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Abstract: Quantifying wind turbine (WT) gearbox fatigue life is a critical problem for preventive
maintenance when unsolved. This paper proposes a practical approach that uses ten minutes’ average
wind speed of Supervisory Control and Data Acquisition (SCADA) data to quantify a WT gearbox’s
gear fatigue life. Wind turbulence impacts on gearbox fatigue are studied thoroughly. Short-term
fatigue assessment for the gearbox is then performed using linear fatigue theory by considering WT
responses under external and internal excitation. The results shows that for a three stage gearbox,
the sun gear in the first stage and pinions in the 2nd and 3rd stage are the most vulnerable parts.
High mean wind speed, especially above the rated range, leads to a high risk of gearbox fatigue
damage. Increase of wind turbulence may not increase fatigue damage as long as a WT has an
instant response to external excitation. An approach of using SCADA data recorded every ten
minutes to quantify gearbox long-term damages is presented. The calculation results show that the
approach effectively presents gears’ performance degradation by quantifying their fatigue damage.
This is critical to improve WT reliability and meaningful for WT gearbox fatigue assessment theory.
The result provides useful tools for future wind farm prognostic maintenance.

Keywords: wind turbine (WT); fatigue life; gearbox; supervisory control and data acquisition
(SCADA) data

1. Introduction

The gearbox is an important mechanical component in a wind turbine (WT). Its availability and
reliability attract attention due to the ultimate long downtime if it fails. The difficult accessibility of
offshore wind farms further brings challenges to gearbox maintenance which requires an advanced
operational and maintenance strategy for WTs [1,2]. Properly scheduled corrective and preventive
maintenance both require effective WT fault detection, precise fault diagnosis and accurate prognosis
techniques. To achieve efficient wind farm maintenance and competitive wind life-cycle cost, structural
health monitoring techniques of WT system are being quickly developed through intelligent condition
monitoring technique that integrates on-line fault detection and prognosis [3]. A model-based approach
has been developed for WT gearbox fault detection [4]. Suitable methods and approaches are crucial
for WT damage detection and fatigue accumulation estimation. Related technologies such as machine
fatigue damage prognosis would greatly increase the value of condition monitoring in the drive train
of WTs [5]. Different techniques have been developed for WT gearbox prognosis, which include using
angular velocity measurements for bearing failure [6], hidden Markov models, neural networks and
particle filter methods [7].
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Currently, most WT gearbox designs are based on the ISO-6336 series [8] or IEC 61400 [9] in order
to satisfy the minimum safety factors during the design stage. The question arises as to how to quantify
WTs’ long-term fatigue life when they are operating under variable and turbulent wind conditions.
In the standards only the short-term WT gearbox fatigue is considered [10]. Models and approaches
to calculate WT gearbox long-term fatigue damage are developed based on linear fatigue theory
and wind speed statistical distribution [10,11]. The most vulnerable components of the WT gearbox
are compared and summarized to assist reliability-based maintenance [12]. The main reason for the
randomness of fatigue damage lies in the characteristics of the material, the geometric dimensions
of the test pieces, and the uncertainty of external loads [13]. Internal excitation can be considered by
a detailed rigid and flexible multi-body model of a WT drive train which is normally used to study
the internal dynamics of the mechanical transmission system [14–16]. However, external excitation of
the gearbox coming from short-term scale rapid wind speed variation which is essentially correlated
to wind turbulence effects attracts little research attention [17]. Irregular stress amplitudes of WT
gearboxes due to WTs’ response to both external and internal excitation causes further complexity
and difficulty for predicting gear damage and fatigue life. In addition, cost-effective gearbox damage
quantification relies on a realistic measurement or implementation solution to enable the calculation.

Fatigue, wear or plastic deformation are common gearbox failure modes, of which the most
common cause of gear failure is tooth bending fatigue [18]. Contact fatigue failure (pitting) and
bending fatigue failure (tooth breakage) could be two of the main gear failure reasons [19]. Bending
fatigue failure is a common failure mode in engineering and it happens when variable loads appear
act a gear which leads to fatigue stress [20]. This paper is limited on studying bending stress fatigue
analysis rather than micropitting and pitting fatigue life, that is bending stress is taken into account for
gear fatigue life prediction without considering assembly errors and geometry defects.

This paper is focused on the mechanism of a gearbox’s gear bending fatigue failure to develop a
method to predict the fatigue life with practical supervisory control and data acquisition (SCADA)
data. A dynamic model of the planetary gear system and a wind speed model that considers wind
turbulence impacts is used. Time domain short-term WT gear meshing forces under different wind
turbulence scales are obtained by a simulation model, which couples the WT model and the gearbox
dynamic model. Load cycle distribution is then assessed for fatigue damage prediction based on linear
fatigue damage theory. According to the low sampling rate characteristics of SCADA data, a practical
approach is then proposed to quantify long-term gearbox gear fatigue damage, which is derived from
the theoretical calculations and analysis results.

2. SCADA Data for Long Term Fatigue Quantification

The approach proposed in this paper to quantify WT gearbox is illustrated in Figure 1. Firstly,
short-term gearbox damage under stochastic wind speed conditions is investigated by the calculation
procedure shown in the left column in Figure 1. The short-term wind speed variation is characterized
by the mean wind speed with different turbulence scale that represents the external excitation in
the gearbox dynamics. The torque generated by the WT rotor is simulated by a fluid aerodynamic
model, which is used as input of the drive train dynamic model. Internal excitation of WT gearbox is
considered by taking varying meshing stiffness into account in calculating the time domain bending
stress amplitudes. Stress cycles are counted by a rain-flow counting algorithm. As only the stress
variation amplitudes are considered during cycle counting, Goodman corrections are adopted to
account for the stress level influence. Finally, short-term fatigue damage of gears is obtained according
to linear fatigue theory.

Secondly, a procedure of using SCADA data to quantify long-term damage of gearbox is presented.
The WT SCADA data recorded ten minute average wind speeds and also the maximum and minimum
values during this period. Accordingly wind turbulence scales within those ten minutes are calculated
based on a mathematical derivation by assuming that the wind speed distribution is in accordance
with statistics. This mathematical model is presented in Section 6. Corresponding short-term damage
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quantification results are obtained, in terms of wind speed parameters, and then further accumulated
for long-term damage quantification.
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gearbox gear fatigue damage.

Finally, a real case of using SCADA data to quantify gearbox damage is presented for a realistic
WT that had suffered a catastrophic gear failure. It provides a cost-effective solution for gearbox
damage quantification and performance monitoring from a practical point of view.

3. Wind Turbine Gearbox Stress Simulation

3.1. Wind Speed Simulation

In this paper, the external environment that a WT is subjected to refers to wind conditions only,
which effects on WT loading are calculated. Short-term wind speed is characterized by the mean wind
speed vm and the turbulence-induced wind variation vt during the statistical period, which can be
expressed as:

v(t) = vm(t) + vt(t) (1)

According to the WT cut-in and cut-out wind speed range, mean wind speeds from 4 to 25 m/s
are considered [21]. A wind speed model that considers turbulence grades of A, B and C is constructed
for a ten minutes period [17]. An improved Von Karman wind speed power spectrum model [22] is
used to build the turbulence wind which takes air flow field into consideration for a thickness of the
atmospheric boundary layer not exceeding 150 m. Accordingly, the longitudinal component of the
auto-power spectral density function is shown in Equation (2). Equation (3) is the expression of the
horizontal and vertical component of the auto-power spectral density:

f·Suu(f)
σu2 = β1

2.987ñu/a

(1 + (2πñu/a)2)
5/6 + β2

1.294ñu/a

(1 + (πñu/a)2)
5/6 F1 (2)

f·Sii(f)
σi

2 = β1
2.987(1 + (8/3)(2πñi/a)2)(ñi/a)

(1 + (4πñi/a)2)
11/6 + β2

1.294ñi/a

(1 + (πñi/a)2)
5/6 F2 (3)
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where u is longitudinal dimension; ñu and ñi is dimensionless frequency parameters; f is frequency;
a,β1,β2, F1, F2 are flow field parameters. GH Bladed software (GL Garrad Hassan, Hamburg, Germany)
was used to produce ten minute wind speed data with an improved Von Karman wind speed power
spectrum model [23].

3.2. Wind Turbine Drive Train Principle

Random wind speeds caused WT variable loads are obtained by simulation. According to
aerodynamics theory, the power that is produced by the wind can be expressed as:

Pm =
π

2
Cp ρR2v3(t) (4)

where Pm (W) is the WT output power (transmission input power); Cp is the efficiency factor; ρ
(kg/m3) is the air density; R (m) is the rotor radius; v (m/s) is wind speed.

Tm, which is the torque of main shaft, can be calculated with the following equations:

λ =
ωrR

v
(5)

Tm =
Pm

ωr
=

1
2
ρπR3v2(t)Cp/λ (6)

whereωr (rad/s) is the angular velocity of wind wheel; λ is the tip speed ratio.
Rotational speed and torque of the rotor generated under turbulence wind speeds are the input of

the gearbox dynamic model to obtain the force and moment of gear meshing.

3.3. Gearbox Dynamic Model

The WT gearbox being considered is a three-stage gearbox as shown in Figure 2. It is composed by
a planetary helical stage and two parallel helical stages. WT rotor’s mechanical torque is transmitted
through the gearbox to the generator. A three-stage gearbox dynamic model [24] is established with
the assumption of a uniform arrangement of three planet gears with the same geometrical parameters.
The mesh between gear pairs is considered as a spring with time-varying stiffness and gear damping.
The gears’ comprehensive engagement error is not considered here. A three-stage gearbox that is
being treated as a lumped mass torsional model is shown in Figure 3, in which k represents gear
meshing stiffness, c represents the meshing damping of gear pair, θ represents the angle of gear
rotation, J represents the rotational inertia of gear, and T represents the gear torque.
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M
..
q + C

.
q + Kq = F (7)

where M is the generalized mass matrix, q is the vector of the degrees of freedom, K is the varying gear
meshing stiffness matrix, C is the varying gear meshing damping matrix, F is the excitation of a gear
pair. This paper established a three-stage gearbox dynamic model based on the Lagrange formalism
equation of gear pairs with a unified coordinate system. The dynamic equations of planetary stage of
gearbox are shown below:

(Ic/r2
c + Nmp)

..
uc + kctuc + cct

.
uc + kcuuc + ccu

.
uc =

N
∑

i=1
(Fspicosαs + Frpicosαr) + Tin/rc

(Ir/r2
r )

..
ur + krtur + crt

.
ur =

N
∑

i=1
(−Frpi)

(Is/r2
s)

..
us + kstus + cst

.
us + kst(us − u1) + cst(

.
us − u1) =

N
∑

i=1
(−Fspi)

(Ipi/r2
pi)

..
upi = (Frpi − Fspi)

Fspi = kspiδspi + cspi
.
δspi

Frpi = krpiδrpi + crpi
.
δrpi

(8)

where N is the number of planet, mp is the mass of planet, Tin is the torque of planetary carrier. J, r,
u is the rotational inertia, the base circle radius and torsional displacement in the unified coordinate
respectively. Their subscribes of c, r, s and pi are referring to planet carrier, ring, sun and planet (I = 1,
2, 3) individually. kct, krt, kst, kcu are the tangential bearing stiffness of planetary carrier, ring, sun
and the torsional stiffness of planetary carrier shaft, cct, crt, cst, ccu are the tangential bearing damping
of planetary carrier, ring, sun and the torsional damping of planetary carrier shaft, krpi, crpi, Frpi,αr

are the meshing stiffness, meshing dumping, meshing force and angle of engagement between ring
and planet, kspi, cspi, Fspiαs are the meshing stiffness, meshing dumping, meshing force and angle of
engagement between sun and planet, δspi, δrpi are the projection of the displacement of the sun and the
ring in the direction of external meshing line while the planet are assumed to be immobile.

The Newmark method is used for the time integration of the dynamic equations of gearbox [25–27].
Its procedure to solve the dynamic model is listed below:

Calculate the matrix of stiffness K, dumping C and mass M for the multibody dynamics system
of gearbox.
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Set initial value of U0,
.

U0,
..
U0, ∆t,γ,σ, calculating integral constant:

γ ≥ 0.5, δ ≥ 0.25(0.5 + γ)2

a0 = 1
δ∆t2 , a1 = γ

δ∆t

a2 = 1
δ∆t , a3 = 1

2δ − 1

a1 = γ
δ − 1, a5 = ∆t

2 (γδ − 2)

a6 = ∆t(1 − γ), a7 = γ∆t

(9)

Obtain the matrix equivalent stiffness K:

K = K + a0M + C (10)

and get the Ut+∆t,
.

Ut+∆t,
..
Ut+∆t:

Qt+∆t = Qt + M(a6ut + a2
.
ut + a3

..
ut) + C(a1ut + a4

.
ut + a5

..
ut)

Kut+∆t = (LDLT)ut+∆t = Qt+∆t..
ut+∆t = a0(ut+∆t − ut)− a2

.
ut − a3

..
ut

.
ut+∆t =

.
ut + a6ut + a7

..
ut+∆t

(11)

where the ∆t = 0.1s, γ = 0.5, σ = 0.25 in this paper.

3.4. Gearbox Internal Excitation

Gearbox internal excitation is essentially due to variation of the meshing stiffness. Time-varying
gear meshing stiffness is considered and approximated in accordance with the Ishikawa method [28],
which uses Fourier series expansion and omits higher-order terms:

k = kmin + (kmax − kmin)(e − 1) +
∞
∑

i=1

kmax−kmin
iπ

[
sin 2πi

(
γ+ e − 1 − t

T
)
− sin 2πi

(
γ− t

T
)]

(12)

where kmax is the meshing stiffness with two pair of teeth, kmin is the meshing stiffness with one pair
of teeth, T is the meshing period, γ is the phase angle, e is the contact ratio.

The gear meshing damping is also time-varying which is:

c = 2ξm

√
kR2

1R2
2J1J2

R2
1J2 + R2

2J1
(13)

where ξm is the damping ratio. Its value is in the range of 0.03~0.17, k is the time-varying gear meshing
stiffness, R is the radius of base circle of gear and J is the rotational inertia of gear.

Combining the three parts of the gearbox dynamics model, the load spectrum of a single gear
can be obtained. According to ISO 6336:3-1996 [29] and GB/T3480-1997 [30], gear tooth root bending
stress is calculated as:

σF =
Ft

bmn
YFaYSaYεYβKVKFαKFβ (14)

where σF is tooth root bending stress; Ft is tangential force; b is the tooth width; mn is the modulus;
YFa , YSa is shape factor; Yε is the superposition degree modulus; Yβ is helix angle factor; KV is the
dynamic load factor; KFβ is tooth surface load factor; KFα is tangential load factor.

4. Wind Turbine Short-Term Fatigue Damage Quantification

WT gears are subjected to irregular stress which is due to its unique external condition of random
and turbulentwind. This is an irregular random process, in which the magnitude of the random
variable loads, fatigue damage estimation and service life time prediction are complex. Fatigue
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damage estimation of gears is performed by tooth root bending stress cycle counting, which essentially
assumes that failure mechanism of a gear is a cumulative process. Normally this is calculated by
Palmgren-Miner’s linear damage rule [31].

The rain-flow (RF) cycle method [32] assumes that the plasticity of materials results in fatigue
damage which can be reflected on the stress-strain hysteresis loop. The rain-flow cycle algorithm
records the amplitude and means value of the stress, so that it obtains all the information of the stress
cycle of the material. A full RF cycle [33] was defined as a stress range formed by two points which are
bounded within adjacent points of higher and lower magnitude.

The Palmgren-Miner theory is based on two assumptions: (1) the materials’ fatigue damages
under different stress levels are independent of each other; (2) the materials fatigue damage can be
linearly accumulative. Damage is calculated with Equation (15):

m

∑
1

ni

Ni
=

n1

N1
+

n2

N2
+

n3

N3
+

n4

N4
+ . . . +

nm

Nm
= D (15)

Stress cycle are counted by the rain-flow cycle method and its amplitude should be normalized to
a zero-mean stress level before applying the Palmgren-Miner theory. When the critical value D of linear
cumulative fatigue damage approaches 1, the theory predicts the material is broken. In this process, as
only the cycles with the same stress variation amplitude are counted for the full cycles, the influences
of mean stress values actually are not reflected in the rain flow counting process. To consider the
mean stress value effects, a Goodman linear equation is used to calculate equivalent loads as shown in
Equation (16) [34]:

σea =
σbσa

σb − σm
(16)

where σea is the zero-mean equivalent stress level; σb is stress limit of material; σa is the amplitude of
stress; σm is the mean stress. Using Goodman equation asymmetric stress levels are transformed into
symmetric stress (zero-mean) levels.

5. Simulation

This paper studies a WT with rated power of 1.5–2 MW. The design parameters of the WT include:
rotor diameter of 79.2 m, air density of 1.225 kg/m3, the tip speed ratio of 6.3, wind energy utilization
coefficient of 0.32. The WT configuration parameters are listed in Table 1 and the gearbox geometry
parameters are listed in Table 2. The calculation is for a WT which has failed during operation due to
broken teeth observed in the planetary stage gears.

Table 1. Wind turbine (WT) technical parameters.

Parameters Values

Cut-in Wind Speed 4 m/s
Cut-out Wind Speed 25 m/s
Rated Wind Speed 12 m/s

Hub Height 70 m
Rotor Diameter 79.2
Control Mode Pitch Control

For demonstration purposes, the time domain wind speed variation with a mean wind speed of
12 m/s and turbulence intensity of 10% generated by the GH Bladed software is shown in Figure 4.
Normalized wind speed statistical distributions for different mean wind speeds at different turbulence
scales of 10%, 20% and 30% are plotted in Figure 5. It shows that with the increase of the wind
turbulence intensity the 10 min wind speed statistical distribution covers a wider range, which
essentially presents a wider range of wind speed variation.
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Table 2. Gearbox’s geometry parameters.

Stages Parameters Planet Carrier Ring Sun Planet

Planetary stage

mass (kg) 515.4 114.1 379.7 187.6
rotational inertia 1873.9 158.32 14.7 26.06

radius of gear base circle (mm) 696 1160 232 464
Number of teeth - 145 29 58

modulus 16
angle of engagement 20

Stages Parameters Helical Gear1 Helical Gear2

Middle stage

mass (kg) 1921.3 118.3
rotational inertia 556.8 2.2

radius of gear base circle (mm) 648 162
Number of teeth 108 27

modulus 12
angle of engagement 20

Stages Parameters Helical Gear3 Helical Gear4

High speed stage

mass (kg) 701.7 44.7
rotational inertia 136 0.5

radius of gear base circle (mm) 515 78
Number of teeth 103 25

modulus 10
angle of engagement 20

Energies 2017, 10, 1084 8 of 21 

 

Table 2. Gearbox’s geometry parameters. 

Stages Parameters Planet Carrier Ring Sun Planet 

Pl
an

et
ar

y 
st

ag
e mass (kg) 515.4 114.1 379.7 187.6 

rotational inertia 1873.9 158.32 14.7 26.06 
radius of gear base circle (mm) 696 1160 232 464 

Number of teeth - 145 29 58 
modulus 16 

angle of engagement 20 
Stages Parameters Helical Gear1 Helical Gear2 

M
id

dl
e 

st
ag

e mass (kg) 1921.3 118.3 
rotational inertia 556.8 2.2 

radius of gear base circle (mm) 648 162 
Number of teeth 108 27 

modulus 12 
angle of engagement 20 

Stages Parameters Helical Gear3 Helical Gear4 

H
ig

h 
sp

ee
d 

st
ag

e mass (kg) 701.7 44.7 
rotational inertia 136 0.5 

radius of gear base circle (mm) 515 78 
Number of teeth 103 25 

modulus 10 
angle of engagement 20 

 
Figure 4. Turbulent wind speed. 

(a) (b)

0 100 200 300 400 500 600
8

9

10

11

12

13

14

15

16

Time(S)

W
in

d 
sp

ee
d(

m
/s

)

Vmean=12m/s,Iu=10%

Figure 4. Turbulent wind speed.

Energies 2017, 10, 1084 8 of 21 

 

Table 2. Gearbox’s geometry parameters. 

Stages Parameters Planet Carrier Ring Sun Planet 

Pl
an

et
ar

y 
st

ag
e mass (kg) 515.4 114.1 379.7 187.6 

rotational inertia 1873.9 158.32 14.7 26.06 
radius of gear base circle (mm) 696 1160 232 464 

Number of teeth - 145 29 58 
modulus 16 

angle of engagement 20 
Stages Parameters Helical Gear1 Helical Gear2 

M
id

dl
e 

st
ag

e mass (kg) 1921.3 118.3 
rotational inertia 556.8 2.2 

radius of gear base circle (mm) 648 162 
Number of teeth 108 27 

modulus 12 
angle of engagement 20 

Stages Parameters Helical Gear3 Helical Gear4 

H
ig

h 
sp

ee
d 

st
ag

e mass (kg) 701.7 44.7 
rotational inertia 136 0.5 

radius of gear base circle (mm) 515 78 
Number of teeth 103 25 

modulus 10 
angle of engagement 20 

 
Figure 4. Turbulent wind speed. 

(a) (b)

0 100 200 300 400 500 600
8

9

10

11

12

13

14

15

16

Time(S)

W
in

d 
sp

ee
d(

m
/s

)

Vmean=12m/s,Iu=10%

Figure 5. Cont.



Energies 2017, 10, 1084 9 of 21
Energies 2017, 10, 1084 9 of 21 

 

 
(c) 

Figure 5. Normalized wind speed distribution with different turbulence scales: (a) 10%; (b) 20%; (c) 
30%. 

With 10% wind turbulence scale, the WT aerodynamic torques of the main shaft in response to 
different external wind conditions are shown in Figure 6a,b. Figure 6a shows the torque variation of 
the WT main shaft under wind speeds from 4 to 10 m/s (under the rated wind speed range). The 
torques’ magnitudes increase with the increase of mean wind speed under this situation. Figure 6b 
shows its variation under wind speeds from 10 to 22 m/s (above the rated wind speed range). When 
the wind speed is below the rated range, the WT controls the rotational speed to maintain 
maximum output power. When the wind speed is above the rated range, the WT controls the blade 
pitch angle to maintain constant output power. Therefore, when the wind speed is above the rated 
range as shown in Figure 6a,b, the torques’ magnitudes are maintained due to the constant output 
power and rotational speed under the WT’s constant speed control mode. However, there are 
sudden drops of torque magnitudes for the high mean wind speed condition which is when the 
wind speed is above the cut-out range, as shown in Figure 6c,d. Under this situation, the WT stops 
operating. Figure 7 shows the statistical result of the main shaft torque for varying mean wind speed 
and wind turbulence intensity. It shows that when the mean wind speed is below the rated range the 
main shaft torque values increase with the increase of mean wind speed. When the wind turbulence 
intensity increases the main shaft torques’ variation magnitudes increase, while when the mean 
wind speed is above the rated range, the main shaft torques remain constant. 

 
(a) 

0 100 200 300 400 500 600
2

4

6

8

10

12

14

Time (s)

W
in

d 
Sp

ee
d 

(m
/s

)

Mean Wind Speed =4~10m/s  Iu=10%

 

 

4m/s
6m/s
8m/s
10m/s

Figure 5. Normalized wind speed distribution with different turbulence scales: (a) 10%; (b) 20%;
(c) 30%.

With 10% wind turbulence scale, the WT aerodynamic torques of the main shaft in response to
different external wind conditions are shown in Figure 6a,b. Figure 6a shows the torque variation of
the WT main shaft under wind speeds from 4 to 10 m/s (under the rated wind speed range). The
torques’ magnitudes increase with the increase of mean wind speed under this situation. Figure 6b
shows its variation under wind speeds from 10 to 22 m/s (above the rated wind speed range). When
the wind speed is below the rated range, the WT controls the rotational speed to maintain maximum
output power. When the wind speed is above the rated range, the WT controls the blade pitch angle
to maintain constant output power. Therefore, when the wind speed is above the rated range as
shown in Figure 6a,b, the torques’ magnitudes are maintained due to the constant output power and
rotational speed under the WT’s constant speed control mode. However, there are sudden drops of
torque magnitudes for the high mean wind speed condition which is when the wind speed is above
the cut-out range, as shown in Figure 6c,d. Under this situation, the WT stops operating. Figure 7
shows the statistical result of the main shaft torque for varying mean wind speed and wind turbulence
intensity. It shows that when the mean wind speed is below the rated range the main shaft torque
values increase with the increase of mean wind speed. When the wind turbulence intensity increases
the main shaft torques’ variation magnitudes increase, while when the mean wind speed is above the
rated range, the main shaft torques remain constant.

The meshing force and bending stress between the planetary gear and sun gear calculated by the
multi-body dynamics model of the gearbox are shown in Figure 8. The results of two cases are shown
individually for wind speeds below and above the rated range. It shows that due to the gear meshing
process, the meshing force exhibits obvious periodical features. The mean meshing force increases
when the wind speed is below the rated range while it remains constant when the wind speed is above
the rated range. The variation amplitude of meshing forces are higher for wind speeds above the rated
range compared to the case where the wind speed is below the rated range. Its statistical results, as
shown in Figure 9, indicate that with the increases of turbulence intensities the meshing force variation
covers a wider range at the below rated wind speed range while they exhibit a similar distribution at
above the rated wind speed range. The negative meshing forces observed in Figures 8 and 9 are due to
the force direction variation.
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Figure 6. Time domain: (a) wind speed with mean value = 4–10 m/s, Iu = 10%; (b) corresponding
torque of main shaft; (c) wind speed with mean value = 12–22 m/s, Iu = 10%; (d) corresponding torque
of main shaft.
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Figure 8. The meshing force between planetary gear and sun gear: (a) is for wind speed of 4 and 8 m/s;
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Figure 9. Distribution of meshing forces between planetary gear and sun gear for mean wind speeds
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The calculated bending stress of the sun gear is shown in Figure 10. This bending stress shows a
similar variation of meshing force as observed in Figure 9.
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Figure 10. Bending stress of sun gear for wind speeds varying from 4 to 24 m/s with different
turbulence intensities: (a,b) 10%; (c,d) 20%; (e,f) 30%.

Figure 11 shows the rain-flow counting results of mean wind speeds of 8 and 12 m/s. It shows
that for mean wind speeds of 8 and 12 m/s the mean and amplitude of the bending stress between the
planetary gear and sun gear are both in the range of 0–300 MPa. Bending stress is the main cause of
gearbox fatigue damage.
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Figure 11. The bending stress between planetary gear and sun gear of 8 m/s with different turbulence
intensities: (a) 10%; (b) 20%; (c) 30% and that of 12 m/s with different turbulence intensities: (d) 10%;
(e) 20% and (f) 30%.

Figure 12 shows the probability of the sun gear’s bending stress amplitude after Goodman
correction. It shows that the probability of large bending stress amplitudes decrease with the increase
of wind turbulence intensities. With the increase of mean wind speed (v = 12 m/s) an increase of
probability of the large bending stress amplitudes is observed.
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Figure 12. Probability of sun gear bending stress amplitude after Goodman correction.

Figure 13 shows the calculated result of gearbox fatigue damage under stochastic external
excitation within 10 min. In each subfigures it shows the damage quantification result for the same
turbulence scale with mean wind speeds ranging from 4 to 25 m/s. It is observed that the most
vulnerable part within a gearbox is the sun gear, which shows greater damage than other components
under the same conditions. For the second and third stages of a WT gearbox, the pinions are more
vulnerable than gears. The results show significant differences in short-term fatigue damage at different
gearbox stages for the case of mean wind speeds above 10 m/s in 10 min. The fatigue damage of
different gearbox stages increases with the increase of wind turbulence scale while their tendencies are
similar. A sharp increase of damage occurs when the wind speeds are above the rated range, which is
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due to the increased probability of the bending stress amplitude (in Figure 12) which comes from large
bending stress variation amplitude (in Figure 10).Energies 2017, 10, 1084 15 of 21 
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Figure 13. Fatigue damage of different gears under different mean wind speeds and the same
turbulence scale: (a) Iu = 10%; (b) Iu = 20%; and (c) Iu = 30%.

The sun gear damage is larger than that of the other parts, which is due to its large torque as a
result of the low rotational speed compared to the gears at High Speed Intermidiate Stage (HSIS) and
High Speed Stage (HSS). Therefore the force in the planetary stage is larger than in the other parts.
There are also three contact points in a sun gear (contacts with the three planetary gears), therefore it
has a higher damage risk than the planetary gears. To further investigate sun gear fatigue damage
variation tendency under different external environments, Figure 14 shows the calculation result for a
sun gear when the mean wind speeds range from 4 m/s to 25 m/s and with turbulences changing
from 10% to 30%. It is observed that when the mean wind speed is above 13 m/s, the fatigue damage
increases quickly compared to the case of wind speed below the rated range. The magnitude of the
fatigue damage is maintained for wind speeds above 13 m/s. and the damage starts to decrease when
the mean wind speed is approaching 25 m/s. The damage variation tendencies for different turbulent
scales are observed to be similar.
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Figure 14. Fatigue damage of a sun gear.

From Figure 14, it is also observed that damages to the sun gear due to wind speeds with 30%
turbulence intensity are lower compared to the cases with 10% and 20% turbulence intensity. The
reason for this can be explained by Figures 11 and 12. Wind turbulences of 10% or 20% at wind
speeds above the rated range cause a high probability of large mean bending stress and also large
bending stress amplitude. These lead to further high stress cycles of large bending stress amplitude
after Goodman correction, which results in significant damage to the gear, while for the case of wind
speeds with 30% wind turbulence, the probability of appearance of large bending stress amplitudes is
low which is due to the WT shutting down because the wind speeds are out of the operational range,
that is either lower than the cut-in wind speed or higher than the cut-out wind speed. Essentially high
bending stresses amplitude have more significant impact on fatigue damage than low bending stress
amplitude. Therefore, 10% or 20% wind turbulences lead to higher sun gear damage than 30% wind
turbulence. However, it should be pointed out that the result obtained here is by assuming that the WT
has an instantaneous response to external excitation (wind speed variation). Lags in response of WT to
transient wind speed variations may potentially expose the machine to high amplitude transient loads
or bending stresses that may increase its damage risk. This transient effect is not considered in this
paper and is a topic that may be worthy of future research.

6. Using SCADA Data for Long Term Damage Quantification

As shown in the previous sections, short-term damage is calculated by defining an average wind
speed and turbulence intensity and simulation of gearbox dynamics. WT SCADA data is characterized
by its low data sampling rates whereby only the average wind speed and the maximum, and minimum
wind speed in ten minutes are recoded. Therefore, a statistical method is used to estimate the standard
deviation of ten minutes’ wind speed and then the turbulence intensity. The equation below is
used [35]:

σu =

√
(vmax + vmin − 2vmean)

2 + (vmax − vmin)
2

12
(17)

I =
σu

U
(18)

