKF 11.55% 2.88% 0.2712 V
UKF 14.20% 5.92% 0.3568 V
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With Figure 9, there are some results as:

1. The fractional second-order RC model and FUKF algorithm track the measured SOC and terminal
voltage well. The SOC error and the battery terminal voltage error are 11.55% bound and 0.2712 V
bound, respectively. On the contrast, the SOC error and the battery terminal voltage error of the
integer model and UKF are 14.20% bound and 0.3568 V bound, respectively. The mean errors
of SOC estimation based on FUKF algorithm and UKF algorithm are also given as 2.88% and
5.92%, respectively. Although the maximal error of the SOC estimation based on FUKF algorithm
is quite large, the mean error is mild enough. Thus, for most time, FUKF algorithm presents
extraordinary precision on SOC estimation.

2. In both static and dynamic experiments, the result curves of fractional order model and integer
order model can both converge to the measurement curve even though the initial SOC values are
incorrect and the curve of fractional order model recovers the initial SOC error on a larger scale
and with less time according to the enlarged drawings. This demonstrates better stability and
robustness of FUKF.

3. In both static and dynamic discharge experiment, both UKF and FUKF show a convergent
performance. However, when the remaining capacity of the battery is little, due to the enlarged
battery polarization effect, the battery model parameter estimation becomes inaccurate. This leads
to the error of the space state estimation. UKF loses its convergence and performs divergently.
Nevertheless, the fractional second-order RC model and FUKF algorithm could still make precise
estimation of the battery parameters and track the actual value of SOC.

4. Compared with the integer model, the fractional orders of the capacitors C1 and C2 are more
capable of reducing the performance indicator in Equation (26) with least square method, because
the fractional order model and fractional parameter identification reflect the system performance
more precisely.

5. It is obvious that some sharp peaks of the terminal voltage error appear at the beginning and the
end of the discharge process in Figure 9d. That is because the battery model parameters suddenly
change at the instant the battery current pulse appears or disappears. This phenomenon is caused
by the battery polarization effect. The fractional order model and FUKF exhibit a more accurate
performance on the suppression of sharp peak error. In dynamic operation condition, the error of
the terminal voltage estimation is more severe than in the static operation condition, because the
battery polarization effect is more obvious in the rapidly changing operating conditions. This
effect causes the dynamics which cannot be modeled. However, FUKF is still effective with
this phenomenon.

The characteristics of the battery can be described by the fractional order model more accurately.
FUKF algorithm can effectively guarantee the state estimation accuracy. The precision of the c
estimation can be improved significantly by combing the fractional model and FUKF algorithm.
The proposed method performs accurately and reliably on terminal voltage and SOC estimation in
complicated working condition. The proposed method can be applied in real BMS.

6. Conclusions

In this paper, a fractional second-order RC circuit model is presented, and an algorithm combining
UKF and fractional calculus is proposed to estimate the battery SOC. The algorithm can be easily
implemented and applied by iteration, and it is suitable for the SOC estimation of electric vehicle
BMS. The algorithm, FUKF, has been proved to guarantee the performance of the SOC estimation.
The fractional battery model and FUKF fit the dynamic characteristics precisely. Their behavior of
battery parameter identification is better than the integer one. These properties explain the precision
of SOC estimation and terminal voltage estimation of FUKF. The experimental results show robustness
on suppressing the noise and disturbance caused by the inexact or unknown statistical properties of
the system modeling error and measurement error.
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