Energies 2017, 10(9), 1290; doi:10.3390/en10091290
Biodiesel Production Potential from Littered Edible Oil Fraction Using Directly Synthesized S-TiO2/MCM-41 Catalyst in Esterification Process via Non-Catalytic Subcritical Hydrolysis
1
Department of Environmental Engineering, Sangji University, Usan-dong, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea
2
CNS Scientific, 2710-1 Bugwonro, Wonju-si, Gangwon-do 26316, Korea
*
Author to whom correspondence should be addressed.
Academic Editor: Thomas E. Amidon
Received: 22 June 2017 / Revised: 12 August 2017 / Accepted: 23 August 2017 / Published: 29 August 2017
(This article belongs to the Collection Bioenergy and Biofuel)
Abstract
Due to uncontrolled consumption of fossil fuel it is necessary to use alternative resources as renewable energy. Among all the available liquid fuels biodiesel has drawn attention for producing less emissions and having less aromatic contents than diesel and because it can also be obtained from inferior grade feedstocks. Since the various uses of fats and oils have increased, a significant amount of waste animal fat and used edible oil is generated every year. In this work, we produced biodiesel from littered edible oil fraction (LEOF) via hydrolysis followed by catalytic esterification. Nearly 90% free fatty acids (FFA) content was achieved at 275 °C, after 45 min during hydrolysis and linoleic acid (C18:2) was observed to be the highest component. Compared to refined soybean oil (SBO) the reaction rate was accelerated by the auto-catalytic behavior of free fatty acids (FFA) in littered edible oil fraction (LEOF). For catalytic esterification, S-TiO2/MCM-41 catalyst was directly synthesized and characterized by using XRD, SEM, NH3-TPD and Brunauer Emmett Teller (B.E.T). The parameters such as; SO4−2 content, TiO2 loading and calcination temperature were varied to get optimum free fatty acids (FFA) conversion. Fatty acid methyl ester (FAME) conversion was 99.29% using 1% S-TiO2/MCM-41 catalyst at 240 °C whereas 86.18% was observed with 3.5% catalyst at 180 °C with 20 min. Thus, using S-TiO2/MCM-41 catalyst in esterification via hydrolysis would be a better option for treating low quality feedstocks. View Full-TextKeywords:
sustainable; littered edible oil fraction; sub-critical; hydrolysis; auto-catalytic; esterification
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Bhuyan, M.S.U.S.; Alam, A.H.M.A.; Chu, Y.; Seo, Y.C. Biodiesel Production Potential from Littered Edible Oil Fraction Using Directly Synthesized S-TiO2/MCM-41 Catalyst in Esterification Process via Non-Catalytic Subcritical Hydrolysis. Energies 2017, 10, 1290.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Energies
EISSN 1996-1073
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert