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Abstract: Sulfone-based electrolytes, known for their higher oxidative stability compared to the
typically used organic carbonate-based electrolytes, are considered promising electrolytes for
high voltage cathode materials towards the objective of obtaining increased energy density in
lithium ion batteries. Nevertheless, sulfones suffer from high viscosity as well as incompatibility
with highly graphitic anode materials, which limit their application. In this paper, the effect of
fluoroethylene carbonate (FEC) as an electrolyte additive for the application of ethyl methyl sulfone
(EMS) electrolytes containing LiPF6 as conducting salt, is studied in graphite-based cells by means of
selected electrochemical and spectroscopic methods. In addition, influence of ethylene acetate (EA)
as co-solvent on the electrolyte viscosity and conductivity of the EMS-based electrolytes is discussed,
revealing improved overall nickel cobalt manganese oxide (NMC)/graphite cell performance. X-ray
photoelectron spectroscopy (XPS) measurements provide information about the surface chemistry
of the graphite electrodes after galvanostatic cycling. The concept of EA as co-solvent is found to
be applicable for other sulfones such as isopropyl methyl sulfone (MeiPrSO2) and ethyl isopropyl
sulfone (EtiPrSO2).

Keywords: single solvent-based nonaqueous electrolyte; ethyl methyl sulfone; graphite; solid
electrolyte interphase; fluoroethylene carbonate

1. Introduction

Nowadays, lithium-ion batteries (LIBs) find application in a very broad field of industrial
applications [1–3] as they are, for instance, used in small portable devices, such as mobile phones
or laptop computers, as well as traction batteries in the automotive industry [4]. Unfortunately,
the driving range for electric cars (before being recharged) is still too low [5]. For this reason, it is of
high importance to develop high voltage and high capacity materials delivering higher energy density
compared to the commonly used materials. Numerous efforts towards designing and developing high
voltage cathode materials have been made and are still in focus of exhaustive research [6,7]. One of the
main obstacles related to application of high voltage cathode materials in LIBs with graphite as anode
material, refers to selection of an appropriate electrolyte formulation that fulfills the mandatory
minimum requirements. Among them, the electrolyte has to maintain electrochemical stability,
which is not the case for the commercially used organic carbonate-based electrolytes containing
lithium hexafluorophosphate (LiPF6) as conductive salt [8], as they decompose at a potential of
4.5 V vs. Li/Li+ [9]. On the other hand, the desired electrolyte has to enable formation, like the
organic carbonate based electrolytes [10–12], of a kinetically stable solid electrolyte interphase (SEI)
on the graphite electrode [13–16]. Sulfones represent a class of solvents reported to be stable at high
potentials [17–21]. Furthermore, sulfones, especially ethyl methyl sulfone (EMS), are environmentally
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friendly and have high flashpoint, thus increasing the safety of the electrolyte. The major barrier to
commercialization of sulfone-based electrolytes is their poor compatibility with graphite anodes [22].
One of the possibilities is to replace graphite with lithium titanate (LTO), however this anode material
delivers lower energy density [23]. To overcome this challenge, SEI-forming electrolyte additives can
be added to the sulfone-based electrolyte, thus leading to the formation of an effective SEI on the
graphite surface [13]. A wide variety of SEI additives have been reported in the literature so far [24–28].
In particular, fluoroethylene carbonate (FEC) shows promising results on both graphite anode and high
voltage cathode materials [29]. Another challenge arising with the use of sulfone-based electrolytes is
related to their low wettability of separator and electrodes as well as their poor electrolyte conductivity
when used as electrolyte solvents [22]. Different co-solvents are reported to decrease the viscosity
and to increase the conductivity of sulfone-based electrolytes [30]. These co-solvents are for instance
dimethyl carbonate (DMC) or ethyl methyl carbonate (EMC) [23,31]. In this paper, the influence of
FEC as SEI-forming additive on sulfone-based electrolytes was investigated. Furthermore, by using
ethylene acetate (EA) as co-solvent in EMS-based electrolytes, the challenges of poor wettability
and poor conductivity were addressed. The electrolyte formulations were investigated in lithium
NMC/graphite cells. To analyze the main decomposition products and to show the beneficial behavior
of FEC in the electrolyte, X-ray photoelectron spectroscopy (XPS) and XPS sputter depth profiling
measurements were performed.

