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Abstract: The calculation of frequency-dependent cable parameters is essential for simulations of
transient phenomena in electrical power systems. The simulation of transients is more complicated
than the calculation of currents and voltages in the nominal frequency range. The model
has to represent the frequency dependency and the wave propagation behavior of cable lines.
The introduced model combines an improved subconductor method for the determination of the
frequency-dependent parameters and a PI section wave propagation model. The subconductor
method considers the skin and proximity effect in all conductors for frequency ranges up to few
megahertz. The subconductor method method yields accurate results. The wave propagation part of
the cable model is based on a cascaded PI section model. A modal transformation technique has been
used for the calculation in the time domain. The frequency-dependent elements of the related modal
transformation matrices have been fitted with rational functions. The frequency dependence of cable
parameters has been reproduced using a vector fitting algorithm and has been implemented into an
resistor-inductor-capacitor network (RLC network) for each PI section. The proposed full model has
been validated with measured data.

Keywords: subconductor method; frequency-dependent cable parameters and impedances;
PI sections; cable model; time domain

1. Introduction

The safe and reliable operation of cable systems requires the analysis of transient behavior of
such systems. Single core cables with a core and a shield are utilized prospectively. The first models
for the calculations of wave propagation and their transient behavior were developed in the 1970s.
The structure of the line models is divided into two main components, a module for calculation of
frequency-dependent parameters and the wave-propagation model.

For calculation of the line parameters, Ametani’s algorithm [1] (cable constants) uses the principal
assumptions of Wedepohl [2]. Ametani’s algorithm uses a bundle of equations to determine the
coupled cable impedances. The frequency-dependent earth return impedance is considered with an
fictive earth conductor given by Carson [3] and Pollaczek [4]. The skin effect within the cable core is
implemented using Schelkunoff’s equations [5]. The proximity effect between the conductors and the
skin effect in the shield are neglected. Morched et al. [6] also use principal assumptions similar to the
ideas of Wedepohl [2] and Ametani [1].

The wave propagation models can be mainly classified into two categories: the models with
distributed parameters and the models with lumped parameters. The models with distributed
parameters are based on partial differential equations to describe the dependency of current and
voltage on the time and distance. These differential equations are also known as telegraph equations [7].
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d’Alembert solved the telegraph equations [8]. Using the Bergeron method [9], d”Alembert’s solution
is represented with forward and backward waves, where the line parameters are assumed to be
frequency independent. In addition, the losses are neglected.

Dommel [10] developed the method of Bergeron by considering the line losses using lumped
resistances. Snelson [11] was able to further develop Dommel’s model by taking the frequency
dependency of the line parameters into account. Based on Snelson’s model, Marti]. [12] presented
a model for overhead lines. In this model, a modal transformation has been used to simplify
the modelling. The modal transformations are performed using modal transformation matrices,
whose parameters are generally frequency dependent. However, Marti]. used constant (frequency
independent) modal transformation matrices. The frequency dependency of the modal transformation
matrices are considered later in the model of Marti L. [13]. In order to avoid the difficulties by using
frequency-dependent modal transformation matrices, Noda et al. [14] have developed the line model
directly in the phase domain. Morched et al. [6] have further developed this model and introduced a
universal line model. The model can be used for overhead lines and cables. In order to simplify the
calculations, the universal line model uses a vector fitting algorithm [15,16], which approximates some
of the line parameters (surge admittance and propagation constant) by rational functions.

Another approach (alternatively to the vector fitting algorithm) for the approximation of the line
parameters is based on the algorithm developed in Noda [17]. Noda has shown that this algorithm
can be also applied to both overhead lines [18] and cables [19]. The universal line model gives good
results. However, it sometimes produces numerical instabilities. This happens by approximation of the
propagation constant and especially in the case of short cables, since the associated time delays become
closer, leading to poor fitting. This problem was overcome in [20] by introducing a new method to
calculate the time delays.

A second type for modeling of the line is used by lumping of the line parameters. The lumped
parameters can be combined to build a PI section [10]. The behavior of the models with distributed
parameters is approximated by connecting several PI sections in series, which results in a simplified
representation of a line model with lumped parameters. The number of PI sections depends on the
simulated cable length, the expected highest frequency in the investigated transient and the accepted
calculation error. The principle of the model with lumped parameters or with PI sections is relatively
simple compared to the models with distributed parameters. However, in the traditional PI section
model the line parameters are calculated only at a specified frequency point. In other words, the
frequency dependency of the line parameters is neglected. Therefore, the results of this model will only
be valid for steady state simulations. For simulations of transients, the traditional PI section model has
to be further developed [21].

