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Abstract: The decomposition characteristics of a SF6 gas-insulated medium were used to diagnose the
partial discharge (PD) severity in DC gas-insulated equipment (DC-GIE). First, the PD characteristics
of the whole process were studied from the initial PD to the breakdown initiated by a free metal
particle defect. The average discharge magnitude in a second was used to characterize the PD
severity and the PD was divided into three levels: mild PD, medium PD, and dangerous PD.
Second, two kinds of voltage in each of the above PD levels were selected for the decomposition
experiments of SF6. Results show that the negative DC-PD in these six experiments decomposes
the SF6 gas and generates five stable decomposed components, namely, CF4, CO2, SO2F2, SOF2,
and SO2. The concentrations and concentration ratios of the SF6 decomposed components can
be associated with the PD severity. A minimum-redundancy-maximum-relevance (mRMR)-based
feature selection algorithm was used to sort the concentrations and concentration ratios of the SF6

decomposed components. Back propagation neural network (BPNN) and support vector machine
(SVM) algorithms were used to diagnose the PD severity. The use of C(CO2)/CT1, C(CF4)/C(SO2),
C(CO2)/C(SOF2), and C(CF4)/C(CO2) shows good performance in diagnosing PD severity. This
finding serves as a foundation in using the SF6 decomposed component analysis (DCA) method to
diagnose the insulation faults in DC-GIE and assess its insulation status.

Keywords: SF6; partial discharge severity; DC gas-insulated equipment; feature selection; back
propagation neural network; support vector machine; decomposed component analysis

1. Introduction

SF6 possesses excellent insulating and arc-extinguishing performance and is widely used as a
medium in gas-insulated equipment (GIE) because of its ability to greatly reduce the equipment size
and improve system reliability [1–5]. DC-GIE received much attention due to the rapid development
of high-voltage DC (HVDC) transmission and flexible HVDC technologies [6–11]. However, when
partial discharge (PD) occurs inside the equipment, this phenomenon can decompose SF6 and generate
a series of low-fluorine sulfides (such as SF5, SF4, SF3, and SF2). These low-fluorine sulfides then
react with the trace moisture and oxygen that inevitably exist in the equipment, thus generating some
stable decomposition products, such as SO2F2, SOF2, SO2, CF4, CO2, HF, and H2S and resulting in the
insulation performance degradation of SF6 [12–17]. Using SF6 decomposed component analysis (DCA)
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to diagnose the insulation faults in DC-GIE and assess its insulation status can effectively avoid the
complex electromagnetic interference in the substation; this method has recently become a popular
topic for researchers around the world [18–21].

The decomposition characteristics of SF6 under four typical PD types in GIE were studied based
on the DCA method [22–25], and the three-ratio method, which was similar to oil chromatographic
analysis, was proposed for the recognition of the PD type. In addition to determining the discharge
type, the discharge severity should be defined when assessing the insulation status of GIE. Parameters,
such as apparent discharge magnitude, discharge repetition rate, and discharge time interval measured
by pulse current method (PCM) are important features that characterize the discharge severity under
DC conditions. However, PCM cannot be used to diagnose discharge severity in the field due to the
multi-point grounding of real GIE. A large number of studies [22–27] reported the close relationships
between the decomposition characteristics of the SF6 gas-insulated medium and the type, energy
consumption, and development trend of PD in GIE. Therefore, the SF6 DCA method can be used to
diagnose the PD severity in DC-GIE; however, no relevant study has been conducted about this topic.

This research develops a ball-bowl electrode to simulate the free metal particle insulation defect in
DC-GIE and studies the PD characteristics of the whole process from the initial PD to the breakdown
by using the built experimental platform. Based on the PD characteristics, the PD initiated by free
metal particles is divided into three levels: mild PD, medium PD, and dangerous PD. Two kinds of
voltage in each of the above PD levels are selected for the decomposition experiments of SF6, and
the decomposed components are measured by gas chromatography/mass spectrometry (GC/MS).
A minimum-redundancy-maximum-relevance (mRMR)-based feature selection algorithm [28–33]
is used to sort the concentrations and concentration ratios of SF6 decomposed components. Back
propagation neural network (BPNN) [24,34–41] and support vector machine (SVM) [41–47] algorithms
are used to diagnose the PD severity. This research proposes the feature subset that can effectively
characterize the PD severity and serves as a foundation for using the DCA method to diagnose the
insulation faults in DC-GIE and assess its insulation status.

2. Experiment

2.1. Experimental Platform

The experimental platform of SF6 decomposition under negative DC-PD is shown in Figure 1,
which mainly includes four parts: the HVDC supply system, PD gas chamber, decomposed component
detection system, and PD signal detection system.
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Figure 1. Experimental platform of SF6 decomposition under negative DC-partial discharge (PD). 

The HVDC supply system mainly includes: voltage regulator (T1: 0–380 V), testing transformer 
(T2: 50 kVA/100 kV), HV silicon stack (Ds: 100 kV/5 A), filter capacitor (Cf: 0.2 μF), protective resistor 
(R1: 20 kΩ, R2: 20 kΩ), capacitive voltage divider (Cv, capacitance of HV arm: 500 pF, capacitance of 
low-voltage (LV) arm: 0.5 μF), and resistive voltage divider (Rv, resistance of HV arm: 220 MΩ, 
resistance of LV arm: 22 kΩ). 

The PD gas chamber is made of stainless steel, has volume of 60 L that can withstand 0.7 MPa 
gas pressure, and has a good sealing performance as shown in Figure 2. 

Figure 1. Experimental platform of SF6 decomposition under negative DC-partial discharge (PD).

The HVDC supply system mainly includes: voltage regulator (T1: 0–380 V), testing transformer
(T2: 50 kVA/100 kV), HV silicon stack (Ds: 100 kV/5 A), filter capacitor (Cf: 0.2 µF), protective resistor
(R1: 20 kΩ, R2: 20 kΩ), capacitive voltage divider (Cv, capacitance of HV arm: 500 pF, capacitance
of low-voltage (LV) arm: 0.5 µF), and resistive voltage divider (Rv, resistance of HV arm: 220 MΩ,
resistance of LV arm: 22 kΩ).
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The PD gas chamber is made of stainless steel, has volume of 60 L that can withstand 0.7 MPa gas
pressure, and has a good sealing performance as shown in Figure 2.

The decomposed component detection system uses the GC/MS (Shimadzu QP-2010Ultra,
precision: 0.01 ppm, accuracy: ±10%, Shimadzu, Kyoto, Japan) to quantitatively measure the sample
gas. The working conditions of GC/MS are as follows: injection port temperature: 220 ◦C; sample
volume: 1 mL; total flow: 16.2 mL/min; pillar flow: 1.20 mL/min; linear velocity: 28.0 cm/s; blow
flow: 3.0 mL/min; split ratio 10:1; connecter temperature: 220 ◦C; ion source: 200 ◦C; and ionization
pattern: electron impact. The external standard method is used for the quantitative indication of
SF6 decomposed components [22]. The retention time and absolute calibration factor Ki of CF4, CO2,
SO2F2, SOF2, and SO2 are shown in Table 1.
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Figure 2. Structure of PD gas chamber: 1: gas chamber; 2: High-voltage (HV) bushing; 3: HV 
conductor; 4: ball valve; 5: vacuum pressure gauge; 6: vacuum pump; 7: injection port; 8: support 
insulator; 9: ground conductor; 10: insulation defect; and 11: sampling port. 

Table 1. The retention time and absolute calibration factor Ki. 

Decomposed Components Retention Time/s Ki/10−5 R2 
CF4 4.320 2.838 0.999 
CO2 4.815 2.525 0.999 

SO2F2 5.055 2.670 0.999 
SOF2 5.425 3.575 0.999 
SO2 7.095 2.472 0.999 

In the PD signal detection system, the coupling capacitor (Ck) is used to extract the pulse 
current, and the non-inductive impedance (Zm) is used to convert this pulse current into a pulse 
voltage, which is sent to the digital storage oscilloscope (DSO, WavePro 7100XL, Lecroy, New York, 
NY, USA, analogue band: 1 GHz, sampling rate: 20 GHz, memory depth: 48 MB). This research uses 
the PD calibration circuit recommended by IEC 60270:2000 to calibrate the PD magnitude [48], and 
the calibration curve obtained is shown in Figure 3. 

Figure 2. Structure of PD gas chamber: 1: gas chamber; 2: High-voltage (HV) bushing; 3: HV conductor;
4: ball valve; 5: vacuum pressure gauge; 6: vacuum pump; 7: injection port; 8: support insulator;
9: ground conductor; 10: insulation defect; and 11: sampling port.

Table 1. The retention time and absolute calibration factor Ki.

Decomposed Components Retention Time/s Ki/10−5 R2

CF4 4.320 2.838 0.999
CO2 4.815 2.525 0.999

SO2F2 5.055 2.670 0.999
SOF2 5.425 3.575 0.999
SO2 7.095 2.472 0.999

In the PD signal detection system, the coupling capacitor (Ck) is used to extract the pulse current,
and the non-inductive impedance (Zm) is used to convert this pulse current into a pulse voltage, which
is sent to the digital storage oscilloscope (DSO, WavePro 7100XL, Lecroy, New York, NY, USA, analogue
band: 1 GHz, sampling rate: 20 GHz, memory depth: 48 MB). This research uses the PD calibration
circuit recommended by IEC 60270:2000 to calibrate the PD magnitude [48], and the calibration curve
obtained is shown in Figure 3.
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2.2. Insulation Defect Model

Many types of insulation defects might occur in DC-GIE; however, the most common defect is
free metal particles, which is metal powder that can move freely in a cavity. As shown in Figure 4,
a ball-bowl electrode, which consists of a ball electrode, a bowl electrode, and 20 aluminum balls (mass
fraction of C element: 0.88%), is developed to simulate the particle defect. The ball and bowl electrodes
form a concentric sphere structure and are made of stainless steel (mass fraction of C element: 0.10%).
The diameter of the ball electrode is 50 mm. A hollow sphere is cut to obtain the bowl electrode with a
thickness of 1.5 mm. The diameters of the hollow sphere, circular incision, and aluminum ball are 100,
90, and 3 mm, respectively.
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2.3. Experimental Method

All experiments are conducted under the same conditions: the laboratory temperature and
relative humidity are maintained at 20 ◦C and 50%, respectively. The purity of new SF6 gas is 99.9995%.
The specific experimental steps are listed as follows:

(1) The experimental platform is connected as shown in Figure 1. The absolute alcohol is used to
scrub the insulation defect model and the inner wall of the PD gas chamber. The chamber is set
aside for 1 h to completely volatize the alcohol. The defect model is placed in the gas chamber.

(2) The PD gas chamber is vacuumed and then filled with 0.3 MPa new SF6 gas. This process is
repeated several times for purification. A GE600 mirror dew-point meter is used to measure
the H2O concentration, and a GPR-1200 ppm portable oxygen analyzer is used to measure the
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O2 concentration in the chamber. The concentrations of H2O and O2 are ensured to satisfy the
industrial standard of DL/T 596-1996 [49].

(3) The voltage applied is gradually increased to the required experimental voltage. The decomposition
experiment of SF6 is conducted for 96 h under each voltage value. The SF6 decomposed
components are collected every 12 h. GC/MS is used to measure the concentrations of the
decomposed components, and DSO is used to display and store the PD signals.

3. Experimental Results

3.1. PD Severity Division

The initial PD voltage Ug of the equipment without the particle defect is 82.2 kV. After placing the
defect in the gas chamber, the initial PD voltage U0 and breakdown voltage Ub of the equipment are
27.5 and 53.8 kV, respectively. The PD experiment is conducted under the grading voltage (Figure 5) to
study the PD characteristics of the whole process when the applied voltage is increased. A total of
100 groups of PD signals are collected under each voltage value, and the PD parameters are obtained
by averaging the three repeated experiments to ensure that the experimental results are statistically
significant. Among the PD parameters, the discharge amplitude and repetition rate are two important
features that can characterize the PD severity. The average discharge magnitude in a second (Qsec,
unit: pC/s) is selected as the characteristic quantity of PD severity to comprehensively consider the
influence of these two parameters on PD development [26,27]. Qsec is calculated using Equation (1).

Qsec = Qavg × N (1)

where Qavg is the average charge of all single pulse within the measuring time (unit: pC/pulse) and N
is the PD repetition rate (unit: pulse/s).
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The change curves of three PD parameters with voltage applied are shown in Figure 6. With
increasing experimental voltage, Qsec gradually increases from about 3000 to 178,000 pC/s. This paper
divides the PD into three levels according to Qsec (region I: mild PD, region II: medium PD, and region
III: dangerous PD) as shown in Table 2. When the applied voltage is slightly higher than the initial PD
voltage (initial PD stage: from 28 to 30 kV), Qavg and N grow rapidly. If the initial PD stage is excluded
from region I, then the average growth rate of N in region II is the largest (reaching 35.58 pulse/(s·kV)),
and the average growth rate of Qavg in region III is the largest (reaching 9.99 pC/(pulse·kV)). Therefore,
the division method for PD severity is reasonable.
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Table 2. Division of PD severity.

Qsec (pC/s) U/kV Region PD Severity

0–6 × 104 28, 30, 32, 34, 36, 38 I Mild PD
6 × 104–12 × 104 40, 42, 44 II Medium PD

12 × 104–18 × 104 46, 48, 50, 52 III Dangerous PD

3.2. Analysis of SF6 Decomposed Characteristics

Considering the limitations of the experimental conditions, two kinds of voltage in each
abovementioned PD level are used for the decomposition experiment of SF6. The total concentration of
SF6 decomposed components is small when the applied voltage is less than 30 kV. Therefore, six kinds
of voltage (mild PD: 32, 36 kV; medium PD: 40, 44 kV; and dangerous PD: 48, 52 kV) are used for the
experiments, and SF6 decomposed characteristics are used to diagnose the PD severity. Experimental
results show that five stable decomposed components, namely, CF4, CO2, SO2F2, SOF2, and SO2 are
detected under each voltage value.

3.2.1. Formation Characteristics of Carbon-Containing Components

The formation process of SF6 decomposed components is shown in Figure 7 [24]. CF4 is generated
through the reaction of C atom with F atom. Under the effect of the electric field, the charged particles
hit the surface of the stainless-steel electrodes and aluminum balls to release the C atoms, as well as hit
the SF6 molecules and break six S-F bonds to generate F atoms; both processes require high-energy
collision ionization. By calculation [50], the energy of the charged particle is low when the voltage
U ≤ 36 kV [26,27]. Therefore, when the voltage U ≤ 36 kV, only a small amount of C atoms and F
atoms are generated from the collision ionization, and the CF4 concentration increases slowly with
time (Figure 8a). When the voltage U > 36 kV, the energy of the charged particle increases. Thus, the
growth rate of CF4 concentration also increases. In particular, the CF4 concentration quickly increases
after 60 h. Limited F atoms are produced within 60 h. Thus, these limited F atoms have high possibility
of reacting with metal and generate metal fluoride as compared with C atoms. This phenomenon
limits the formation of CF4 to some extent. After 60 h, the formed C atoms and F atoms continue to
accumulate, and the excess F atoms will react with the C atoms and produce CF4. Thus, the growth
rate of CF4 concentration accelerates.
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Figure 7. Formation process of SF6 decomposed components.

The C atoms react with O2 to generate CO2. As shown in Figure 8b, the CO2 concentration shows
a saturated growth trend after 60 h when the voltage U ≤ 36 kV. The C atoms in the surface of the
stainless-steel electrodes and aluminum balls are gradually inspired with time, and only high-energy
charged particles can inspire the C atoms in the deep layer. However, the energy of the charged particle
at this stage is low, which inhibits the formation of CO2. Thus, the CO2 concentration presents a
saturated growth trend. When the voltage U > 36 kV, the CO2 concentration shows an approximately
linear growth trend with time, which indicates that the charged particles at this stage can stimulate the
deeper C atoms under the surface of the stainless-steel electrodes and aluminum balls.
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No organic insulating material exists near the PD area initiated by the particle defect. Thus,
the concentration of (CF4 + CO2) can be used to characterize the amount of the carbon-containing metal
involved in the reactions. CT1 is defined to characterize the deterioration degree of carbon-containing
metal in DC-GIE, and its formula is as follows:

CT1 = C(CF4) + C(CO2) (2)

where C(CF4) and C(CO2) represent the concentrations of CF4 and CO2 (unit: ppm), respectively.
As shown in Figure 8c, when mild PD (32 and 36 kV) occurs, CT1 shows a saturated growth trend at the
end of the experiment. When medium PD (40 and 44 kV) occurs, CT1 presents an approximately linear
growth trend with time. When dangerous PD (48 and 52 kV) occurs, CT1 shows an approximately “J”
growth trend at the end of the experiment. The change curves of CT1 differ under three different PD
levels. Thus, CT1 can be associated with the PD severity.

3.2.2. Formation Characteristics of Sulfur-Containing Components

SO2F2 is mainly produced through the reaction of SF2 with O2. The average O2 concentration
on the six experiments in the gas chamber is 1080 ppm. The sum of the concentration of the
oxygen-containing components (CO2, SO2F2, SOF2, and SO2) is less than 72 ppm, which indicates
that O2 is abundant in the formation of SO2F2. Thus, the formation characteristic of SO2F2 is mainly
determined by the SF2 concentration produced. Under the effect of the electric field, the charged
particles hit the SF6 molecules and break four S-F bonds to generate SF2, which requires high-energy
collision ionization [26,51]. The energy of the charged particle is not high when the voltage U ≤ 48 kV
(Figure 9a). Therefore, the amount of the produced SF2 is small, and the SO2F2 concentration grows
slowly within 24 h. However, the SF2 formed continues to accumulate with time, and the SO2F2

concentration presents an approximately linear growth trend after 36 h. When the voltage increases to
52 kV, the SO2F2 concentration shows an approximately linear increase with time. However, when the
experimental voltage U ≤ 52 kV, with increasing voltage, the SO2F2 concentration remains less than
2 ppm, which illustrates that the SF2 generated under the PD initiated by the particle defect can only
produce a small amount of SO2F2.
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SOF2 is mainly generated through the reaction of SF4 with H2O. In the early stage of the 
experiment (t ≤ 36 h), when the voltage U ≤ 44 kV, the formation of SF4 is limited by the PD energy 
to some extent, thus the SOF2 concentration increases slowly (Figure 9b). When the voltage U > 44 
kV, the increase rate of SOF2 concentration accelerates, however, the increase rate within 12 h < t ≤ 
36 h is lower than that within t ≤ 12 h. Which can be explained by two points: (1) with the increase 
in the applied voltage, the collision ionizations intensify, thus the SF4 concentration grows rapidly; 
(2) the H2O near the PD area are gradually consumed with time, which inhibits the formation of 
SOF2 when 12 h < t ≤ 36 h. In the late stage of the experiment (t ≥ 60 h), the SF4 produced continues to 
accumulate, gradually spreads into the main gas chamber area, and reacts with the H2O in this area. 
The average H2O concentration of six experiments in the gas chamber is 313 ppm. The highest 
concentration of SOF2 in Figure 9b is 62.3 ppm. The H2O concentration is five times higher than the 
SOF2 concentration, which can satisfy the requirement for generating SOF2. Therefore, the growth 
rate of SOF2 concentration accelerates, and the SOF2 concentration shows an approximately linear 
increase with time. 

As shown in Figure 9c, the growth trend of SO2 concentration with time is similar to that of 
SOF2 concentration under the same voltage. SOF2 reacts with H2O to generate SO2 and HF. The SO2 
concentration at 96 h is 2.03 ppm under 52 kV, which is much lower than the H2O concentration 
(313 ppm) in the gas chamber. Therefore, the formation characteristic of SO2 is mainly determined 
by the produced SOF2, as in, the growth trend of SO2 concentration is similar to that of SOF2 
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Figure 9. Change of sulfur-containing components with time: (a) SO2F2; (b) SOF2; (c) SO2; and (d) CT2.

SOF2 is mainly generated through the reaction of SF4 with H2O. In the early stage of the
experiment (t ≤ 36 h), when the voltage U ≤ 44 kV, the formation of SF4 is limited by the PD
energy to some extent, thus the SOF2 concentration increases slowly (Figure 9b). When the voltage
U > 44 kV, the increase rate of SOF2 concentration accelerates, however, the increase rate within
12 h < t ≤ 36 h is lower than that within t ≤ 12 h. Which can be explained by two points: (1) with the
increase in the applied voltage, the collision ionizations intensify, thus the SF4 concentration grows
rapidly; (2) the H2O near the PD area are gradually consumed with time, which inhibits the formation
of SOF2 when 12 h < t ≤ 36 h. In the late stage of the experiment (t ≥ 60 h), the SF4 produced continues
to accumulate, gradually spreads into the main gas chamber area, and reacts with the H2O in this
area. The average H2O concentration of six experiments in the gas chamber is 313 ppm. The highest
concentration of SOF2 in Figure 9b is 62.3 ppm. The H2O concentration is five times higher than the
SOF2 concentration, which can satisfy the requirement for generating SOF2. Therefore, the growth rate
of SOF2 concentration accelerates, and the SOF2 concentration shows an approximately linear increase
with time.

As shown in Figure 9c, the growth trend of SO2 concentration with time is similar to that of
SOF2 concentration under the same voltage. SOF2 reacts with H2O to generate SO2 and HF. The SO2

concentration at 96 h is 2.03 ppm under 52 kV, which is much lower than the H2O concentration
(313 ppm) in the gas chamber. Therefore, the formation characteristic of SO2 is mainly determined by
the produced SOF2, as in, the growth trend of SO2 concentration is similar to that of SOF2 concentration.

The concentration of (SO2F2 + SOF2 + SO2) can roughly reflect the amount of SF6 gas decomposed
by the PD. Therefore, CT2 is defined to characterize the deterioration degree of SF6 gas-insulated
medium in DC-GIE, and its formula is as follows:
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CT2 = C(SO2F2) + C(SOF2) + C(SO2) (3)

where C(SO2F2), C(SOF2), and C(SO2) represent the concentrations of SO2F2, SOF2, and SO2 (unit:
ppm), respectively. As shown in Figure 9, the growth trend of CT2 with time is similar to that of SOF2

concentration under the same voltage. When the voltage applied is 52 kV, the SOF2 concentration is
nearly 30 times the SO2F2 concentration and 20 times the SO2 concentration at 96 h. Thus, the change
trend of CT2 is mainly determined by the SOF2 produced. The change curves of CT2 are different
under three different PD levels. Thus, CT2 can be associated with the PD severity.

4. PD Severity Diagnosis

The concentration ratios of SF6 decomposed components for the PD recognition in GIE are
proposed according to the three-ratio method used in oil chromatographic analysis to eliminate the
influence of the volume effect and time effect on the fault diagnosis [22–24]. These concentration ratios
have definite physical meaning but are not necessarily the optimal feature subset for PD recognition.
These ratios do not necessarily have the maximum relevance with the PD types and are possibly
relevant with each other, which will introduce redundant information to the PD recognition. And
the other concentration ratios might be advantageous for PD recognition. Furthermore, the features
applicable to the PD type recognition are not necessarily suitable for the PD severity diagnosis.
Therefore, this study selects the optimal feature subset for PD severity diagnosis based on the
minimum-redundancy-maximum-relevance (mRMR) principle.

4.1. mRMR Principle

mRMR is a feature selection method based on the mutual information. In this method, the features
are selected according to the maximum statistical dependency principle [28–33]; it finds m features
as the optimal subset with the maximum relevance to the target category and minimum redundancy
between each other from all features. Maximum relevance (max D) and minimum redundancy (min R)
are defined as follows:

maxD(S, c), D =
1
|S| ∑

xi∈S
I(xi; c) (4)

minR(S), R =
1

|S|2 ∑
xi ,xj∈S

I(xi; xj) (5)

where S is the selected feature subset; |S| is the number of features in S; I(xi; c) is the mutual
information between the feature xi and the category c; and I(xi; xj) is the mutual information between
the features xi and xj. Given two random continuous variables x and y, if their probability densities are
p(x) and p(y), respectively, and their joint probability density is p(x, y), then the mutual information
between x and y is defined as follows:

I(x; y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (6)

When x and y are random discrete variables, Equation (6) can be written as follows:

I(x; y) = ∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(7)

In summary, the mRMR-based feature selection algorithm has two principles: (1) the MID
principle, which requires the largest value of D (the mutual information between the feature and the
category) minus R (the mutual information between the features) as shown in Equation (8); and (2) the
MIQ principle, which requires the largest value of D divided by R as shown in Equation (9).



Energies 2017, 10, 1119 11 of 17

maxΦ1(D, R), Φ1 = D− R (8)

maxΦ2(D, R), Φ2 = D/R (9)

The set of all features (the number is n) is assumed as Sn, and m features (m < n) are selected from
Sn according to the mRMR principle, which form the subset of Sm. The set of the remaining features
is {Sn – Sm}. In order to obtain the subset Sm+1, another feature must be selected from {Sn – Sm} and
combined with Sm to form Sm+1, which also meets mRMR principle. Therefore, the (m + 1)-th feature
should satisfy Equation (10) or (11).

max
xi∈{Sn−Sm}

[I(xi; c)− 1
m ∑

xj∈Sm

I(xi; xj)] (10)

max
xi∈{Sn−Sm}

[mI(xi; c)/ ∑
xj∈Sm

I(xi; xj)] (11)

4.2. Feature Selection

The previous analysis showed close relationships between C(CF4), C(CO2), C(SO2F2), C(SOF2),
C(SO2), CT1, CT2, and PD severity. Therefore, the set of concentration ratios for the PD severity
diagnosis is constructed and shown in Table 3, which also provides a corresponding label for each
ratio to facilitate the subsequent analysis. The concentration ratios of SF6 decomposed components are
continuous variables. The probability density functions of these ratios must have been established
to calculate the mutual information between the concentration ratios. However, no institution has
conducted relevant statistical studies. Therefore, this study discretizes the concentration ratios [52].

Table 3. Concentration ratios for PD severity diagnosis and their corresponding labels.

Concentration Ratio Label Concentration Ratio Label Concentration Ratio Label

C(CF4)/C(CO2) 1 C(CO2)/C(SOF2) 8 C(SO2F2)/CT2 15
C(CF4)/C(SO2F2) 2 C(CO2)/C(SO2) 9 C(SOF2)/C(SO2) 16
C(CF4)/C(SOF2) 3 C(CO2)/CT1 10 C(SOF2)/CT1 17
C(CF4)/C(SO2) 4 C(CO2)/CT2 11 C(SOF2)/CT2 18

C(CF4)/CT1 5 C(SO2F2)/C(SOF2) 12 C(SO2)/CT1 19
C(CF4)/CT2 6 C(SO2F2)/C(SO2) 13 C(SO2)/CT2 20

C(CO2)/C(SO2F2) 7 C(SO2F2)/CT1 14 CT1/CT2 21

x and y are assumed to be two concentration ratio vectors, and the number of the elements in x
and y are both N. First, the elements in x are sorted in ascending order by value, and the value range of
the elements in x is [xmin, xmax]. This range is subsequently divided into Nx subintervals on average.
If the number of the elements in the i-th subinterval is nx(i), the probability of the elements in x falling
within the i-th subinterval is nx(i)/N. Similarly, the probability of the elements in y falling within
the j-th subinterval is ny(j)/N, where ny(j) is the number of the elements in y falling within the j-th
subinterval. If the number of the elements in x falling within the i-th subinterval and the corresponding
elements in y falling within the j-th subinterval is nxy(i, j), then the probability of that is nxy(i, j)/N.
Therefore, the mutual information between x and y can be written as follows:

I(x; y) =
Nx

∑
i=1

Ny

∑
j=1

nxy(i, j)
N

log
Nnxy(i, j)
nx(i)ny(j)

(12)

where Ny is the number of the subintervals of vector y. If the value of nx(i), ny(j), or nxy(i, j) is zero,

then the value of log Nnxy(i,j)
nx(i)ny(j) is also denoted as zero.
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If the concentration ratios of SF6 decomposed components will be used to diagnose the PD severity
in DC-GIE, then the influence of PD time on these ratios must be small. Even if insulation defects
are found in DC-GIE, the concentrations of decomposed components are basically stabilized after a
long run. Thus, the concentration ratios are unlikely to include large fluctuations with time. Similar
to the first two ratios in Table 3, almost all of the 21 ratios in the table stabilize after 60 h (Figure 10).
Therefore, the data of concentration ratios after 60 h are used to diagnose the PD severity.
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The feature sorting of the concentrations and concentration ratios of SF6 decomposed components
for the PD severity diagnosis is conducted based on the principles of MID and MIQ, respectively.
The feature order is shown in Table 4, and the concentration ratios in the table are indicated by
their corresponding labels. The first two features, namely, CF4 and SOF2, of the concentrations are
the same, and the first four features, namely, C(CO2)/CT1, C(CF4)/C(SO2), C(CO2)/C(SOF2), and
C(CF4)/C(CO2), of the concentration ratios are also the same.

Table 4. Feature order based on mRMR principle.

Feature Order
mRMR Principle

MID MIQ

Concentration order CF4, SOF2, CO2, SO2, CT2, SO2F2, CT1 CF4, SOF2, SO2, CT2, CT1, SO2F2, CO2

Concentration ratio order 10, 4, 8, 1, 12, 5, 14, 2, 9, 3, 18, 7, 6, 11, 15,
16, 19, 21, 17, 20, 13

10, 4, 8, 1, 5, 12, 2, 3, 18, 14, 9, 6, 7, 11, 17,
15, 19, 21, 20, 16, 13

4.3. PD Severity Diagnosis

The back propagation neural network (BPNN) [24,34–41] and support vector machine (SVM) [41–47]
algorithms are used to diagnose the PD severity. The concentrations and concentration ratios of SF6

decomposed components are selected as the input data, and three PD levels (mild PD, medium PD,
and dangerous PD) are the output results. The total samples are randomly divided into six equal
parts, five of which are used as the training samples, and the remaining one is used as the test sample.
The diagnosis results are shown in Figure 11, and the prediction accuracy is the average value of
100 diagnoses. The prediction accuracy of PD severity obtained by using the concentration ratios is
higher than that obtained by using the concentrations, and the prediction accuracy obtained by using
SVM is higher than that obtained by using BPNN. Therefore, the concentration ratios are more suitable
than the concentrations as the feature quantities for PD severity diagnosis. The SVM algorithm is
complex; when the number of features is large, the computational complexity is huge. When the
concentration ratios are used to diagnose the PD severity, the prediction accuracy obtained by using
BPNN is also high, and the computational complexity of which is moderate. Therefore, we can select a
suitable algorithm to diagnose the PD severity according to the actual situation.
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(b) concentration ratio feature.

From the previous analysis, the first four concentration ratios, namely, C(CO2)/CT1,
C(CF4)/C(SO2), C(CO2)/C(SOF2), and C(CF4)/C(CO2), obtained by using the MID- and MIQ-based
feature selection algorithms, are the same. Table 5 shows the highest three prediction accuracies
and their corresponding numbers of features of each curve in Figure 11b. When using these four
concentration ratios to diagnose the PD severity, the prediction accuracy obtained is on the top three,
and the difference from the highest accuracy does not exceed 1%. Therefore, this research recommends
using C(CO2)/CT1, C(CF4)/C(SO2), C(CO2)/C(SOF2), and C(CF4)/C(CO2) to diagnose the PD severity
initiated by a free metal particle defect in DC-GIE.