2. Experimental

All electrolytes were prepared in an argon-filled glovebox with water and oxygen content
below 0.1 ppm. EMS (99%, ABCR, Karlsruhe, Germany) was heated up to 60 ◦C prior to electrolyte
formulation. LiPF6 (battery grade, BASF, Ludwigshafen, Germany), FEC (battery grade, BASF) and
EA (99.8% anhydrous, Sigma Aldrich, St. Louis, MO, USA) were used as received. All investigated
electrolytes were formulated by volume percent (vol. %). For reasons of comparison, 1 M LiPF6 in
EC/DEC (3:7 wt. %) (LP47, BASF, battery grade) was used as received.

T44 graphite was used as model material for the electrochemical investigations, as its high BET
surface area leads to increased electrolyte reduction [32], thus revealing additional minor electrolyte
decomposition reactions. Graphite electrodes were composed of 87 wt. % graphite (Imerys, Paris,
France) 8 wt. % polyvinylidene difluoride (PVdF, Arkema, Colombes, France) and 5 wt. % conductive
additive Super C65 (Imerys). The composition of the lithium manganese oxide spinel, (LMO)-based
electrodes was 80 wt. % LMO (Toda, Hiroshima, Japan), 10 wt. % PVdF (Arkema), and 10 wt. % carbon
black C65 (Imerys). The preparation procedure of aforementioned electrodes has been described in
detail elsewhere [29]. Balanced NMC111 and graphite electrodes (both 12 mm diameter, Litarion,
Kamenz, Germany) were used.

The electrochemical measurements were performed in a three-electrode T-cell setup (Swagelok®,
Solon, OH, USA) as well as in CR2032 coin cells (Hohsen Corp. Osaka, Japan). Depending on the
measurement setup, lithium foil (Albemarle, Charlotte, NC, USA) was used for counter electrode (CE)
and reference electrode (RE).

Constant current constant potential (CCCP) measurements were performed at 20 ◦C using
a battery cycler (MACCOR Series 4000, Tulsa, OK, USA). The graphite/Li cells were cycled in
the potential range between 0.02 V–1.50 V vs. Li/Li+ starting with three formation cycles at
charge/discharge rate of 37.2 mA·g−1 (corresponding to C/10, when considering a practical specific
capacity of 372 mAh·g−1). After the formation sequence, cells were cycled at charge/discharge rate
of 1C (372 mA·g−1). Each intercalation step (1C) was followed by a constant potential step with 1 h
duration at a potential of 0.025 V vs. Li/Li+. The cathode capacity-limited NMC/graphite cells (15%
oversized anode) were cycled with five formation cycles at 0.1C. After the formation, cells were cycled
at 1C over 100 charge/discharge cycles in the voltage range from 3 V to 4.3 V.

AC impedance measurements were conducted to determine the conductivity of the electrolyte.
All measurements were carried out on a Solartron 1260A (AMETEK, Berwyn, PA, USA) impedance
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gain phase analyzer, connected to a Solartron 1287A (AMETEK, Berwyn, PA, USA) potentiostat using
a customized cell having two stainless steel disk-electrodes. A frequency range from 1 kHz to 1 MHz
using an AC amplitude of 20 mV was applied to the cell in the temperature range from −40 ◦C to
60 ◦C, regulated via a climate chamber (Binder, Tuttlingen, Germany). Differences in the determined
conductivity values are in-between the error margin of the system.

