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Abstract: Feature extraction from nonlinear and non-stationary (NNS) wind turbine (WT) condition
monitoring (CM) signals is challenging. Previously, much effort has been spent to develop advanced
signal processing techniques for dealing with CM signals of this kind. The Empirical Wavelet
Transform (EWT) is one of the achievements attributed to these efforts. The EWT takes advantage of
Empirical Mode Decomposition (EMD) in dealing with NNS signals but is superior to the EMD in
mode decomposition and robustness against noise. However, the conventional EWT meets difficulty
in properly segmenting the frequency spectrum of the signal, especially when lacking pre-knowledge
of the signal. The inappropriate segmentation of the signal spectrum will inevitably lower the
accuracy of the EWT result and thus raise the difficulty of WT CM. To address this issue, an enhanced
EWT is proposed in this paper by developing a feasible and efficient spectrum segmentation method.
The effectiveness of the proposed method has been verified by using the bearing and gearbox CM
data that are open to the public for the purpose of research. The experiment has shown that, after
adopting the proposed method, it becomes much easier and more reliable to segment the frequency
spectrum of the signal. Moreover, benefitting from the correct segmentation of the signal spectrum,
the fault-related features of the CM signals are presented more explicitly in the time-frequency map
of the enhanced EWT, despite the considerable noise contained in the signal and the shortage of
pre-knowledge about the machine being investigated.

Keywords: wind turbine; drive train; condition monitoring; empirical wavelet transform

1. Introduction

As faults occurring in wind turbines (WTs) can degrade power generation performance, prolong
downtime, increase maintenance costs, and even lead to catastrophic failure if they cannot be detected
and repaired in time [1], WT condition monitoring (CM) is been attracting increasing interest in recent
years from both academic and industrial communities. In essence, the purpose of CM is to detect
the turbine faults at their early developing stage and thus allow sufficient lead-time to schedule
cost-effective maintenance [2,3]. However, it is not easy to achieve reliable CM of a WT. This is because
WTs are subjected to constantly varying loads. Moreover, nowadays almost all large modern WTs
operate at variable speeds in order to keep high power generation efficiency and maximize power
output. Consequently, the CM signals collected from WTs are usually nonlinear and non-stationary
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over time. In contrast to the feature extraction from linear stationary signals (e.g., the CM signals
collected from those steam turbines that operate at a constant rotational speed and are subjected to
constant load), to extract fault-related features from nonlinear and nonstationary WT CM signals will
be more difficult; thus it requests more advanced signal processing techniques [4,5].

Previously, many signal processing methods such as spectral kurtosis (SK), short-time Fourier
Transform (STFT), Wigner-Ville distribution (WVD), wavelet transform, and S-transform have been
developed for processing non-stationary CM signals [6–10]. The SK is a statistical tool used to indicate
the presence of series of transients and their locations in the frequency domain. It was applied to
detect the tooth crack occurring in a WT planetary gear in [11]. The STFT is more informative than
the Fourier Transform attributed to the application of a sliding window function. However, due
to the application of a constant window function, the time and frequency resolutions of the STFT
results are limited to Heisenberg’s uncertainty principle. The WVD suffers from a similar problem,
and, moreover, the WVD is also limited owing to the presence of the cross-term interferences in the
result. To overcome the time and frequency resolution issues suffered by the STFT and WVD, wavelet
transform was proposed later on. It provides unique multi-resolution analysis of non-stationary signals
and therefore significantly benefits the CM of those machines operating under variable conditions.
However, the wavelet transform is still a linear method, which is not adaptive to the local features
of nonlinear CM signals. Consequently, it meets difficulty in extracting the local nonlinear features
from CM signals. The S-transform takes advantage of both the STFT and wavelet transform. It is more
efficient than the wavelet transform method in computation and more powerful than the STFT in
feature extraction [7]. However, it inherits the disadvantage of both pioneer tools, i.e., it is not locally
adaptive either. To address these issues, many signal processing approaches that are adaptive to local
signal features have been developed in recent years such as empirical mode decomposition (EMD) and
its extended form, local mean decomposition (LMD). These EMD-based techniques seem to provide
an effective solution for extracting the local nonlinear features from CM signals [12]. However, the
EMD-based techniques are constrained by the following factors in practical applications [13]:

• the recursive calculations lower the computational efficiency of the EMD algorithms;
• the error developed in envelope estimation will spread in the recursive calculation results and

consequently decrease the accuracy of the decomposition;
• the resultant intrinsic mode functions (IMFs) are not mono-frequency functions.

Therefore, mode-mixing phenomena often occur [14,15], which increases the difficulty of
signal interpretation.

So far, the aforementioned issues have not been fully addressed despite lots of attempts to mitigate
them [16–19].

Recently, an alternative signal decomposition method, namely the Empirical Wavelet Transform
(EWT), was proposed in order to tackle these issues [20]. In contrast to the EMD, the EWT is more
efficient in signal decomposition as its calculation is non-recursive [21]. Moreover, the application
of the wavelet filtering technique in the EWT makes it more robust against background noise [20].
In addition, thanks to the application of the wavelet filtering technique, the modes derived from
the EWT are narrow-banded functions with fewer mixed modes. Such a merit makes the EWT a
potentially powerful tool for extracting time-frequency features from nonlinear and non-stationary
CM signals. However, it is different from the fully data-driven EMD method that does not require
any pre-knowledge about the signal being processed, the implementation of the EWT requests to
pre-set the number of modes and the frequency boundaries of each individual mode. This is always
difficult, especially when lacking pre-knowledge about the objective being investigated. However,
inappropriate definitions of the values of these parameters could lead to the inaccurate extraction
of the signal features, thus misleading WT CM. To address this issue, an enhanced EWT method is
proposed in this paper. It is assumed that:
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(1) the valid information of a signal is dominated by those frequency components with significant
amplitudes; and

(2) those frequency components with significant amplitudes can be readily identified from the
envelope of the original frequency spectrum of the signal.

The details of the research are reported below.

2. Fundamental Theory and Limitations of the EWT

The EWT was proposed originally in order to use a family of wavelets to extract the amplitude
modulated-frequency modulated (AM-FM) components in the signal [20]. According to [20], such
AM-FM components have a compact support Fourier spectrum. As shown in Figure 1, the separation
of different EWT mode functions is equivalent to segmenting the frequency spectrum of the signal and
then applying filtering corresponding to each detected support.
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Assume the Fourier support [0, π] is segmented into a limited number of contiguous segments. Use
ωn to denote mode boundaries between each segment, as shown in Figure 1. Then, the n− th segment
is expressed as Λn = [ωn−1, ωn]. Accordingly, the spectrum of the original signal can be written as
UN

n−1Λn = [0, π]. Centered around each ωn, a transition phase Tn of width 2τn is defined. Then, the
empirical scaling function φ̂n(ω) and the empirical wavelets ψ̂n(ω) can be respectively defined as [20]:

φ̂n(ω) =


1 i f bωc ≤ωn − τn

cos
[

π
2 β
(

1
2τn

(|ω| −ωn + τn)
)]

i f ωn − τn ≤ bωc ≤ ωn + τn

0 otherwise

(1)

ψ̂n(ω) =



1 i f ωn + τn ≤ bωc ≤ ωn+1 − τn+1

cos
[

π
2 β
(

1
2τn+1

(|ω| −ωn+1 + τn+1)
)]

i f ωn+1 − τn+1 ≤ bωc ≤ ωn+1 + τn+1

sin
[

π
2 β
(

1
2τn

(|ω| −ωn + τn)
)]

i f ωn − τn ≤ bωc ≤ ωn + τn

0 otherwise

(2)

where β(·) is an arbitrary function that satisfies:

β(x) =

{
0 i f x ≤ 0

1 i f x ≥ 0
and β(x) + β(1− x) = 1 ∀ x ∈ [0, 1] (3)

There are many functions that can satisfy these properties. In [22], it is defined as:

β(x) = x4
(

35− 84x + 70x2 − 20x3
)

(4)

Regarding the setting of τn, the simplest way is to set its value to be linear proportional to ωn, i.e.,
τn = γωn, where the parameter γ must satisfy the following equation to meet the requirement of tight
frame, i.e.,:
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γ < min
(

ωn+1 −ωn

ωn+1 + ωn

)
(5)

Substituting τn = γωn into (1) and (2) gives:

φ̂n(ω) =


1 i f bωc ≤(1− γ)ωn

cos
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

i f (1− γ)ωn ≤ bωc ≤(1 + γ)ωn

0 otherwise

(6)