In this paper, the main steps for the development of a full frequency-dependent three-phase PI
section cable model (3PPI model) is introduced. The frequency-dependent impedances are determined
with an improved sub-conductor method considering the skin and the proximity effect in the core,
the shield and the earth. The frequency dependence of the cable parameters is implemented through
an RLC (resistor-inductor-capacitor) network with a defined number of PI sections. To decouple the
cable system, a modal transformation technique has been used. The calculation time necessary to work
with a large number of PI sections is acceptable. For the simulation in the time domain, a recursive
convolution technique has been used. The differential equations to describe the voltages and currents
along the cable are of the first order, which can be easily solved as state space equations.

2. Algorithm for Calculation of Frequency-Dependent Cable Parameters

2.1. Fundamentals

For any inductive loop, the mutual inductance M of a conductor configuration characterizes the
magnetic influencing of adjacent circuits on each other. The mutual inductance between two conductor
loops M and N as shown in Figure 1 can be determined by Equation (1) (Kuepfmueller [22]).
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Figure 1. Equivalent configuration for the determination of the mutual inductance M between linear

conductor loops.
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Equation (1) is sufficiently accurate if the radii #; are negligibly small. Otherwise, the conductor
cross-sectional area A must be taken into account. Maxwell [23] incorporated the cross-sectional area
A through a mean geometric distance g. According to Bruederlink [24], for any two areas A; and Ay,
shown in Figure 2, their mean geometric distances gyy are given by Equation (2).
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Figure 2. Principal configuration for the determination of mean geometric distance g.

The mean geometric distance of an area on itself gp1p can be obtained by Equation (3).

1
In(gpmm) = AT/ /lnrmndamdan 3)
M A Au

For the characterization of conductor loops with common return conductor through earth,
the analytical approaches of Carson [3] can be applied on cable systems over narrow frequency
ranges only. To incorporate the return conductor into the model, it is reasonable to define a fictive
hull cylinder with a radius Ry. Figure 3 shows a simplified equivalent configuration introduced
by Rees [25], illustrating the conductors m and #n as well as the fictive hull cylinder which is the

common return.

Figure 3. Equivalent circuit for determination of mutual inductance M, with common return

(hull cylinder).
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The subconductor self impedance Z,, and the mutual impedances Z;,, are given by
Expression (4).

Z/ —'.((7.7. n H
= ] 2'7_[ 1 <gmn>
Ry

R 4wt (B
Zim = R+ g n (1)

(4)

A resistive component R}, is thereby included only in the self impedance.

2.2. Partial Subconductor Method

The principle of the partial subconductor method as published by Comellini [26] is based on the
segmentation of the conductor cross-sectional area into sufficiently small subconductors so that the
current density will be nearly homogeneous within each subconductor. The subconductors of the
system are inductively coupled through the mutual inductance per unit length Z;,, of all conductor
loops. Therefore, it is possible to model skin and proximity effects in the conductors of the cable and in
the earth. Figure 4 shows the principle of segmentation.

conductor B

conductor A subconductor
subconductor B1, B2, ... Bus
Al, A2, ... Ana ©) @@
Q6
B

conductor N
subconductor
N1, N2, ... Nn~

Figure 4. Principle of conductor segmentation into subconductors.

The inductive coupling of current and voltage of all subconductors is characterized by the equation
system of the subconductor-submatrices as specified in Equation (5) for three conductors A, B, and C.
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It is possible to incorporate all conductors of the system into the algorithm, for instance any of
the cable components such as the core conductor, shield, armor, earth, semiconducting layers and
possible return conductors of the system. The conventional subconductor method realizes a “fixed”
segmentation with arc segments. Dommel [27] discussed different shapes of segments, for instance
circles, squares and so forth. The limitation to frequencies of f < 10kHz is a significant disadvantage of
the fixed segmentation. The reason for the limitation to frequencies is named by Lucas [28] described in
detail in Schidt et al. [29,30]. The limitation of the conventional sub-conductor method can be avoided
by using frequency-dependent segmentation.

