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Abstract: A design problem is usually solvable in different ways or by design alternatives. In this
work, the term “concept” is used to refer to the design alternatives. Additionally, it is quite common
that a design problem has to satisfy conflicting objectives. In these cases, the design problem can be
formulated as a multiobjective optimization problem (MOP). One of the aims of this work was to
show how to combine multiobjective requirements with concepts’ comparisons, in order to attain a
satisfactory design. The second aim of this work was to take advantage of this methodology to obtain
a battery model that described the dynamic behavior of the main electrical variables. Two objectives
related to the model accuracy during the charge and discharge processes were used. In the final
model selection, three different concepts were compared. These concepts differed in the complexity
of their model structure. More complex models usually provide a good approximation of the process
when identification data are used, but the approximation could be worse when validation data are
applied. In this article, it is shown that a model with an intermediate complexity supplies a good
approximation for both identification and validation data sets.
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1. Introduction

Many technical problems have different possible solutions and it is not always obvious which
one is the best. In the literatures [1,2], these viable solutions are called “concepts”. In this context, a
multiobjective optimization approach can help designers with the decision-making process. As an
example of an application of this methodology, this work explored the development and tuning of a
dynamic model for an electric battery. When it comes to finding a range of feasible models, different
techniques can be applied [3]. For instance, the model can be built by using a fuzzy approach [4], neural
networks [5], first principles [6], etc. Each alternative may have its advantage or different degrees
of approximation, depending on the scenario. Proposing concepts allows us to compare different
model structures, and to choose the best one according to the designer preferences. For the designer,
a framework where all the alternatives can be directly compared supplies valuable information for
determining the final solution. A natural framework is the multiobjective optimization approach.
Each concept has to satisfy conflicting design objectives, and it is in relation to these objectives that
they have to be compared.

A multiobjective optimization problem (MOP) [7–9] deals with multiple design objectives,
optimizing all of them simultaneously [10]. The solution to these types of problems is not unique.
In fact, there is a set of optimal solutions, named the Pareto set, [11], and each solution of this set has a
different trade-off between the design objectives. When these solutions are represented in the space of
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objectives, they are collectively known as the Pareto front. Normally, it is not possible to find a single
solution to optimize all the design objectives simultaneously, so the final solution must be selected
from this set of optimal solutions by using a posteriori designer preferences [12].

Therefore, a multiobjective approach provides the possibility to compare and analyze the
performance of different concepts against the selected objectives simultaneously [13,14]. In this
way, we can obtain different Pareto fronts (one for each concept), in order to decide which one is the
most convenient solution for the designer. In a traditional MOP, we can choose a solution from the
Pareto front. By introducing concepts, it is possible to compare totally different types of solutions that
share the same objectives, and to choose among them.

In this work, the battery of an electric vehicle prototype was modeled. The battery provided the
energy, and its performance had a significant effect on the electrical behavior of the vehicle. The vehicle
contained batteries of a lead acid gel type (Haze HZY12-33, 12V).

Many types of battery models have been presented so far in the literature: models based on first
principles [6], simple [15] and complex models [16], linear and nonlinear models [17], models based
on fuzzy logic [18] and on neural networks [19], and generic models [20]. A good battery model for a
vehicle should describe the charge process as well as the discharge process. Thus, in this paper, both
dynamics were integrated into a single model.

For control design and energy management purposes, it is not necessary to increase a model’s
complexity excessively. After a certain degree of complexity, the improvement in performance is
negligible. Consequently, it is interesting to analyze the performance improvement when adding
complexity in a model [17,21]. We believed that the use of a multiobjective approach to compare
concepts could be very helpful to analyze the trade-off between complexity and performance for
different battery model structures.

The following is a brief outline of the research methodology followed in this study. First, a series
of tests were carried out, in order to identify the battery behavior during its charging and discharging
at several currents (within the range of more usual currents). Secondly, three different battery model
structures were proposed as possible solutions. These three structures differed in complexity. For each
structure, it is highlighted which parameters had to be adjusted. Then, this adjustment (for each
structure) was performed by solving a MOP, with two objectives to minimize at the same time. Both of
these measured the model performance, but in two different state of charge (SOC) intervals. Finally,
an analysis of the Pareto fronts obtained for each of the three battery model structures enabled us to
compare them.