Twenty-four groups of concentration ratios in this paper are used as the training samples, and
another set of experimental data is used as the test sample to verify the diagnosis performance of
PD severity by using the abovementioned four concentration ratios. The concentration ratios in the
test sample are obtained under the same experimental conditions as in this paper, and the deviations
of the concentrations of SF6 decomposed components between these two experiments are less than
10%. BPNN and SVM algorithms are used to diagnose the PD severity, and the confusion matrices
of the diagnosis results are shown in Tables 6 and 7. The prediction accuracy of PD severity by
using BPNN algorithm is: (7 + 7 + 8)/24 = 91.67%, and that obtained by using SVM algorithm is:
(8 + 7 + 8)/24 = 95.83%, which both obtain good diagnosis effects.

Table 5. The highest three prediction accuracies and their corresponding concentration ratios.

mRMR
Principle Algorithm Accuracy

Order Accuracy Number of
Features Concentration Ratio Labels

MID

BPNN
1 92.5% 6 10, 4, 8, 1, 12, 5
2 91.75% 4/14 10, 4, 8, 1/10, 4, 8, 1, 12, 5, 14, 2, 9, 3, 18, 7, 6, 11
3 - - -

SVM
1 97% 12/18 10, 4, 8, 1, 12, 5, 14, 2, 9, 3, 18, 7/10, 4, 8, 1, 12, 5,

14, 2, 9, 3, 18, 7, 6, 11, 15, 16, 19, 21
2 - - -
3 97.5% 4 10, 4, 8, 1

MIQ

BPNN
1 92.75% 14 10, 4, 8, 1, 5, 12, 2, 3, 18, 14, 9, 6, 7, 11
2 92.5% 8 10, 4, 8, 1, 5, 12, 2, 3
3 92.25% 4 10, 4, 8, 1

SVM
1 97.75% 8 10, 4, 8, 1, 5, 12, 2, 3
2 97.25% 17 10, 4, 8, 1, 5, 12, 2, 3, 18, 14, 9, 6, 7, 11, 17, 15, 19
3 96.75% 4/10 10, 4, 8, 1/10, 4, 8, 1, 5, 12, 2, 3, 18, 14
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Table 6. Confusion matrix of the diagnosis result based on the back propagation neural
network (BPNN).

Real PD Severity
Number of Samples in Each PD Level in the Diagnosis Result

Mild PD Medium PD Dangerous PD

Mild PD 7 1 0
Medium PD 0 7 1

Dangerous PD 0 0 8

Table 7. Confusion matrix of the diagnosis result based on the support vector machine (SVM).

Real PD Severity
Number of Samples in Each PD Level in the Diagnosis Result

Mild PD Medium PD Dangerous PD

Mild PD 8 0 0
Medium PD 0 7 1

Dangerous PD 0 0 8

5. Discussion

The decomposition characteristics of SF6 under different negative DC voltages are studied.
The mRMR principle is used for the feature selection for PD severity diagnosis, and the BPNN
and SVM algorithms are used to diagnose the PD severity. This research lays the foundation for
the use of DCA method to diagnose the insulation faults in DC-GIE and to assess its insulation
status. However, due to the limitations of the experimental conditions, only two kinds of voltage in
each PD level are selected for the decomposition experiment of SF6. More experiments should be
performed in the future. H2O, O2, absorbent, and gas pressure in DC-GIE will affect the decomposition
characteristics of SF6; however, these factors are not considered in this study and thus require further
research. In addition, more field data of SF6 decomposed components should be obtained to verify
and improve the performance of the proposed method in diagnosing PD severity.

6. Conclusions

• The PD characteristics of the whole process from the initial PD to the breakdown initiated by free
metal particle defect in DC-GIE are studied. The average discharge magnitude in a second Qsec is
proposed to be used to characterize the PD severity. Based on Qsec, the PD is divided into three
levels: mild PD, medium PD, and dangerous PD.

• Two kinds of voltage in each abovementioned PD level are selected for the decomposition
experiment of SF6. Experimental results show that five stable decomposed components, namely,
CF4, CO2, SO2F2, SOF2, and SO2, are detected under each voltage. The PD severity has close
relationships with C(CF4), C(CO2), C(SO2F2), C(SOF2), C(SO2), CT1, and CT2. The concentrations
and concentration ratios of SF6 decomposed components can be used to diagnose the PD severity.

• mRMR-based feature selection algorithm is used to sort the concentrations and concentration
ratios of SF6 decomposed components, and BPNN and SVM algorithms are used to diagnose the
PD severity. The prediction accuracy of PD severity obtained by using the concentration ratios is
higher than that obtained by using the concentrations, and the use of C(CO2)/CT1, C(CF4)/C(SO2),
C(CO2)/C(SOF2), and C(CF4)/C(CO2) shows good performance in diagnosing the PD severity.
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