2.3. Frequency-Dependent Segmentation of Conductors

The segmentation of a cylindrical conductor is realized considering the skin and proximity effect.
To determine the segmentation algorithm, the current density J(f,r) of the cylindrical conductor
is analytically derived from Maxwell’s equations as a function of the frequency f and the radius r.
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Figure 5 illustrates the current density Jc/Jmax(c) at different frequencies for a solid, cylindrical copper
conductor with a cross-section area Ac of 1000 mm?.
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Figure 5. Current density Jc/ Jmax(c) in a cylindrical conductor at different frequencies f.

With increasing frequency f the skin effect grows stronger. At high frequencies, a significant
current flow remains directly under the surface only. For instance, at a frequency f = 1000 Hz, 90% of
the current I is concentrated in the outer 4.5 mm. Therefore, the cylindrical conductor is segmented
across its radius r as a function of the relative current density J/ Jmax. It is assumed that a constant
error of the current density distribution can be achieved by calculating the current density J(f,r)
with the outer radius of the i-th skin r; directly dependent on the relative current density J/ Jmax.
The number of skins # can be set in accordance to the required accuracy. Nevertheless, it must be
considered that the number of skins impacts the algorithm’s computation time. The consideration of
the proximity effect is covered by the skin subdivision into arc segments.

As an example, Figure 6 displays the allocation of the skins over the conductor’s radius exemplary
for five skins. The determination of the skin radii r; to r,, follows a 1/#n-increment of the relative current
density J/ Jmax. However, the subdivision of the conductors into skins as demonstrated in Figure 6
does not cover the proximity effect. This must be incorporated by another subdivision of the skins into
arc segments (see Figure 7). Arnold [31] yields an analytical approach to calculate the proximity effect.
Based on the error which occurs from the calculation of the subconductor impedances Z},,, and Z},,,, ,
the segmentation of the skins can be defined. Nevertheless, calculating the mutual mean geometric
distances g, of two arc segments as indicated in Equation (2) and the self mean geometric distance
gmm of one arc segment on itself as indicated in (3) causes a high numerical complexity. In order to
simplify, Rees [25] and Brakelmann [32] introduced the centroid distance s of the corresponding arc
segments into Expression (4), instead of using the mean geometric distance g. The replacement of the
mean geometric distance g by the centroid distance s of the arc segments results in an error which
cannot be ignored, but Rees [25] shows that at least for certain configurations it is essentially acceptable
to use the centroid distance s. A numerical determination of the deviation between centroid distance s
and mean geometric distance g is presented by Schmidt [29,30].

50 Hz 500 Hz 1000 Hz 10 kHz

Figure 6. Segmentation of a conductor into five skins.
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Figure 7. The geometry of an arc segment.

Those calculations have shown that for the geometric factors ks = /¢rs/ds smaller than 2,
the relative deviation s, / §n is minimized. Figure 8 gives an example for the segmentation into three
skins for a frequency of f = 50 Hz.

Figure 8. Example for a segmentation of a conductor into three skins at frequency f = 50 Hz.

2.4. Earth Segmentation

The segmentation of the earth is based on the analytically calculated current distribution in
the earth. The approach of Ruedenberg [33] can directly be applied to underground cable systems.
The calculated current density Jg(f,r) is shown in Figure 9 and displays the relative current density
JE/ Jmax(E) @s a function of the radius r at different frequencies between 50 Hz and 1 MHz. The specific
earth resistance g is assumed to a typical value (in Central Europe) of 150 Q) m.

1 -+
p-u. —50Hz
08 4 L e 1000 Hz
’ - - - 10kHz
------------- 1 MH
0.6 - MHz
1
\ /
\\ /,

53
N
1

o

current density Ji/J @)
=)
=~
1

1 10 100 1000 m 10000
radius r

Figure 9. Current density Jg/ Jimax(g) in the earth at different frequencies f.

The segmentation is again realized by analytical calculation of the conductor current density
Jc/ Jmax(c)- For frequencies of f = 50 and 1000 Hz, Figure 10 shows how ten skins would be allocated.