Additionally, in order to give some degree of robustness, the results from the validation process
were also taken into account in the comparison. This supplied valuable information about the
performance degradation for each concept. All this information was very useful for making the
decision about which structure was the most suitable, and which adjustment of the parameters was
finally chosen.

The article is structured as follows. In Section 2, the experimental tests for identification are
presented. In Section 3, the battery model structures are defined. Section 4 presents the MOP for the
model identification. In Section 5, the results are shown. Finally, the conclusions are commented on.

2. Experimental Tests

In this work, a lead acid gel type battery (Haze HZY12-33, 12V) was used. In order to identify
the model parameters, it was necessary to do a set of experimental tests. Three discharge tests, at
low Il , medium Im and high Ih currents, were performed. These three currents were taken from
the manufacturer data sheet. They corresponded to the currents that discharged the battery in 20 h
(Il = 1.57 A, used in test 1; see Figure 1), 2 h (Im = 10.2 A, used in test 2; see Figure 2) and 0.5 h
(Ih = 29.6 A, used in test 3; see Figure 3).
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In addition, two charge tests, at two different currents, were carried out. These charge currents
were Ic1 = −2 A, used in test 4 (see Figure 4), and Ic2 = −4 A, for test 5 (see Figure 5). All these tests
(tests 1 to 5) were used in the identification process of the models.

In the discharge tests, the current extracted from the battery was a square signal. The result was
a repetitive sequence composed of discharge zones (DZs; where a constant current was extracted
from the battery until the capacity at that current fell by 10%), followed by rest zones (RZs; 2 h), as
is shown in Figure 1 [16,22,23]. The RZs were used to know the open circuit voltage of the battery at
different SOCs.

In the charge tests, a constant current was applied to the battery until its voltage reached 13.7 V
(manufacturer’s recommendation), as is shown in Figure 4. Next, the current was turned off, and the
battery rested to the end of the test. In this way, we charged the battery up to approximately 90%. As a
result, these tests also had two different zones, the charge zone (CZ) and the RZ.

Moreover, based on the evolution of the battery SOC during each test, three additional zones are
differentiated in the figures: ZoneLSOC, ZoneMSOC and ZoneHSOC. These indicate when the battery
capacity at the required current was low (below 20%), medium (between 20% and 80%) or high (above
80%). These SOC zones serve to discriminate between the performance of the model in the most
common zones of work (ZoneMSOC) and the least common (ZoneLSOC and ZoneHSOC). This helped us
to define the objectives of the MOP in Section 4.2.

After observing the experimental tests, we noticed some details related to the battery behavior
that we wanted to take into account in the dynamic model of the battery. First, when a discharge
current was applied, a voltage drop occurred, and the voltage drop/current ratio depended on the
SOC and the current. Second, the slope of the voltage drop in the DZ also depended on the SOC and
the current.
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Figure 1. Battery discharge response in test 1 (I = Il = 1.57 A). Rest zones (RZs) correspond to time
intervals when the current was zero, and discharge zones (DZs) are the remaining time intervals
(discharge times). ZoneHSOC, ZoneMSOC and ZoneLSOC are the zones at high, medium and low
SOCs, respectively.
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Figure 2. Battery discharge response in test 2 (I = Im = 10.2 A).

11.5

12

12.5

13

V
o

lt
a

g
e

 (
V

)

0 1 2 3 4 5 6 7

Time (s) ×10
4

0

15

30

C
u

rr
e

n
t 

(A
)

Figure 3. Battery discharge response in test 3 (I = Ih = 29.6 A).
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Figure 4. Battery charge response in test 4 (I = Ic1 = −2 A). RZ corresponds to the time interval when
the current was zero, and CZ (charge zone) is the remaining time interval (charge time). ZoneHSOC,
ZoneMSOC and ZoneLSOC are the zones at high, medium and low SOCs, respectively.
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Figure 5. Battery charge response in test 5 (I = Ic2 = −4 A).