The contact angle measurements were performed on a Drop Shape Analyzer DSA 100 (Krüss,
Hamburg, Germany) placed in a dry room (dew point: −65 ◦C). For each measurement, a drop of
electrolyte was dispersed on a surface of the Celgard 2500 (Celgard, Charlotte, NC, USA) separator.

For the X-ray photoelectron spectroscopy (XPS) investigations, an AXIS Ultra DLD (Shimadzu
Corporation, Kyoto, Japan) was used. An area of 300 µm × 700 µm was irradiated, while using a
filament voltage of 12 kV, an emission current of 10 mA and a pass energy of 20 eV. The obtained
spectra were calibrated against the carbon signal at 284.5 eV. For the XPS sputter depth profiling
measurements, a sputter crater diameter of 1.1 mm, an emission current of 8 mA and a filament voltage
of 0.5 kV as well as a pass energy of 40 eV and a 110 µm aperture were applied. The fitting of the
resulted spectra was performed by means of CasaXPS.

3. Results and Discussion

As shown in Figure 1a, EMS-based electrolyte is not capable of forming an effective SEI on
graphite. The decomposition of EMS starts at a potential of 1.2 V vs. Li/Li+ (Figure 1a). For the
application of EMS-based electrolytes, the use of SEI-forming additives is inevitable. With this in
line, different concentrations of FEC were considered as SEI-forming additive for the application
of EMS-based electrolytes in graphite/Li cells. The potential profiles of afore described electrolyte
formulations are depicted in Figure 1.
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Figure 1. First cycle potential profiles of graphite/Li cells containing 1 M LiPF6 in EMS with;
(a) 0% FEC (b) 1% FEC, (c) 2% FEC; (d) 3% FEC and (e) 4% FEC, in the potential range from 0.02
to 1.5 V vs. Li/Li+.

As seen in Figure 1b, the presence of 1% FEC does not prevent the decomposition of EMS,
as decomposition of the electrolyte on the electrode deteriorates the performance of the cell in terms of
low Coulombic efficiency and reversible capacity (Table 1). However, when 2% FEC was added to
the 1 M LiPF6 in the EMS-based electrolyte (Figure 1c), decomposition of EMS is inhibited, at least
in the first cycle, thus enabling reversible lithium intercalation and deintercalation into/from the
graphite structure, as indicated by the formation of the respective potential plateaus at potential
below 0.2 V vs. Li/Li+ [33]. In addition, the irreversible capacity in the first cycle and the potential
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difference due to IR drop and overpotential (=“potential-drop”) are lower compared to the values
obtained for 1% FEC-containing electrolyte (Figure 1a), which results in higher energy efficiencies [34].
When increasing the amount of FEC to 3% or 4%, the Coulombic efficiency increases, whereas the
potential-drop decreases. Addition of more than 4% of FEC to the electrolyte formation has no
further influence on the electrochemical performance of the graphite/Li cell. For this reason, higher
concentrations of FEC are not shown. Table 1 summarizes the Coulombic efficiency and the measured
potential drop values of the first cycle for the aforementioned electrolyte formulations.

Table 1. Coulombic efficiency values and measured potential drop between the charge and the
discharge curve of the first cycle of the graphite/Li cells depicted in Figure 1.

Electrolyte Formulation Coulombic Efficiency (%) Potential Drop (V)

1 M LiPF6 in EMS 30.2 0.300
1 M LiPF6 in EMS with 1% FEC 53.7 0.170
1 M LiPF6 in EMS with 2% FEC 68.6 0.020
1 M LiPF6 in EMS with 3% FEC 70.8 0.010
1 M LiPF6 in EMS with 4% FEC 80.7 0.009