1 L T T \ 7T
-/ \)’i/
\ < ’ / 7,=192m =~

AN
7
r9:541rﬁ\\__,/

50 Hz 1000 Hz

Figure 10. Segmentation of the earth into ten skins.
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To provide a better overview, only every second skin is plotted in Figure 10. At the fictive hull
cylinder with the radius Ry the current density | must have declined to zero. As Dommel [34] was
able to demonstrate, this condition can be fulfilled for a distance of ten times the penetration depth gg.
The segmentation of the skins is done according to the results of the errors computation discussed in
Schmidt [30].

2.5. Shield Segmentation

The shields of single core cables are usually stranded rigid copper conductors illustrated in
Figure 11.

~=--------f radius rp, single wire

cross section Ap, single wire

Figure 11. Structure of stranded rigid copper conductor.

In this case, the frequency-dependent segmentation is not necessary since the skin effect is only
effective in single wires. The self-impedance per unit length of the single wire with the cross section

Ap =1- rzD can be calculated by Equation (6).

. H Ry
Zinm = Riygp) Tj-w 5 In (gmm> ©

2.6. Calculation of Frequency-Dependent Impedances

Equation (4) describes the impedances Z’ of all subconductors in a certain area of all considered
subconductors in a certain area and thus the inductive coupling between all subconductors.
The reference conductor (or common return conductor) of all loops is the radius of the fictive hull
cylinder Ry. The complete impedance matrix of a system appears as represented in Equation (5)
and contains the subconductor matrices of each individual phase. The rank of the impedance matrix
Z' is equal to the number of all subconductors in the enclosed area 7,;. A resistive component R,
which characterizes the direct current resistance per unit length R}, of the electrical subconductor m
as a function of the specific resistance and the subconductor area A, is merely included in the self
impedances Z},,,. The direct current resistances R}, of all subconductors are comprised in a column
vector R'. The impedance matrix Z’ can be expressed according to Equation (7).

;’:R’ﬂ-w-%-(mRH—ms) @)

The indices of the centroid distance elements in Matrix (8) designate the respective subconductor.
The subscripted index names the m-th subconductor of the current-carrying loop and the superscripted
index names the n-th subconductor influenced by the current-carrying loop.

CARR N
Ay SR
S f ®
R N
B S
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The subconductor matrices of the centroid distances s,,; and the admittance matrix Y are
symmetrical. Therefore, to calculate the centroid distances s, it is sufficient to determine the elements
above the main diagonal and to reflect them at the main diagonal. For unknown currents i of the cable
system and known voltages v/, a system of equations (with reference to Equation (5)) can be obtained
as given by Equation (9).

i=Y 7 )

The admittance matrix Y is the inverse of the impedance matrix Z'. The voltage across all

subconductors in a conductor K is the same. It is:
! ! !/ !
V=V =Vh=...=V}, (10)
The sum of the subconductor admittance matrices Y,,,,, and Y}, can be realized using basic matrix
operations demonstrated in Relation (11).

ye=r.y. T (11)

The dimension (N X n,y) of the transformation matrix T is defined by the total number of

conductors in the system N and the sum of all subconductors n,);. Row K is associated with conductor

K. All elements corresponding to the submatrix Y’K are filled with 1, the remaining elements are filled

with 0. For a seven-conductor system (3 x core, 3 x shield, 1 x earth) the transformation matrix T is
of the form indicated by Equation (12).

141« ny) 0 0 0

I 0 1(1 « ng) 0 0 a2
0 0 11 x ne) 0
0 0 0 11 x ng)

The number of rows in the transformation matrix T according to Equation (12) is equal to the
number of conductors N. The number of elements per row represents the number of subconductors n
in conductor K. The reduced impedance matrix Z’ "4 can be obtained from the reduced admittance

. d
matrix Y.

Z/red _ (X/red) -1 (13)

2.7. System Impedances

The reduced impedance matrix Z' red (13) contains the submatrices of all conductors. It is useful to
modify the matrix containing all submatrices to a (6 x 6) matrix. Expression (14) shows the structure
of the reduced system with all submatrices for the core (C), shield (S) and earth (E).

/ ! ! ! .

Yc Zce Zes Zeg| |ic
/ _ / ! ! ]

s | = |Zsc Zss Zsg| - |is (14)
/ ! ! ! :

Vg Zyc Zgs Zgg| ik

The voltage vector v’ describes longitudinal voltages measured against the hull cylinder.
The equation system (14) can be partitioned into impedances of the cable system and impedances of
return conductors (15).

o?| _[z% z%) [# 5)
ve| |Ze Ze| |ie
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The reference potential is the potential of the fictive hull cylinder Uy = 0. It can be expressed in
Equation (16).

P _ 7P - %
Qc *ch'ltlg—’—Zce'lg

(16)
0=Z¢gif +Z'¢ it
Equation (16) can be rearranged to obtain (17) for the current ik
e =(-Ze) " (Ze) i (17)
Inserting Equation (17) into (16) results in Equation (18) for the voltage u'F.
E/E = (Z/EC _Z/cpe'(zlleae)il'z/}e)c)'ig 18
P p (18)
u.,= Z mod HYc

The modified matrix Z',,,4 has the rank of the sum of all cable conductors. The matrix is a (6 x 6)
matrix single core cable system (3 x core, 3 X shield). It is also possible to reduce the coefficient matrix
of equation system (14) to a (3 x 3) matrix. In case of earthed shields on both cable ends, the return
conductor submatrices of the partitioned matrix (15) contains the shield submatrices. The earth and
shield influence is considered in all modified impedance matrices Z, 4. In principle, this approach
can also be realized for one-sided shield earthing (Schmidt [30]).

2.8. Impact of Semiconducting Layers

The influence of semiconducting layers is formulated in only very few publications.
Ametani [35] determined the impact of semiconducting layers by modifying Schelkunoff’s method [5].
Semiconducting layers can also be considered with the subconductor method. A one-skin segmentation
for the inner semiconducting layer is shown in Figure 12.

Figure 12. One-skin segmentation of the inner semiconducting layer.

Segmentation can be realized also with more than one skin. The specific resistances of
semiconducting layers can be g5 = 0.01...10Qm according to Ametani [35]. Nevertheless, cable
manufacturers specify particular values between g5 = 10 and 100 O m. The calculated resistance per
unit length R/ <(C) for relevant specific semiconducting layer resistances gy is shown in Figure 13.

2
=
=

—-=-= Ametani: 10 QOm
e Ametani: 100 Qm
—=— subCond: 100 Om

—_

k=]
o
=

resistanc per unit length R’, ¢
(=}
=

100 1.000 10.000  100.000 1.000.000
Hz

-
o

frequency f

Figure 13. Resistance per unit length R, <(C) considering the semiconducting layer.
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2.9. Main Insulation Capacitance

The single core cable capacitance shown in Figure 14 can be calculated by Equation (19) for the
cross-linked polyethylene (XLPE) main insulation C(:

CéS =2-7- €0 - sr(h) . (19)

and for the sheath capacitance C.;, (20).

Céh =2-7T-¢- Sr(m) . (20)

core

shield

sheath

radius core

radius insulation

outer radius shield

outer radius sheath

enn) relative permittivity insulation
&xm) relative permittivity sheath

T3 zor

Figure 14. Configuration of a single core cable.

The capacitances depend on the cylinder geometry, the relative permittivity ¢, of the insulation
and the polarization. The frequency-dependent effects of polarization are investigated in several
publications (Liu [36], Hadid and Schmidt [37]). The frequency range of polarization types are given
in Table 1 (see also Liu [36]).

Table 1. Frequency ranges of polarization.

Polarization Frequency Range f.

Electronic ~101° Hz

Tonic ~10'2 Hz

Orientational ~10° Hz
Interfacial mHz...kHz

The table shows that electronic, ionic, and orientational polarization will not contribute
significantly to the capacitances of single core cables. A typical interfacial polarization occurs between
the XLPE insulation and the semiconducting layers. This effect is of relevance in a frequency
range f < 1Hz. The interfacial polarization can be ignored in frequency ranges f > 10Hz.
Therefore, the frequency dependency of the capacitances can be generally neglected in an algorithm
for frequency-dependent parameters. A typical interfacial polarization occurs between the XLPE
insulation and the semiconducting

layers. This effect is of relevance in a frequency range f < 1Hz. The interfacial polarization can
be ignored in frequency ranges f > 10 Hz. Therefore, the frequency dependency of the capacitances
can be generally neglected in an algorithm for frequency-dependent parameters. The semiconducting
layers have an influence on the capacitance C(g, but for transient calculations it can be neglected.
Hadid and Schmidt [37] and Wagenaars [38] confirm this approach.
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2.10. Sheath Capacitances

2.10.1. Earth Installation

Ametani [1], Wedepohl [2], Gustavsen [39], and Marti L. [13] neglected the earth resistance Rg
and the earth capacitance Cg. In Schmidt [30], this approach is confirmed for specific earth resistances
0p < 500Qm and frequencies f < 100kHz. The sheath capacitance per unit length C/, can be
calculated with Equation (20).