ψ̂n(ω) =



1 i f (1 + γ)ωn ≤ bωc ≤(1− γ)ωn+1

cos
[

π
2 β
(

1
2γωn+1

(|ω| − (1− γ)ωn)
)]

i f (1− γ)ωn ≤ bωc ≤(1 + γ)ωn

sin
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

i f (1− γ)ωn ≤ bωc ≤(1 + γ)ωn

0 otherwise

(7)

Subsequently, apply the spectrum segment parameters to (6) and (7) to construct the empirical
wavelet filter bank. Then, the detail coefficients of the EWT of signal f (t) are given by the inner
products of f (t) and the empirical wavelets ψ̂n(ω), i.e.,:

w f (n, t) = f , ψn =
∫

f (τ)ψn(τ − t)dτ = F−1
(

f̂ (ω)ψ̂n(ω)
)

(8)

The approximation coefficients of the EWT of signal f (t) are given by the inner product of f (t)
and the scaling function φ̂n(ω):

w f (0, t) = f , φ1 =
∫

f (τ)φ1(τ − t)dτ = F−1
(

f̂ (ω)φ̂1(ω)
)

(9)

The reconstruction of signal f (t) is:

f (t) = w f (0, t) ∗ φ1(t) +
N

∑
n=1

w f (n, t) ∗ ψn(t) = F−1

(
ŵ f (0, ω)φ̂1(ω) +

N

∑
n=1

ŵ f (n, ω)ψ̂n(ω)

)
(10)

Accordingly, the empirical mode fk(t) is given by:

f0(t) = w f (0, t) ∗ φ1(t) (11)

fk(t) = w f (k, t) ∗ ψk(t) (12)

Attributed the merit of extracting the AM-FM components from nonlinear, non-stationary
signals, the EWT has been identified as a potential powerful tool for dealing with the nonlinear
and non-stationary CM signals, particularly those collected from variable speed machines (e.g., WTs).
However, the EWT also has some drawbacks that limit its application to WT CM, which are as follows.

• The number of modes

In comparison with the EMD, the EWT allows the number of modes to be defined in advance so
that the signal decomposition results are more controllable than those by the EMD. In theory, the right
number of modes is dependent on the number of AM-FM components contained in the signal. This
implies that the nonlinear signal features cannot be correctly extracted once inappropriate number of
modes is defined. For example, in [20] local maxima in the Fourier spectrum were directly used to
segment the spectrum. Such a segmentation method is too simple to guarantee the effectiveness of
feature extraction because it does not provide a reasonable method to define the number of modes.
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• Mode bandwidth boundary detection

Wavelet filtering is a key technique adopted by the EWT. As mentioned above, a linear
proportional bandwidth τn = γωn is used to construct all filters with different central frequencies.
This is not a fully adaptive bandwidth definition method, which could result in undesired signal
decomposition results. Thus an adaptive bandwidth is critical to ensure the accuracy of the signal
decomposition results. However, it was not considered in the conventional EWT.

3. Enhanced Empirical Wavelet Transform

In order to address the aforementioned issues existing in the conventional EWT, an enhanced EWT
is proposed in this paper. It is characterized by the application of a more reliable technique to segment the
frequency spectrum of the signal. The new segmentation technique will perform the envelope analysis of
the signal spectrum first. Then, a hard thresholding technology is applied to trim the obtained envelope
curve. From the trimmed envelope curve, the principal frequency components contained in the signal
can be readily identified, which are used for determining the number of EWT modes and the frequency
boundaries of each mode. Such a spectrum segmentation method is easy to implement without requiring
lots of calculations. For example, assuming a CM signal x(t), the spectrum segmentation method used
in its enhanced EWT analysis can be implemented by following the steps:

Step 1: Implement the Fourier transform of x(t) , i.e.,

F(s) = FFT(x) (13)

Aax = |F(si)|(i = 1, 2, · · · , l) (14)

where l denotes the half number of data contained in signal x(t).
Step 2: Detect the local extra values of Aax.
Step 3: Generate the envelope curve of the Fourier spectrum by using the cubic spline

interpolation method.
Step 4: Calculate the following threshold

Threshold = Al + r(Ah − Al) (15)

r = C/SNR (16)

where Ah and Al are respectively the maximum and minimum magnitudes in the frequency
spectrum and r is inversely proportional to the signal-to-noise (SNR). Herein, the constant
C is used to control the level of the threshold, i.e., the larger the value of C, the higher
the level of the threshold tends to be. In this paper, r was taken to be 0.1 based on the
assumption that the signal-to-noise ratio of WT CM signals is higher than 85 dB and C = 10.