3. Dynamic Models of the Battery

This section presents three different structures of the battery model. Each one represents a concept
(see Figure 6). Table 1 shows all the parameters used in these models. Structure (a) is the complete
model and the first concept (C1). Structure (b) is the intermediate model (second concept, C2), and it is
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a simplification of the complete model. The simple model (third concept, C3) is structure (c), and it is a
simplification of the intermediate model.

Em

R1c

R1

R2c

R2

Ca Cb

R0

Vm Em

R0

VmEm

R1c

R1

Ca

R0

Vma) b) c)

Figure 6. Battery model structures: (a) complete model (C1); (b) intermediate model (C2);
and (c) simple model (C3).

Table 1. Table of symbols. The parameters in bold are the estimated parameters.

Parameter Description Value Unit

I Battery current (input) - A
Tb Battery temperature (input) - ◦C

Em0 Open-circuit voltage at full charge 13.1 V
Ke Constant, which depends on Kc

e, Kl
e, Km

e and Kh
e - V/◦C

Kc Constant 1.24 -
C∗0 No-load capacity at 0 ◦C 25.62 Ah
δ Constant 0.64 -
ε Constant 0.34 -

Inom Nominal battery current 1.57 A
Tf Electrolyte freezing temperature −40 ◦C
R0 Resistor, whose value depends on Rl

00, Rm
00, Rh

00, Al
0, Am

0 and Ah
0 - Ω

R1 First RC resistor, whose value depends on R11, R12, R13, R14, R15 and R16 - Ω
R1c First RC resistor, whose value depends on R17 and R18 - Ω
R2 Second RC resistor, whose value depends on R21, R22 and R23 - Ω
R2c Resistor of the second RC circuit - Ω
Ca First RC capacitor - F
Cb Second RC capacitor - F
Il When I ≤ Il & I > 0, this is considered a low current 1.57 A
Im When I ≤ Im & I > Il , this is considered a medium current 10.2 A
Ih When I ≤ Ih & I > Im, this is considered a high current 29.6 A
Ic1 First charge current −2 A
Ic2 Second charge current −4 A

SOCverylow When SOC ≤ SOCverylow, this is considered a very low SOC 20 %
SOClow When SOC ≤ SOClow & SOC > SOCverylow: low SOC 37.5 %

SOCmedium When SOC ≤ SOCmedium & SOC > SOClow: medium SOC 55 %
SOChigh When SOC ≤ SOChigh & SOC > SOCmedium: high SOC 90 %

3.1. Complete Model

In this model (Figure 6, structure (a)), the battery voltage Vm is the output, whose dynamic
behavior depended on the initial SOC, the temperature (Tb) and the current (I). The model had a
voltage source, five resistors and two capacitors. This model did not include the losses that occurred at
the end of the battery charge (SOC near 100%), as it was not considered to be a relevant situation and
its inclusion would only have added unnecessary complexity to the model.
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3.1.1. Open Circuit Voltage

The open circuit voltage of the model Em is defined by Equation (1) [24,25]:

Em = Em0 − Ke(273 + Tb)(1− SOC) (1)

where Em0 is the open circuit voltage when the battery was fully charged, Tb is the temperature of
the battery in ◦C, SOC is the state of charge of the battery, and Ke (see Equation (2) and Figure 7) is a
parameter that depends on the current, as it was observed in the experimental tests of the previous
section. This parameter could be identified for the currents used in the identification tests. Between
them, a linear interpolation was carried out, which, as can be seen from the validation test, produced
good results.
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Figure 7. Graphical representation of the parameter Ke. Ic1 and Ic2 are charge currents (negative values)
and Il , Im and Ih (positive values) are discharge currents used in the identification process.

Ke =



Kh
e if I > Ih

Kh
e−Km

e
Ih−Im

(I − Im) + Km
e if I > Im and I ≤ Ih

Km
e −Kl

e
Im−Il

(I − Il) + Kl
e if I > Il and I ≤ Im

Kl
e−Kc

e
Il

(I) + Kc
e if I > 0 and I ≤ Il

Kc
e if I ≤ 0

(2)

where I is the current of the battery; Ih, Im and Il are the high, medium and low currents, respectively;
and Kh

e , Km
e , Kl

e and Kc
e are estimated parameters.

3.1.2. State of Charge

The SOC is a vital part for the operation of a battery model. The SOC indicates the capacity
available in the battery. The capacity available C(I, Tb) depends on the discharge currents, and is
modeled as [24,25]:

C(I, Tb) =
KcC∗0

1 + (Kc − 1)( I
Inom

)δ
(1 +

Tb
Tf

)ε (3)

where Kc, δ and ε are estimated parameters; C∗0 is the capacity of the battery at 0 ◦C; Inom is the nominal
current; and Tf is the electrolyte freezing temperature. Therefore, the SOC of the battery [24,25] (in Ah)
is defined as follows:

SOC = 1−
∫ I

3600 C(0, Tb)
(4)
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The values for C∗0 , ε, Kc and δ were taken from the manufacturer’s data sheet.

3.1.3. Resistance R0

The instantaneous voltage drop, caused by changes in the current, is modeled through the
resistance R0 [24,25]. As we saw in the experimental tests in the previous section, this voltage drop
depends on the SOC and the current. Therefore, in order to model this resistance, the following
equation is used:

R0 = R00[1 + A0(1− SOC)] (5)

where R00 and A0 (see Equations (6) and (7), and Figures 8 and 9) are parameters that depend on
the current.
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Figure 8. Graphical representation of R00.

R00 =


Rh

00 if I > Ih
Rh

00−Rm
00

Ih−Im
(I − Im) + Rm

00 if I > Im and I < Ih
Rm

00−Rl
00

Im−Il
(I − Il) + Rl

00 if I > Il and I < Im

Rl
00 if I ≤ Il

(6)
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Figure 9. Graphical representation of A0.
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A0 =


Ah

0 if I > Ih
Ah

0−Am
0

Ih−Im
(I − Im) + Am

0 if I > Im and I ≤ Ih
Am

0 −Al
0

Im−Il
(I − Il) + Al

0 if I > Il and I ≤ Im

Al
0 if I ≤ Il

(7)

where Rh
00, Rm

00, Rl
00, Ah

0, Am
0 and Al

0 are estimated parameters. These parameters could be identified
for the currents used in the experimental tests. Again, between these values, a linear interpolation was
carried out, which produced good results in the validation test. (An initial test showed a significant
performance degradation when a linear regression was used for the parameters Ke, R00 and A0,
in comparison with a piecewise linear approximation proposed.) In order to limit the number of
parameters, in the charge process (currents Ic1 and Ic2), both R00 and A0 were set to the values of low
currents RI

00 and AI
0, respectively. This selection supplied an adequate approximation.

3.1.4. First RC Circuit (R1, R1c and Ca)

The RC circuit formed by the resistances R1 and R1c and the capacitor Ca incorporated the main
dynamics of the model. Resistance R1 influenced the model response only during the discharge
process, whereas R1c influenced only in the charge process. It has been observed experimentally that
the value of R1 depends on the current and the SOC. Therefore, R1 is defined in Table 2 (using a
bilinear interpolation).

Table 2. Lookup table for R1. R11, R12, R13, R14, R15 and R16 are estimated parameters.

SOC

High Very Low

High Current, Ih R11 R12
Medium Current, Im R13 R14

Low Current, Il R15 R16

On the other hand, it has been observed experimentally that the value of R1c depends on the
current, but not on the SOC. Thus, R1c is defined by Equation (8):

R1c = R17 I + R18 (8)

where R17 and R18 are estimated parameters. Finally, the value of the capacitor Ca is also an
estimated parameter.

3.1.5. Second RC Circuit (R2, R2c and Cb)

This part of the model aimed at adjusting the behavior of the battery when it was near the end of
its capacity, having no influence in any other case. This capacity depended on the discharge current
(see Equation (3)). According to the data sheet, it was not possible to reach a low or very low SOC at a
high discharge current. Moreover, it was not possible to reach a very low SOC at a medium current.
R2 was defined by a bilinear interpolation (see Table 3). The resistance R2c and the capacitor Cb were
estimated constants.
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Table 3. Lookup table for R2. R21, R22 and R23 are estimated parameters.

SOC

High Medium Low Very Low

High Current 0 R21 - -
Medium Current 0 0 R22 -

Low Current 0 0 0 R23

For convenience, the estimated parameters were separated into three different vectors (θ1, θ2 and
θ3). θ1 contained the parameters to be estimated in the three proposed models; θ2, only those that
were common to both the complete and intermediate models; and θ3 consisted of the parameters to be
estimated only in the complete model.

θ1 = (Kh
e , Km

e , Kl
e, Kc

e , Rh
00, Rm

00, Rl
00, Ah

0, Am
0 , Al

0) (9)

θ2 = (R11, R12, R13, R14, R15, R16, R17, R18, Ca) (10)

θ3 = (R21, R22, R23, R2c, Cb) (11)

3.2. Intermediate Model

The intermediate model was a simplification of the complete model, which has been described
previously. This intermediate model was the same as the complete model, except that the second RC
circuit had been removed. For this reason, this model did not have the possibility to accurately adjust
the battery voltage when the battery was near the end of its capacity. This model had 19 parameters to
estimate (θ1 and θ2; see Figure 6, structure (b)).

3.3. Simple Model

The simple model was a simplification of the intermediate model, which has been described
previously. This simple model was the same as the intermediate model, except that the first RC circuit
had been removed. Thus, this model had 10 parameters to estimate (θ1; see Figure 6, structure (c)).

4. Multiobjective Optimization Problem For Electrical Model Identification

4.1. Decision Space

Three concepts have been defined; each one had a different set of parameters to identify (see
Section 3). In order to set a MOP, the objectives and the decision variables of the problem have to
be defined [26]. The decision variables of the first concept (C1) were the 24 parameters defined in
Section 3.1, which composed the vector θc1. The decision variables of the second concept (C2) were the
19 parameters defined in Section 3.2, which composed the vector θc2. Finally, the decision variables of
the third concept (C3) were the 10 parameters defined in Section 3.3, which composed the vector θc3.

θc1 = [θ1, θ2, θ3] (12)

θc2 = [θ1, θ2] (13)

θc3 = [θ1] (14)

The approximate values of some parameters were known (these were presented in Section 2).
By observing the correct operating range of the rest of the parameters, their lower and higher limits
were established. These limits are shown in Table 4.
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Table 4. Parameter search space.

θ1

Kh
e 0.004

θ1

Kh
e 0.0075

Km
e 0.0052 Km

e 0.008
Kl

e 0.0045 Kl
e 0.0075

Kc
e 0.0075 Kc

e 0.015
Rh

00 0.008 Rh
00 0.23

Rm
00 0.019 Rm

00 0.07
Rl

00 0.035 Rl
00 0.25

Ah
00 0.05 Ah

0 0.7
Am

00 0.1 Am
0 1.65

Al
00 0.35 Al

0 1.9

θ2

R11 0.0065

θ2

R11 0.0225
R12 1e-5 R12 1e-3
R13 0.01 R13 0.04
R14 1e-4 R14 0.0035
R15 0.08 R15 0.2
R16 0.008 R16 0.04
R17 −0.0065 R17 -0.045
R18 0.31 R18 0.45
Ca 750 Ca 2000

θ3

R21 1.15

θ3

R21 1.75
R22 0.022 R22 0.05
R23 0.075 R23 0.55
R2c 0.025 R2c 0.045
Cb 1.5e5 Cb 2.5e5

θc1 = [θ1, θ2, θ3] (15)

θ
c1

= [θ1, θ2, θ3] (16)

θc2 = [θ1, θ2] (17)

θ
c2

= [θ1, θ2] (18)

θc3 = [θ1] (19)

θ
c3

= [θ1] (20)

4.2. Objectives

In order to define the objectives, several aspects were considered. First, it was observed that the
battery had a non-linear behavior, which depended on the SOC. For this reason, the adjustments of
the simple and the intermediate models were expected to be less accurate than those of the complete
model. A second consideration was that batteries, in most applications, operate in the medium SOC
zone (this is typically the case in electric vehicle applications). Consequently, it seemed a reasonable
decision to define one of the objectives so that it measured the accuracy of the adjustment in that zone.
This could have had an additional, plausible consequence, namely, that the simple and intermediate
models may have been competitive enough.

From these considerations, two objectives were defined to include the conceivable specifications
of a designer. Both objectives measured the performance of the model in two different SOC intervals.
The first objective was the voltage error between the model and the experimental data in the zones
of low and high SOC, whereas the second was of the same magnitude, but in the medium SOC zone.
By comparing these two objectives, a designer could easily assess: (1) which concept worked better in
each SOC zone, and (2) which solution, within a concept, worked better in each SOC zone. Moreover,
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this methodology would enable the designer to evaluate how the complexity of the model structure
affected the performance in the different SOC zones.

The first objective (J1, Equation (23)) evaluated the sum of differences between the Vm of the model
and the battery voltage measurement at high and low SOCs in each test (ZHL), that is to say, zones
ZoneHSOC and ZoneLSOC (tests 1–5). The errors were normalized by dividing them by the duration of
each zone, which provided an average error for the DZ or CZ and RZ time intervals. JD

ZHL (discharge
tests) and JC

ZHL (charge tests) were the result of a weighted sum of both averages. Finally, J1 (in volts)
was calculated as an average of JD

ZHL and JC
ZHL for all of the experimental tests. As a result, all the

intervals had the same relative importance.

JD
ZHL(testi) = 0.5 ∑

DZ∈ZHL

|Vm −Vtesti |
durationDZ

+ 0.5 ∑
RZ∈ZHL

|Vm −Vtesti |
durationRZ

(21)

JC
ZHL(testi) = 0.5 ∑

CZ∈ZHL

|Vm −Vtesti |
durationCZ

+ 0.5 ∑
RZ∈ZHL

|Vm −Vtesti |
durationRZ

(22)

J1 =
∑3

i=1 JD
ZHL(testi) + ∑5

i=4 JC
ZHL(testi)

Number o f Tests
(23)

The second objective J2 (in V) was defined by Equation (26) in the same way as J1, but it only took into
account errors (in V) at the medium SOC in each test (ZM): ZoneMSOC (tests 1 – 5). JD

ZM and JC
ZM are

the errors that occurred in the discharge and charge tests, respectively, both in ZM areas.

JD
ZM(testi) = 0.5 ∑

DZ∈ZM

|Vm −Vtesti |
durationCZ

+ 0.5 ∑
RZ∈ZM

|Vm −Vtesti |
durationRZ

(24)

JC
ZM(testi) = 0.5 ∑

CZ∈ZM

|Vm −Vtesti |
durationCZ

+ 0.5 ∑
RZ∈ZM

|Vm −Vtesti |
durationRZ

(25)

J2 =
∑3

i=1 JD
ZM(testi) + ∑5

i=4 JC
ZM(testi)

Number o f Tests
(26)

4.3. The Multiobjective Optimization Problem

Three different concepts [13] (C1, C2 and C3) were considered when J1 and J2 were evaluated. The
optimization problem for each concept was defined as:

C1 : min
θ

c1≤θc1≤θc1
(J1, J2) (27)

C2 : min
θ

c2≤θc2≤θc2
(J1, J2) (28)

C3 : min
θ

c3≤θc3≤θc3
(J1, J2) (29)