2.10.2. Air Installation

For correct calculation of shield-shield capacitance Csg, the sheath capacitance Cy, and the air
capacitance Cg have to be considered. The sheath capacitance Cyy, is significantly larger than the air
capacitance Cg. Therefore, the sheath capacitance Cg, can be neglected (Schmidt [30]). This is also
valid in case of small phase distances. The sheath capacitance Cg, can be calculated with the charge
simulation methods of Steinbigler [40], and Probst [41].

3. Wave Propagation Model

3.1. Approach

The wave propagation in a multi-conductor cable or transmission line can be represented in the
frequency domain with second-order differential equations from Marti]. [42]:

d?v
dixz = Z/X/Ll/ (21)
d2I
dixi = X,Llll (22)

The longitudinal impedances in the phase domain Z' are calculated using the partial subconductor
method as in Equation (7). The shunt admittance in the phase domain Y] represents the capacitance
equations given in Equations (19) and (20). The index “L” stands for lateral. In order to solve
the differential Equations (21) and (22), a modal transformation technique has been proposed in
Marti]. [42]. As a result, the coupling between the cable conductors disappears and the cable system
can be considered as decoupled single conductors. In the modal domain, the Equations (21) and (22)
can be rewritten as:

dzl/m — 1/
B T IZW TV = AV, (23)
2
I

where A is a diagonal matrix which represents the eigenvalues matrix of Z'Y] and Y] Z'. For the
transformation into modal domain the modal transformation matrices T; and T, are used. The relation
between the matrices is given by Marti]. [13]:

n-[r]" e

Therefore, it is sufficient to calculate only one of them. In this paper, the results for T; will be
calculated as in Chrysochos et al. [43].

In order to make the calculation in the modal domain, the quantities Z/, Y;, Vand I have to be
transformed into this domain. From Equations (23) and (24), it can be derived:

T,'ZY{T, = A (26)

T 'Y ZT, =7 (27)
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With simple matrix perturbation, the above equations are then rewritten as:
T,'Z(LTOWT, = A (28)

A (29)

'Y (T, T,1)Z'T, = A

By rearranging the terms and by using the Equation (25) in (28) and (29), the longitudinal
impedance and the shunt admittance in the modal domain can be defined as:

Z, =1Z'T, (30)
Y =T [T (31)

Both matrices in Equations (30) and (31) are diagonal. The frequency dependence of the elements
of ¥j ,,, cannot be neglected (as assumed for the elements of ¥7). This is related to the frequency
dependent elements of T;. The elements of Z; are also strongly frequency-dependent. In order to
take the frequency dependency of Z, and Y| . into account, their diagonal elements need to be
approximated by mathematical functions using the vector fitting algorithm (VF) of Gustavsen and
Semlyen [15], and Gustavsen [16]. For example, the first diagonal element in Z,, can be approximated
using VF as:

N

7 —dtiohs Y Pa

Zm fit ](U Z]CU*aq
q=1

+ NiM < Sh,re +j5b,im + Shre — jsb,im ) (32)
b=N+1 ]w + Sbre — jgb,im ]w + 8b,re + jgb,im

The accuracy of Z! 5, depends on the number of the real terms N and the number of the complex
terms M. Z;n tit can be reproduced with an electrical network. In Hoshmeh et al. [21], an RL network
has been used. Using such a network allows us to employ only the real poles and residues in the
approximation (the complex terms are discarded). Although the fitting is achieved with a low order of
approximation, the accuracy is affected. In this paper, an RLC network shown in Figure 15 is introduced

with regards to all the poles and residues in the approximation including the complex terms.

__________________ |
L/

N+1

LI/\I+M + RI,\I+M :

+R!

N+1

Cl

N+M O

Figure 15. Representation of the frequency dependence of the cable longitudinal impedance.