Pronounced decomposition of EMS on the graphite electrode in the first cycle is prevented, when
more than 1% FEC is added to the electrolyte formulation. To further investigate the minimum
amount of FEC required for achieving stable cycling behavior, long-term cycling measurements were
performed (Figure 2).
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The cell containing 1% FEC (Figure 2a) does not reach the theoretical capacity value of graphite
(372 mAh·g−1) [35], due to continuous reduction of EMS on graphite electrode (compare Figure 1b).
In the first cycle, the specific discharge capacity reaches a value of 50 mAh·g−1. Moreover, the cycling
behavior over 100 charge/discharge cycles is not stable. In case of the electrolyte containing 2% FEC,
a specific discharge capacity of 280 mAh·g−1 is reached in the formation cycles (Figure 2b). After the
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formation step, the specific capacity decreases and the Coulombic efficiency values indicate neither a
stable cycling performance nor complete prevention of the EMS decomposition after the first cycle.
Therefore, the amount of FEC was increased to 3% (Figure 2c). The cell cycled with 3% FEC-containing
electrolyte shows more stable cycling behavior compared to the cells containing 1% and 2% FEC. In the
initial cycles, a specific discharge capacity of 240 mAh·g−1 is achieved. Increasing the amount of FEC
in the electrolyte to 4%, decomposition of EMS-based electrolyte is even more suppressed, as depicted
in Figure 2d. In the first, formation cycles, a specific discharge capacity of 325 mAh·g−1 is reached.
Over 100 charge/discharge cycles, a stable cycling behavior without any fading can be observed.
The capacity retention (discharge capacity (cycle 100)/discharge capacity (cycle 7)) amounts to 98.9%.
The CCCP measurements showed that addition of 4% FEC to the 1 M LiPF6 in EMS electrolyte results in
the best long-term cycling behavior in graphite/Li cells compared to lower amounts of FEC. Increased
amount of FEC (>4%) does not improve the overall electrochemical performance, including long-term
cycling. Due to the high viscosity of EMS, leading to a low conductivity, an EMS-based electrolyte
would never compete with the carbonate-based electrolyte. To overcome this challenge the EMS-based
electrolyte had to be modified by adding a dilution agent to the formulation. Ethylene carbonate (EA)
is a well-known co-solvent with excellent properties regarding its viscosity and conductivity. Having in
mind, that the performance of the electrolyte is strongly related to its conductivity. Further advantages
of EA are its good environmental friendliness and the ability to solvate the lithium salt as well as the
high wettability of the separator. Hence, EA was added to the high viscose EMS-based electrolyte,
resulting in an electrolyte with good conductivity, compatible with the standard carbonate-based
electrolyte (Figure 3). Decreasing the amount of EA leads to a lower conductivity of the electrolyte
formulation. Increasing the amount of EA would enhance the flammability. Therefore, it desirable to
keep the amount of EMS as high as possible.

Nevertheless, EMS-based electrolytes are known for much lower ionic conductivity, originating
from their high viscosity, compared to the state-of-the-art organic carbonate-based electrolytes.
Therefore, ethylene acetate (EA) as low viscosity co-solvent, known for enabling high ionic
conductivities in the resultant electrolyte, was added to the 1 M LiPF6 in EMS electrolyte formulation.
The obtained conductivity values of selected electrolytes are shown in Figure 3.
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Figure 3. Conductivity measurements of 1 M LiPF6 in EMS + 4% FEC, 1 M LiPF6 in EA + 4% FEC as
well as 1 M LiPF6 in EMS:EA (1:1) + 4% FEC and 1 M LiPF6 in EC/DEC (3:7), in the temperature range
from −40 ◦C to 60 ◦C.