Step 5: Trim the envelope curve using the calculated threshold and detect all extras in the trimmed
envelope curve.

Step 6: Locate all local maximum points. The number of them is used to define the number of
EWT modes, and their frequencies are used to define the central frequencies of the modes.

Step 7: Locate all the local minimal points and sort them in ascending order, i.e., ω =

[ω1, · · · , ωn−1, ωn, · · · , ωN ]. They are used to segment the frequency spectrum.

From the above description, at least two merits of the proposed segmentation method can be
inferred, i.e.,

(1) attributed to the trimming process that is implemented at Step 5, the number of modes can be
readily determined based on the actual situation of the signal;

(2) since the local extras in the trimmed envelope curve are applied to define the boundaries of the
modes, spectrum segmentation can be easily implemented.



Energies 2017, 10, 972 6 of 13

In the following, to ease understanding a real bearing CM signal is employed as an example to
demonstrate the above segmentation method. The time waveform of the signal is shown in Figure 2. Firstly,
conduct the Fourier transform of the signal. Its frequency spectrum and the corresponding envelope curve
are shown in Figure 3a. Secondly, calculate the value of the threshold using (15) and obtain Threshold = 2.
Then, use the threshold to trim the envelope curve. The trimmed envelope curve is shown in Figure 3b.
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Subsequently, segment the frequency spectrum based on the trimmed envelope curve by using
the methods described at stages 6 and 7. The results are also plotted in Figure 3b, where the frequency
boundaries of the modes are indicated by the dash lines. From Figure 3b, it is seen that the frequency
spectrum of the signal is segmented into 11 portions, which are indicated by the boundaries of the six
principal modes.

In order to prove the rationality of the segmentation results obtained above, correlation analysis
between the raw signal and the signals that are constructed by using the EWT modes is performed.
It is presumed that the more modes are used to construct the signal, the more the reconstructed
signal will be correlated with the raw signal. To obtain a clear variation tendency of the resultant
correlation efficient against the number of modes being used for signal reconstruction, pre-set the
number of modes to be 11 and decompose the signal in Figure 2 by using the conventional EWT. Then,
reconstruct the signal by using the obtained mode functions and calculate the correlation coefficient of
the reconstructed signal and the raw signal by using the equation:

C(n) = corr

(
x,

n

∑
k=1

mk

)
(17)

where n increases from 1 to 11, denoting the number of modes used for signal reconstruction. C(n)
indicates the correlation efficient between the raw signal x and the reconstructed signal using n
mode functions.
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The variation tendency of the resultant correlation coefficient ratio C(n) against the number of
modes is shown in Figure 4.
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From Figure 4, it is seen that the resultant correlation coefficient increases gradually with the
increasing number of modes until it reaches about one when the number of modes is 11. Moreover,
it is interestingly found that obvious step increase happens when n =1, 2, 4, 6, 8, and 10. This implies
that these six modes are the components that carry the most important features of the signal. Thus,
the signal reconstructed by using these six modes can effectively describe the major features of the
raw signal. Obviously, such a result is in agreement with the results obtained using the proposed
segmentation method. Thus, through this example, it can be said that the proposed segmentation
method is valid in detecting the optimal modes of the signal.

Based on the proposed segmentation method, an enhanced EWT algorithm is developed. Its
flowchart is shown in Figure 5.
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4. Verification Tests of the Enhanced EWT

In order to verify the enhanced EWT, two bearing and one gear vibration signals that are open for
research [23,24] were adopted for testing in this section. The time waveforms of these three signals are
collectively shown in Figure 6. Herein, it is worth to note that in the figure

• the bearing data were collected from a test rig consisting of a motor speed controller, a 2 HP motor,
and a generator [23]. Both inner race and outer race faults were emulated on the motor bearing
of the test rig. The acceleration signals were collected by using a sampling frequency of 12 kHz
when the motor rotated at 1750 rev/min;

• the gear vibration data were collected from a test rig consisting of a gearbox, a load mechanism,
a triaxial accelerometer, and four shock absorbers [24]. The accelerometer was installed on the
case of the gearbox. The acceleration signals were recorded by using a sampling frequency of 16
KHz when the input shaft of the gearbox rotated at 1400 rev/min.