As can be seen, the network has been divided into two sections. The elements of section I can be
evaluated in a similar way as in Hoshmeh et al. [21]. The elements of section II are obtained as follows:
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3 2
R, o -2 8b,re Sb,re -2 Sb,re Sp,im &b,im
b — 2 (52 + 52 )
gb,im b,re b,im
3
L/ _ 25b,re
b 2 2 2
. (s s= .
gb,1m( b,re + b,lm) b=N+1..N+M (33)
C. = !
b =
2 Sp,re
2
RI* _ 2 sb,re
b =
8b,im Sb,im — &b,re Sb,re

The first diagonal element of Y7 . is similarly approximated. Furthermore, Ry and L;, are assumed
to be zeros in Xi/m fit- After calculating Z;n g and X/L,m tiv- they will be combined to form a developed
PI section. Figure 16 shows a representation for the developed PI section after regarding the cable
length, where vy, s and v r are the voltages in the modal domain at the sending and receiving ends,
respectively. One single conductor in the developed cable model can then be represented by cascading

a number of PI sections.

L fit
v, < H XL; fit H XL; fit > Vs

Figure 16. PI section with the frequency dependence.

For the remaining diagonal elements of Z;,, and ¥ ,, the same procedure is used to form the
other conductors in the developed cable model. From the Equations (23)—(25), the voltages and the
currents are transformed into the modal domain as follows:

V=TV (34)

L,=T1 (35)

Equations (34) and (35) are still in the frequency domain. However, since the simulations in the
power system are necessary in the time domain, these equations have to be transformed into this
domain. For the voltages in the Equation (34), the convolution integral is applied as:

[e9)
Um(t*xu) = / t(t—u)v(u)du (36)
—00
Evaluation this integral point by point is time consuming. By approximating the elements of Ti
using rational functions, an efficient recursive convolution method is used from Marti]. [12] and the
above integral can be rewritten as a sum of exponentials:

Um(t*xu) = /oo be "Dy (u) du (37)

where b and | are the approximations parameters of the rational functions. The wave travel time T
for the impulse from one end of the cable to the other one is related to the imaginary term of the
propagation function v:

1=\Z'Y; (38)
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The voltage vector v (t) is calculated recursively from v, (t — At) as:
Um(t) =a1om(t—At) +ap0(t —7) +azo(t —T— At) (39)

In this relation, a1, a and a3 are constants that mainly depend on b, [ and A t Marti]. [42]. The same
procedure is used to transform the currents in the Equation (35) into the time domain. In order to
execute the time domain simulations, the differential equations for single conductors in the developed
cable model have to be formulated. As shown in Hoshmeh et al. [21], the differential equations can be
represented using state space techniques. A numerical backward Euler rule of integration can then be
applied to find the solution for the related state space equations of Meyer and Dommel [44]. To solve
the cable equations with the rest of the network, which is always defined in phase quantities, the
calculated voltages and currents in the modal domain must be transformed back to phase quantities.

Figure 17 shows an overview for the realization of the 3PPI model. Starting from defining Z’ and
Y], the cable model part is executed only once to provide the PI sections for the calculation part. In this
part, the computation is evaluated every A t. For the first one, the vector of the voltages v is calculated
using the network model and the vector of the currents i. By applying the recursive convolution
between v and the approximation of # (~ t"), the vector of the voltages vn, is calculated. Using the PI
sections and v, the state space equations are formulated and solved by means of numerical backward
Euler rule of integration to yield the current vector iy,. The recursive convolution between i, and the
approximation of #; (=~ ;) provides the vector of currents i for the next A t.

| |

' | 1] !
E Network | ! ! i — Cable Model |
! Model z'y! i \l,lr T, _E)IL Z YL/m > VF [ Plsections || |
| L N ! T |
: A— —
|| Calculations y ! v . | | - |
: L \'} | ~ ti ':'):’ Vm > :
! : : H Currents |
! Voltages ¥ ! | |
! “+H ~ Hoo < !
i <] | |l t 1_: m |
: [ [ |
______________________ s L __.
Phase-Domain Transformation Modal-Domain

Figure 17. Principle of the three-phase cable model. VF: vector fitting algorithm.