The determined conductivities of 1 M LiPF6 in EMS + 4% FEC are much lower compared to
the values obtained for 1 M LiPF6 in EC/DEC (3:7) in the temperature range from −40 ◦C to 60 ◦C.
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Because of the limited liquid range, pure EMS-based electrolytes are not conductive in the temperature
range from −20 ◦C to 0 ◦C. At 20 ◦C, the conductivity amounts to 1.73 mS·cm−1 and increases further
to 4.81 mS·cm−1 at 60 ◦C. In contrast to this, the conductivity of the carbonate-based electrolyte
reaches a value of 3.98 mS·cm−1 at 0 ◦C, increasing to 5.58 mS·cm−1 at 20 ◦C and 9.85 mS·cm−1 at
60 ◦C. Compared to this, a high conductivity values can be achieved, in 1 M LiPF6 in EMS electrolyte
containing 4% FEC as additive. At −20 ◦C, a conductivity value of 5.65 mS·cm−1 is reached, increasing
to 8.08 mS·cm−1 at 0 ◦C. At 20 ◦C, the conductivity of the electrolyte reaches a value of 9.58 mS·cm−1.
Further increase in temperature results in a conductivity of 11.21 mS·cm−1 at 60 ◦C. After addition of
EA to the EMS-based electrolyte in a 1:1 (EMS/EA) ratio, the conductivity of the 1 M LiPF6 in EMS/EA
(1:1) + 4% FEC electrolyte is comparable to the value of the carbonate-based electrolyte (5.23 mS·cm−1).
The addition of EA to the EMS-based electrolyte increases not only the conductivity, but also influences
the wettability of the electrolyte formulation, enabling its applicability on different separators. In
the following, the values obtained from the contact angle measurement are depicted. In the related
measurement, a very low contact angle (Θ) indicates a high wettability. For the 1 M LiPF6 in EMS
electrolyte, a contact angle of (103 ± 3), was determined as an average value from four measurements
performed on a Celgard 2500 separator. Compared to this very high value, the contact angle of the
commercially used 1 M LiPF6 in EC:DEC (3:7) amounts to (57 ± 5), thus ensuring better wettability.
Addition of EA to the EMS electrolyte (1:1 ratio), results in the contact angle value of (60 ± 3), which is
similar to the one obtained for the reference electrolyte.

With both, conductivity as well as contact angle measurements it is shown, that the addition of
EA to the EMS-based electrolyte has a significant influence on improved performance. In the following,
the EA/EMS-based electrolytes were characterized by means of selected electrochemical methods on
both anode and cathode materials, as well as in NMC/graphite cells. To investigate the electrochemical
stability of 1 M LiPF6 in EMS:EA (1:1) with 4% FEC electrolyte and in particular the influence of EA on
the stability against graphite electrodes, a potential vs. specific capacity diagram of the first cycle of a
graphite/Li cells is shown in Figure 4.
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The first electrolyte decomposition starts at approximately 1.5 V vs. Li/Li+, which is attributed
to a reaction of the SEI-forming additive FEC. While decreasing the potential to 0.02 V, the typical
intercalation plateaus of lithium ions into graphite [36,37] are discernible. A small potential-drop
(0.003 V) indicates a low-restive SEI, similar to the SEI formed with 1 M LiPF6 in EMS-based electrolyte
containing 4% FEC. By increasing the potential to 1.5 V vs. Li/Li+, the deintercalation of lithium
ions takes place. The Coulombic efficiency amounts to 76.9%. The addition of FEC to the EMS/EA
solvent mixture is still required, as, similarly to EMS, EA is not able to form an effective SEI on graphite
during constant current cycling. To prove this assumption, XPS sputter depth profiling measurements
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were carried out on graphite electrodes after constant current cycling in graphite/Li cells containing
investigated electrolyte formulations.