From Figure 6, it is seen that strong background noise exists in all three vibration signals. As a
consequence, the impact features that indicate faults can be perceived from the signal waveforms,
however difficult to interpret. Therefore, the enhanced EWT was applied to process the signals,
and the primary modes derived from the EWT are shown in Figure 7, where ‘mi’ denotes the i-th
EWT mode. Considering the detailed description of the signal spectrum segmentation process
has been given in Section 3, the segmentation of the frequency spectra of these three signals will
not be depicted once again in order to keep this paper concise.
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Following this, in order to precisely describe the fault-related features, the time-frequency maps
of the three signals are calculated by performing the Hilbert transform of the mode functions shown
in Figure 7. Limited by computer memory, only the first 0.1 s data in Figure 7a,b and the first 0.31 s
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Figure 8. The comparison of the enhanced EWT and the conventional EWT: (a) Inner race
fault—enhanced EWT; (b) Inner race fault—conventional EWT; (c) Outer race fault—enhanced
EWT; (d) Outer race fault—conventional EWT; (e) Gear tooth fault—enhanced EWT; (f) Gear tooth
fault—conventional EWT.

The comparison of the results shown in Figure 8 discloses the following, which are attributed to
the application of the proposed spectrum segmentation method:

(1) the fault-related periodic impact features contained in the signals have been explicitly detected
by the enhanced EWT. From the clear time intervals between these periodic impact features,
the characteristic frequency of the fault can be easily estimated, and, therefore, the type of the fault
can be correctly diagnosed without any difficulty once the specification parameters of the bearing
and gear are known. By contrast, the impact features are smeared or even buried by background
‘noise’ in the time-frequency maps derived by the conventional EWT. As a consequence, the time
intervals between them are not easy to estimate. That inevitably increases the difficulty of
signal interpretation;

(2) the majority of interference components that are present in the conventional EWT results
are absent from the time-frequency maps derived from the enhanced EWT. This significantly
highlights the principal frequency components while it depresses the unimportant interference
and noise items in the signal, thus making the time-frequency maps of the signal more tidy
and comprehensible.

Subsequently, the comparison of the enhanced EWT and the EMD is also conducted in order to
further demonstrate the superiority of the enhanced EWT over the EMD in feature extraction from
nonlinear and non-stationary WT CM signals. The corresponding EMD results for the three signals in
Figure 6 are shown in Figure 9.
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From Figure 9, it is clearly seen that the fault-related impact features have not been successfully
extracted by the approach of the EMD, especially when the impact features in the signals are still weak
at the incipient fault stage. However, they all have been correctly extracted by the enhanced EWT.

From this example, it can be concluded that, in contrast to the conventional EWT and the EMD,
the enhanced EWT does provide a more powerful tool to precisely extract the time-frequency features
of nonlinear WT drive train CM signals; and the precise and tidy time-frequency features derived from
the enhanced EWT will be very helpful in the process of achieving reliable WT CM results.

5. Conclusions

The EWT has shown superiorities to the EMD in both signal decomposition and feature extraction.
However, the accuracy of the EWT results is highly dependant on the correct settings of the number
of modes and the frequency boundaries of each individual mode. In order to develop a feasible and
reliable method for addressing this issue, an enhanced EWT is proposed and experimentally verified
in this paper. From the work depicted above, the following conclusions are drawn:

• The conventional EWT is lowered due to lacking an appropriate method to segment the
frequency spectrum of the signal being investigated. Consequently, the frequency spectrum
of the signal could not be segmented properly. Inappropriate segmentation of the signal spectrum
would not only decrease the computing efficiency of the EWT, but also lower the accuracy of
feature extraction;

• With the aid of the proposed spectrum segmentation method, the number of modes and the
frequency boundaries of every EWT mode can be readily determined. Moreover, it can be
guaranteed that every EWT mode derived by using the enhanced method will have an exact
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physical meaning that corresponds to either WT operation or structural integrity features. By
contrast, unidentified information could be included in the results by the conventional EWT,
which would raise the difficulty of signal interpretation or even mislead WT CM;

• The experiment has shown that the fault-related time-frequency features of the signals can be
more precisely extracted by the enhanced EWT, despite the considerable noise contained in the
signals and the lack of pre-knowledge about the machine being investigated. This suggests that
in contrast to the conventional EWT, the enhanced EWT needs less manual participation and thus
has potential to be a fully data driven WT CM signal processing technique.
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