4. Validation of the Full Frequency-Dependent Cable Model

For the validation of the 3PPI model, a DC-Test on a three-phase cable with a length of ¢ ~ 2.5km
in trefoil formation has been used. The test is performed by charging the cable conductors up to 1 kV.
After that, the charged conductors are connected to earth through the circuit breaker (s2) and the
CUITENtS icore(A)/ lcore(B) Ishield(A) AN ishicld(p) at the sending end are measured. The test configuration
is shown in Figure 18. The cable parameters are given in Table 2.
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lcore(A)

A o — }—
I — -

1 core(B)
R - )
s2

®

Zshield(B)

v..=1kV

DC

Figure 18. Test configuration for the current measurements.

Table 2. Parameters of 20-kV cable, NA2XS(FL)2Y.

Name Unit Value
Outer radius of the core 7; mm 119

Inner radius of the sheath r, mm  19.0

Outer radius of the sheath r3 mm  20.1

Outer insulation radius 74 mm 235

Core resistivity oc Om 282x1078
Shield resistivity os Om 170 x 1078
Inner insulation tan & 4x1074
Outer insulation tan § 4x10°*
Inner insulation relative permittivity &, 2.3

Outer insulation relative permittivity e, 24
Relative permeability p;, 1.0

Earth resistivity pg Om 150

Type of installation Trefoil
Laying depth (system center) dq 12m
Length l ~2.5 km

The capacitances are calculated with Equations (19) and (20). The calculated frequency-dependent
self resistance R/ ; and self inductance L. ; are shown in Figure 19. The simulations with the 3PPI
model have been executed with 75 PI sections. The order of approximation for Z ¢ and for ¥
is 8. The simulation time step is set to At = 107 s. In this simulation, two facts should be replicated
correctly: the wave travel time 7, which is related to the imaginary term of ¢ and the attenuation,
which is related to the real term of . For the sake of clearness, Figure 20 shows only a comparison
between the outcomes of 3PPI Model with the measured currents for the core and shield A. The
comparison shows that the model results match very well with the measured data. This means that the
wave travel time and attenuation are replicated correctly in the developed cable model which proves
its validity. For example, in our case the simulated wave travel time is 14.8 us and the measured value
is 14.5 ps. The small deviation between the travel times (0.3 ps) can also be minimized by increasing
the number of PI sections. However, this will increase the calculation time.

In addition, it should be noted that a certain variation between simulation and measurement
is always to be expected in general. This is mostly related to the lack of accurate information about
some cable data, for example the thickness of inner and outer insulation screens and also their
conductivity and permittivity. The inaccuracy in the cable data will affect the accuracy of the calculated
longitudinal impedance Z' and shunt admittance Y| . This will be reflected in the simulation results of
the cable model.

The required number of PI sections in the model depends on the expected frequencies in the
transients, the cable length and the accepted calculation error. With the proposed model, calculation
times of few seconds have been achieved.
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Figure 19. Simulated frequency-dependent self resistance R and self inductance L. ;.
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Figure 20. Comparison of simulated currents with measured data.

5. Conclusions

In this paper, a full frequency-dependent cable model for calculations of transients was introduced.
The frequency-dependent cable parameters are determined with an improved partial subconductor
algorithm. The algorithm is able to handle a large number of conductors. Complete cable systems can
be implemented including components like shields, armor, earth and other grounding conductors in
parallel through the earth. If necessary, semiconducting layers can be realized in form of additional
conductors. The skin and the proximity effect is considered in all conductors.

The improved partial subconductor method merely allows the calculation of the inductive
coupling between conductor loops. The capacitive coupling is realized by other analytical methods.
The frequency dependency of a XLPE insulation capacitance can be neglected for calculations in
frequency ranges f < 5 MHz.

The wave propagation cable model based on lumped parameters. A modal transformation
technique was employed in the cable model to transform the cable system into decoupled single
conductors. Every single conductor in the modal domain is represented through cascaded developed
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PI sections, where the frequency dependence of cable parameters is implemented through an RLC
network in every PI section.

For an efficient computation time, the simulations in the time domain are executed using a
recursive convolution technique. The number of PI sections in the full frequency-dependent cable
model depends on the simulated cable length, the expected highest frequency in the investigated
transient, and the accepted calculation error.

A comparison of the outcomes of proposed 3PPI model with measured data has shown a good
match, which validates the approach used in developing this model.

A next important step is to compare the results of the developed full Frequency-dependent PI
section cable model with other existing cable models, which is the goal of our next publication.
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