Figure 5a depicts the XPS S 2p core spectrum of a graphite electrode cycled with the 1 M LiPF6 in
EMS electrolyte. The signal at 167.59 eV is attributed to EMS, which is decomposed on the graphite
surface. During sputtering, this signal decreased slightly indicating a very thick decomposition layer
on the electrode. Compared to the aforementioned XPS S 2p core spectra, the core spectra of graphite
cycled with 1 M LiPF6 in EMS:EA (1:1) electrolyte (Figure 5b) look very similar, thus showing that EA
is not able to protect EMS against decomposition. In both cases, the sulfur signal cannot stem from
impurities present on the pristine graphite surface, since the reference measurement on a non-cycled
graphite electrode does not show any sulfur signal (Figure 5e). When adding 1% FEC to the EMS/EA
electrolyte, the sulfur signal in the XPS S 2p core spectrum decreases (Figure 5c) compared to the signal
obtained without FEC. Increasing the amount of FEC to 4% (Figure 5d) shows nearly no sulfur signal
in the XPS S 2p core spectrum of the cycled graphite electrode anymore. A quantitative analysis of
the XPS data shows a strong decrease of atomic sulfur concentration within the formed SEI. Figure 6
depicts relative composition of the organic and inorganic part of the SEI, as well as the sulfur content.
When using 1 M LiPF6 in EMS as electrolyte, sulfur content amounts to 12% due to the massive
decomposition of the EMS solvent. Decreasing the amount of EMS in the electrolyte formulation to
50%, by adding EA, lowers the amount of sulfur, from 12% relative composition to 6%. Due to the
ongoing decomposition of EMS and EA, relative composition of inorganic as well as organic part
rises. Overall, EA does not inhibit decomposition of EMS on the graphite surface. By adding FEC to
the electrolyte formulation, decomposition of EMS and with this the relative composition of sulfur
in the SEI decreases from 6% to 2%, thus indicating formation of a passivation layer. The proportion
regarding the inorganic and organic part is not as expected. The decomposition of FEC on the graphite
surface, results in formation of hydrofluoric acid (HF) and vinylene carbonate (VC). HF reacts on the
graphite surface to lithium fluoride (LiF) whereas VC polymerizes on the electrode surface. We would
expect an increase of the relative composition of the inorganic part and a decrease of the relative
composition of the organic part. The obtained results for the electrolyte formulation containing 1%
FEC may be correlated to the mean error deviation of the system. Increased amount of FEC (4%)
reduces the atomic sulfur concentration within in the SEI to 1%. Nearly no EMS decomposition is
observed on the electrode surface indicating formation of an effective SEI. When using 4% FEC in the
electrolyte formulation, the inorganic part of the SEI increases, whereas the organic part of the SEI
decreases, compared to the results obtained for the cell without FEC. This can be attributed to the
previously described decomposition of FEC. The obtained XPS results are in good agreement with
electrochemical measurements (Figures 1 and 2).
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Figure 5. XPS S 2p core spectra of graphite electrodes, after five charge/discharge cycles at 0.1C in
graphite/Li cells with different amounts of FEC in the electrolyte (a) 1 M LiPF6 in EMS; (b) 1 M LiPF6

in EMS:EA (1:1); (c) 1 M LiPF6 in EMS:EA (1:1) with 1% FEC and (d) 1 M LiPF6 in EMS:EA (1:1) with
4% FEC; (e) pristine electrode. The electrodes where sputtered for 60 s, 120 s and 600 s, respectively.
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Figure 6. Relative composition of sulfur content, organic and inorganic part of the SEI.

Having this in mind, as well as the results obtained from the CCCP measurement on graphite
with EMS and different FEC amounts (Figure 2) in the following measurements 4% FEC were added to
the investigated electrolyte formulation. In order to get a deeper insight on the influence of EA on the
cycling performance, long-term cycling behavior was investigated in graphite/Li cells (Figure 7).
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Figure 7. Cycling profile of graphite/Li cell containing 1 M LiPF6 in EMS:EA (1:1) + 4% FEC electrolyte,
in the potential range from 0.02 to 1.5 V vs. Li/Li+.