Thus, three Pareto Fronts were obtained, one for each concept. The evolutionary multiobjective
algorithm ev-MOGA [27] was used (ev-MOGA is available at Matlab file exchange: https://es.
mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm).
This algorithm has demonstrated a good performance in different design problems [28,29].
It characterizes the Pareto front in a distributed way, showing a wide variety of Pareto solutions to the
designer. This smart distribution of the Pareto front helps the designer to analyze and to select the
final solution in a better way. The ev-MOGA setting was the following: the number of individuals of
the population (P) was 1000, and the number of iterations was 1000. The rest of the parameters were
left at their default values.

https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm
https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm
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5. Results and Evaluation

In Figure 10, the three Pareto fronts belonging to each one of the three concepts are depicted.
As expected, the fronts did not conflict with each other because C3 was a simplification of C2, which
was, in turn, a simplification of C1. On the one hand, it was observed that the Pareto front of C1

dominated the Pareto front of C2, and the latter dominated the Pareto front of C3. On the other hand, it
was also observed that the performances were significantly worse in C3, but this did not happen in C2.
In addition, the objective J2 presented similar values in C1 and C2. Our first conclusion, therefore, was
that it was worth discarding C3, as its performances were significantly worse than the other concepts’.
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Figure 10. C1, C2 and C3 Pareto fronts.

In Figure 11, the fronts corresponding to C1 and C2 are shown in detail. The models corresponding
to the Pareto front extremes and the compromise solution—that with the least distance to the utopic
solution (the minimum values of J1 and J2) using the 2-norm—are highlighted.

As an example, in Figure 12, the responses of these models in different SOC intervals are plotted
and compared with the empirical data of test 1. Plots (a), (b) and (c) show the responses of the
concept C1, whereas the responses of the concept C2 are shown in (d), (e) and (f). As mentioned,
each plot corresponded to a different SOC zone. For instance, plots (a) and (d) corresponded to
ZoneHSOC. The extreme solutions of the different fronts performed very well for one of the objectives.
This fact can be observed for solutions θC1

J2
and θC2

J2
; they were the best in the ZoneMSOC, but the

worst in the ZoneLSOC for the intermediate model and ZoneHSOC for the complete model. On the
other hand, θC1

J1
and θC2

J1
were the best in ZHL. Finally, the solutions θC1

comp and θC2
comp provided a

more a balanced performance. Note that θC1
comp and θC2

comp were not the only solutions that displayed
a balanced performance, but initially we preferred them. It was also observed that when the SOC
was low, the accuracy of C2 deteriorated. This was because the second RC block was responsible for
adjusting this zone, and this model did not include it. Regardless, neither C1 nor C2 could adjust the
voltage in any SOC zone, as there were unmodeled dynamics.
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Figure 11. C1 and C2 Pareto fronts. The extreme solutions and the compromise solutions—those
with the least distance to the utopic solution (the minimum values of J1 and J2) using the
2-norm—are highlighted.
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Figure 12. Discharge responses of the solutions highlighted in Figure 11 in different SOC zones,
compared with the empirical data from test 1.
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In order to analyze the robustness of each model in the Pareto fronts, a validation test was carried
out (see Figure 13). Here, the performance of each model was assessed by means of Jval

1 and Jval
2 ,

both in volts (these were the equivalents to the objectives J1 and J2 presented in the MOP, but for the
validation test). This test had neither CZs nor RZs.