Wind speed data within the ten minutes being considered are taken as a sample data set with
known mean, maximum and minimum values to derive the standard variation. Equation (17) is
derived by transforming the median wind speed into mean wind speed referring to the formula
given in [32]. Therefore, mean wind speed and turbulence intensity are two necessary parameters for
short term gearbox damage prediction, which can be calculated as shown in the previous sections.
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Long-term damages are quantified by summing up subsequent 10 min short-term damages which is
illustrated in Figure 15.
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The gearbox being analyzed is a WT three stage gearbox. It suffered a catastrophic failure on the
sun gear of the planetary stage. The parallel stage showed no obvious damage. The failure is shown
in Figure 16. Nearly all the teeth of the sun gear are broken. In some areas, an obvious fatigue stress
zone is observed, which is highlighted in the figure. SCADA data from this gearbox is extracted for
fatigue analysis.
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Although the SCADA data used here was not recorded from the first date when the WT was
operating, the cumulative damage calculation is still validated as linear damage theory assumes that
fatigue damage due to different stress levels are independent of each other and it can be linearly
accumulated. The nine months SCADA data recorded before the WT failed are divided into three
sections. Each section contains three months of SCADA data, which are further used to calculate the WT
fatigue damage. The wind speed data are analyzed and shown in Figure 17. The short-term damage
of each ten minute period is indexed by the mean wind speed and the calculated wind turbulence
intensities within this period. The corresponding wind data statistical results are shown in Table 3 and
in Figure 17. Table 3 shows the frequency of the mean wind speed exceeding 10 m/s and the turbulence
intensity larger than 15% in subsequent period intervals before failure. The accumulative fatigue
damage of the three section periods for different components of a gearbox are shown in Figure 18.
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Table 3. Wind speed data of SCADA analysis.

Mean Wind Speed &
Turbulence Intensity

June 2006–September
2006

September
2006–December 2006

December
2006–March 2007

Vmean ≥ 10 m/s 2481 6118 7428
Iu ≥ 15% 9078 10,175 11,121
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Figure 18. The accumulative fatigue damage of three months at different periods.

Comparing the fatigue damage of different components, it shows that the sun gear damage is
greater than that of the other components. For the second and third stages of the gearbox, their pinions
are more vulnerable than gears. This agrees with the conclusion obtained in the short-term damage
calculation. Comparing the damages accumulated for the three periods, the components’ damages
in the latest three months are larger than that in the other two periods. The smallest damages are
observed for the earliest three months periods (nine months before). The damage may be due to the
difference of the wind speed and turbulence scale distribution as shown in Figure 16.

High occurrence probability of high mean wind speed (≥10 m/s) is observed for the turbulence
scale of 10% and 20% during the three (December 2006–March 2007) and six (September 2006–December
2006) months before period. According to the short-term damage calculation results when the mean
wind speed is above 10 m/s the damage to the gearbox increases significantly. This leads to the high
damage estimated for the two periods. In addition, the turbulence intensities are also increasing, which
further causes serious damages to the gearbox. As observed in Figure 18, the accumulative fatigue
damage of the sun gear for the latest three months period is higher than 0.1. The total cumulative
damage of nine months reached 0.2, which increases the gearbox failure probability. As the SCADA
data used here is not recorded from the first date when the WT was operating, the cumulative damage
value is lower than 1, but the trend shows significant damage during the six and three months before
failure, which accounts for 20% of the whole service life.

7. Conclusions

A long-term fatigue damage assessment method of WTs based on practical SCADA data is
developed in this paper. Short-term fatigue damage of WT gearboxes which considers the impact of
turbulence is firstly investigated. The main shaft mechanical torques under turbulent wind speeds as
external excitations are obtained for gear mechanics. A three-stage gearbox multibody dynamic model
which considers time-varying meshing stiffness is established to study the gears’ stress dynamics.
Gear stress cycle distributions and fatigue damages are then evaluated by a rain-flow counting method
and Palmgren-Miner theory. To consider the impacts of mean stress level the Goodman linear equation
is used to revise the stresses S-N curve. A long-term fatigue damage quantification approach using
SCADA data is finally proposed. By referring to the mean, maximum and minimum wind speeds in
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the SCADA data, wind turbulence intensities are calculated for each 10 min time interval. Then fatigue
damage is accumulated subsequently for long-term damage quantification.

The quantification results indicate that for the current design, the most vulnerable components
of WT gearbox are the sun gears. For the parallel stages, pinion damages are higher than those of
gears. Special consideration to protect or avoid fatigue damage of sun gears and pinions should be
carried out during the design stage. WT gearboxes show different sensitivity to different mean wind
speeds. Higher damage should be expected when the WT is operating under wind conditions that
being with mean wind speed above 10 m/s. Although with low data sampling rate, by assuming
that wind speed distribution obey a statistical law SCADA data can be used to quantify gearbox
long-term fatigue damage. The analysis result of nine months of SCADA data shows a prominent
gearbox damage tendency, which can be used for WT gearbox monitoring. The approach is capable
of effectively presenting the performance degradation of gearboxes’ different components due to
wind speed variation. The accuracy of this method is determined by the short-term fatigue damage
calculation which is affected by the variation of material/structural parameters and random external
excitation situations. Further validation and increased sample cases will be helpful to improve the
accuracy of this approach. In any case, the quantification approach proposed here provides a useful
tool for wind farm maintenance prognosis.
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