The CCCP measurement of graphite/Li cells indicates a stable cycling performance, excluding
capacity fading over 100 charge/discharge cycles. In the formation cycles, a specific discharge capacity
of 344 mAh·g−1 is achieved. After the formation cycles, the specific capacity increases to 353 mAh·g−1

in the 5th cycle. This value is comparable to the one received in the CCCP measurement of 1 M LiPF6

in EMS without EA as co-solvent. Over 100 charge/discharge cycles, the Coulombic efficiency values
indicate a stable cycling performance. To show the anodic stability of EMS-based electrolytes, linear
sweep voltammetry (LSV) measurements on LMO are depicted in Figure 8.
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Figure 8. Electrochemical stability window of 1 M LiPF6 in EMS, 1 M LiPF6 in EMS + 4% FEC and 1 M
LiPF6 in EMS:EA + 4% FEC, respectively on LMO (WE) using lithium as both CE and RE, at a scan rate
of 100 µV·s−1.

The electrochemical stability window show, that all three investigated electrolytes (1 M LiPF6

in EMS, 1 M LiPF6 in EMS + 4% FEC and 1 M LiPF6 in EMS:EA + 4% FEC) are stable on LMO
up to a potential of 5 V vs. Li/Li+. The peak maxima of the deintercalation peaks of LMO are
positioned at 4.05 V vs. Li/Li+ and 4.16 V vs. Li/Li+, a further proof that the addition of EA as
co-solvent to the EMS-based electrolyte has no negative effect on the electrochemical stability of the
electrolyte. As known from the literature, aluminum dissolution depends on various factors, including
aluminum surface structure, electrochemical operation conditions as well as the nature and type of
the electrolyte. EMS-based electrolytes have been intensively studied in respect to aluminum current
collector dissolution by Meister et al. [38]. In this contribution constant current measurements using
aluminum current collector as WE, were conducted and the electrode polarized to 5 V vs. Li/Li+

for 24 h. Thereafter, SEM studies were performed to quantify aluminum dissolution. The authors
pointed out that an electrolyte based on 1 M LiPF6 in EMS shows no pit formation (areas where
aluminum dissolution took place) on the aluminum current collector whereas 1 M LITFSI in EMS leads
to extensive pit formation. Due to the addition of LITFSI, no stable passivation layer can be formed
on the aluminum foil, triggered by the high dielectric constant of EMS. The absence of aluminum
dissolution spots provides an indication of the formation of a sufficiently stable passivation layer,
formed by the conducting salt LiPF6, which inhibits the anodic dissolution of aluminum.

With this in line, electrochemical performance in a cell setup, where reactions at the anode
and cathode influence each other [39,40], 1 M LiPF6 in EMS:EA (1:1) with 4% FEC electrolyte, was
investigated. Decreasing the amount of EA leads to a lower conductivity of the electrolyte formulation.
Increasing the amount of EA would enhance the flammability. The cycling profile of NMC/graphite
cell containing the aforementioned electrolyte composition is shown in Figure 9.
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Figure 9. Cycling profile of NMC/graphite cell containing 1 M LiPF6 in EMS:EA (1:1) + 4% FEC, in the
voltage range from 3.0 and 4.3 V.

Formation of an effective SEI on graphite in the above mentioned cell set-up, as achieved by the
first five cycles were performed at a rate of 0.1C and resulted in a specific capacity of 173 mAh·g−1.
The Coulombic efficiency reaches a value of 99.3%. After the formation cycles, the cell was cycled with
1C, resulting in a stable long-term cycling. The capacity retention amounts to 99.7% in the 20th cycle to
99.3% in the 60th cycle and to 98.9% in the 100th cycle.

A further proof for comparable electrochemical performance of the EMS/EA-based electrolyte to
the carbonate-based electrolyte is provided by the charge/discharge rate measurement, as depicted
in Figure 10. After the charge/discharge test up to 20C, cells were cycled with 1C for 30 additional
charge discharge cycles, as shown in Figure 10, depicting stable cycling performance and comparable
specific capacity values.
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Figure 10. Cycling profiles including charge/discharge rate test of NCM/graphite cells containing
(a) 1 M LiPF6 in EMS:EA (1:1) with 4% FEC and (b) 1 M LiPF6 in EC:DEC (3:7) electrolytes in the
voltage range between 3.0 and 4.3 V vs. Li/Li+.