JD
ZHL(testval) = ∑

DZ∈ZHL

|Vm −Vtestval |
durationDZ

(30)

Jval
1 = JD

ZHL(testval) (31)

JD
ZM(testval) = ∑

DZ∈ZM

|Vm −Vtestval |
durationDZ

(32)

Jval
2 = JD

ZM(testval) (33)

Figure 14 compares the performance of the solutions of the Pareto fronts that were obtained
in the identification test with the performance that these solutions displayed in the validation test.
The solutions of the Pareto fronts were the best solutions according to the identification tests, however,
it is evident that they were not the best solutions according to the validation test. Thus, in the validation
test, the performance of these solutions deteriorated, as expected. An additional observation was
that, in the validation test, some solutions in C2 displayed a better performance (with respect to both
objectives) than some solutions in C1. After taking into account the results from the validation test,
we concluded that the θC1

val and θC2
val models (highlighted in Figure 14) were better choices, as they

were optimal solutions—they belonged to the Pareto front obtained with the identification data—and
also exhibited a balanced performance (as θC1

comp and θC2
comp did). Additionally, they had a better

performance in the validation test when compared to θC1
comp and θC2

comp.
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Figure 13. Experimental data from the validation test. The whole test took place in a DZ. ZoneHSOC,
ZoneMSOC and ZoneLSOC correspond to the zones with high, medium and low SOC, respectively.
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Figure 14. Pareto solutions obtained from the identification data and their performances in the
validation test. The compromise and validation solutions are highlighted.

Figures 15–17 show the responses of the previously mentioned solutions (θC1
val and θC2

val) in three
different tests, namely, a discharge test, a charge test and the validation test. In the discharge test, both
responses were quite similar, except in ZoneLSOC, where the complete model was more accurate.
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Figure 15. θC1
val and θC2

val responses in test 3.
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Figure 16. θC1
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val responses in test 4.
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Figure 17. θC1
val and θC2

val responses in the validation test.

In the charge test, both responses were similar as well. Finally, in the validation test, again,
both responses resembled each other, although the intermediate model had less error. Let us analyze
these results in a more detailed way. In ZoneMSOC (J2), both responses were similar. In ZoneLSOC, the
intermediate model performed worse than the complete model, as expected. However, in ZoneHSOC,
the intermediate model performed better than the complete model. This better matching in ZoneHSOC
compensated for the poor matching in ZoneLSOC, which led to an improvement in J1 (low and high
SOC zones), that is to say, a better performance with respect to this objective. The only zone where the
intermediate model was worse than the complete model in all the tests was ZoneLSOC, but this zone
was the least interesting, as it was not recommended for discharging a battery fully. In the rest of the
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zones, the discrepancies between the model and the experimental data were negligible. All the errors
in all the tests were within ± 2.5% of the battery voltage. Similar figures were achieved in [17,22].
Consequently, the results were acceptable. As a result of the previous analysis, the intermediate model
was finally chosen as the best solution, as it reduced complexity, while barely losing performance, and
even improved the response in the validation test. This solution was θC2

val (Table 5).

Table 5. Values of each parameter of the chosen solution (θC2
val).

Parameter Value Parameter Value Parameter Value Parameter Value

Kh
e 6.55× 10−3 Km

e 6.59× 10−3 Kl
e 6.19× 10−3 Kc

e 9.08× 10−3

Rh
00 0.0251 Rm

00 0.0323 Rl
00 0.0385 Ah

0 0.12
Am

0 0.703 Al
0 1.36 R11 0.0119 R12 1× 10−5

R13 0.0253 R14 8× 10−4 R15 0.139 R16 0.0129
R17 −0.0581 R18 0.399 Ca 1.43× 103 – –

6. Conclusions

In this paper, a methodology for the analysis of different concepts through a multiobjective
approach was presented. A concept is a way of solving a problem. The use of concepts, combined
with multiobjective techniques, enables a designer to simultaneously compare the performance of
various design concepts with respect to the desired objectives. As an example of an application, this
methodology was applied to the development of a battery model. Thanks to the direct comparison
of different concepts that the multiobjective approach provided, the designer was able to assess the
performance of three different model structures, each of them with distinct degrees of complexity.
By taking into account two desired objectives (model matching to empirical data in low, medium and
high SOC zones) and evaluating the model degradation in the validation data, the designer managed
to achieve a comprehensive perspective, so that they could make an informed decision and select the
best solution according to their preferences. The decision-making process, in our example, resulted
in choosing the intermediate model structure, as it was simpler than the complete structure, and
demonstrated a better performance in the validation test.
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