The concept of using EA as co-solvent and FEC as SEI-forming additive was extended to other
sulfones, namely isopropyl methyl sulfone (MeiPrSO2) and ethyl isopropyl sulfone (EtiPrSO2). For this
reason, constant current constant voltage (CCCV) measurements of NMC/graphite cells with the
aforementioned sulfones are discussed in the following. Similar to the cycling performance of 1 M
LiPF6 in EMS:EA (1:1) with 4% FEC electrolyte on NMC also the CCCV measurement of 1 M LiPF6 in
EtiPrSO2:EA (1:1) with 4% FEC on graphite exhibits a good cycling stability, as shown in Figure 11.
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Figure 11. Cycling profiles of NMC/graphite cells containing (a) 1 M LiPF6 in EtiPrSO2:EA (1:1) + 4%
FEC and (b) 1 M LiPF6 in MeiPrSO2:EA (1:1) + 4% FEC, in the voltage range from 3.0 to 4.3 V.

The capacity retention amounts to 96.9% in the 100th cycle. In contrast to the other sulfone-based
electrolytes, the cycling profiles of 1 M LiPF6 in MeiPrSO2:EA (1:1) with 4% FEC indicate a strong
capacity fading. The capacity retention amounts to 93.5% in the 100th cycle. It may be concluded, that
EMS shows a better long term cycling behavior compared to the other two investigated sulfone-based
electrolytes. Furthermore, the concept of using EA as co-solvent in sulfone-based electrolytes as well as
the presence of FEC as SEI additive represent a successful approach towards alternative nonaqueous
electrolyte formulations for application in lithium ion batteries.

4. Conclusions

In this contribution, the concept of FEC as SEI-forming electrolyte additive and EA as electrolyte
co-solvent was introduced for sulfone-based electrolytes. The optimal amount of FEC in the 1 M LiPF6

in EMS electrolyte, used to achieve stable cycling performance on graphite electrodes was determined.
It was shown that the addition of 4% FEC to 1 M LiPF6 in an EMS-based electrolyte results in a stable
long-term cycling performance of graphite/Li cells. Further tailoring of this electrolyte, in terms
of higher conductivity and wettability, was attained by using EA as co-solvent. The conductivity
value of 1 M LiPF6 in EMS:EA (1:1) + 4% FEC at 20 ◦C (5.23 mS·cm−1) is comparable to the one
of the commercially available carbon-based electrolyte (5.58 mS·cm−1), whereas the conductivity
value (1.73 mS·cm−1) of pure 1 M LiPF6 in EMS is much lower. Contact angle measurements further
confirmed similar behavior of the 1 M LiPF6 in EMS:EA (1:1) with 4% FEC to the carbonate-based
electrolyte, resulting in a contact angle of ≈ 60◦. On the other hand, the contact angle of the EMS-based
electrolyte without EA shows a much higher value (103 ± 3)◦ leading to a lower wettability of the
used Celgard 2500 separator. CCCP measurements of graphite using a 1 M LiPF6 in EMS:EA based
electrolyte indicating no negative effect of EA on the cycling performance of the cell. Results obtained
by XPS measurements revealed decomposition of EMS as well as EA on graphite, resulting in a thick
decomposition layer on the graphite surface. The decomposition of EMS (sulfur signal at 168 eV)
was not observed when adding 4% FEC to the 1 M LiPF6 in EMS:EA electrolyte formulation. CCCP
measurements of graphite/Li cells, using an EMS-based electrolyte with and without EA, showed
that in both cases that 4% FEC are required to preventing the decomposition of the electrolyte over
100 charge/discharge cycles. In the NMC/graphite cell configuration, a stable cycling performance
was achieved with the 1M LiPF6 in EMS:EA + 4% FEC electrolyte. In addition, the concept of using EA
and FEC in combination with EMS-based electrolyte is found applicable for other sulfones, such as
EtiPrSO2 and MeiPrSO2.
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