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Abstract: Analyzing the concentration of low molecular acids dissolved in oil is vital in the
oil-paper insulation aging diagnostic procedure of power transformers. The existing methods cannot
distinguish between different acid types and their strengths. In this study, an improved solution
Raman detection platform is fabricated. The direct measurement of dissolved acetic acid, a kind
of low molecular acids, is observed in transformer oil without extraction. The Raman shift line of
oil-dissolved acetic acid at 891 cm−1 corresponding to H–C–H symmetrical swing and O–H swing
modes is taken as its characteristic value. Taking Raman shift line of pure oil at 932 cm−1 as an internal
standard, a linear regression curve for quantitative analysis is obtained with a slope of 0.19. The
best platform parameter of accumulation number is 300, which is determined by Allan deviation
analysis. The current concentration detection limit and accuracy for oil-dissolved acetic acid are
obtained at about 0.68 mg/mL and 91.66%, separately. The results show that Raman spectroscopy
could be a useful alternative method for evaluation insulation aging state of an operating power
transformer in the future.

Keywords: power transformer; oil-paper insulation aging state; acetic acid; Raman spectroscopy;
internal standard

1. Introduction

Oil-immersed transformers are one of the most important electrical components in power systems.
Their reliability is significant for the safety and stability of power grids [1]. It is well known that
dissolved CO and CO2 [2,3], furans [4,5] and dielectric properties of oil [6,7] can be used for the aging
evaluation of an operating transformer [8]. Under the long-term operation, mineral oil will react with
dissolved oxygen to form carboxylic acids of varying molecular weight and then dissolve in transformer
oil [9]. High-molecular-weight acids (more than 5 carbon atoms), typically stearic and naphtenic acid,
have a lower affinity for cellulose due to the hydrophobic nature of the alkyl group CnH2n+1 [10,11],
while, low-molecular-weight acids, typically formic, levulinic, and acetic acid, are more hydrophilic
and 90% of which will be absorbed by the oil-immersed paper [12]. The low-molecular-weight
acids have a greater influence on the degradation rate of paper by reacting chemically with cellulose
(paper) and water through donating a proton (H+) [13,14]. Cellulose degradation will form more
low-molecular-weight acids, which will remain absorbed in paper and accelerate the degradation of
cellulose in turn [15]. Recently, it has been demonstrated that a precise analysis of the concentration
of low molecular acids along with content of water in oil and in paper is of great value for assessing
ageing condition and also for assessing the effect of maintenance actions [16,17].
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Right now, it is impossible to monitor the acids concentration in paper of an operating transformer.
Generally, the acids value in paper can be calculated out from its value in oil. The major methods of
detecting the concentration of oil-dissolved acetic acid are indicator-potentiometric titration (IPT) [18]
and water-soluble acid determination [19]. For the former method, pretreatment such as extraction
and heating in water bath is required, which is complicated, time-consuming and subjective, while the
latter method exhibits poor reproducibility because pH values are sensitive to the experimental water
and the indicators. Moreover, neither do these methods distinguish between different acid types and
their strengths. Lundgaard et al. proposed that there is a need to introduce a method for measuring the
content of low-molecular-weight acids in service-aged oils for assessing the degradation of oil-paper
insulation [20].

Raman spectroscopy can analyze the structure and property of samples by measuring Raman
scattering light directly. Incident laser light with frequency of v0 will motivate the sample molecules
to produce Raman Stokes scattering photons with frequency of v0+vR. Different molecule has
different Raman shift, vR, which is associated to molecule’s vibration modes. Thus, according to
the position and intensity of vR, qualitative and quantitative analysis of various substances can
be measured simultaneously without pretreatment process [21]. The first practical application of
Raman spectroscopy in the power systems, to our best knowledge, includes the work by Irawan
et al. who, in 2005, achieved continuous and qualitative monitoring of SF6 and its degradations in
high-voltage switchgear [22]. In 2008, Li et al. stabilized a near-confocal Raman enhanced cavity, and
achieve simultaneous measurement of fault gases (H2, CO, CO2, CH4, C2H2, C2H4 and C2H6) [23,24],
but pretreatment of gas extraction from transformer oil is required. In 2013 and 2015, Toshihiro
et al. demonstrated that dissolved C2H2 [25] and furfural [26] in transformer oils can be directly
detected using Raman spectroscopy without extraction, respectively. In 2015, surface-enhanced Raman
spectroscopy was studied in our group and the detection limits of H2, CO, CO2, CH4, C2H2, C2H4 and
C2H6 were improved to 1.31, 2.34, 1.48, 0.19, 0.28, 0.81 and 0.57 (µL/L), separately [27]. In 2016, Raman
spectroscopy combined with methanol extraction technology was used in our group [28] to measure
dissolved furfural in transformer oil and the detection limit has been improved about 144 times when
comparing the value in Toshihiro’s publication [26].

Recently, Raman spectroscopy technique was introduced to analyze the concentration of
oil-dissolved acetic acid in our group [16]. Acetic acid, a kind of low molecular acids, is a polyatomic
and nonlinear molecule consisting of carbon, hydrogen, and oxygen atoms, which has various
independent vibration modes and is with small Raman scattering cross-section area and Raman
intensity. The poor detection limit and accuracy are bottleneck problems for direct analysis of
oil-dissolved acetic acid using Raman spectroscopy [16]. In this contribution, advancements made on
the solution Raman detection platform which improves previous detection limit is described. Then, the
Raman-shifted spectral lines of acetic acid and its corresponding vibration modes are obtained through
experiment and molecular structure simulation, respectively. Besides, Raman spectra of oil, acetic
acid, and oil with 40 mg/mL acetic acid concentration are compared to make sure the characteristic
Raman shift spectral line of oil-dissolved acetic acid. Furthermore, the platform detection parameters
are optimized and explained. Then, an internal standard is also determined to reduce fluctuation of
Raman signal, and a linear regression curve is obtained to achieve quantitative analysis. Last but not
the least, good Raman detection limit and accuracy of oil-dissolved acetic acid concentration is ensured,
respectively. Raman spectroscopy could be a useful technique for evaluation of insulation-aging state
of an operating power transformer.

2. Experimental Setup

The experimental setup (Figure 1) fabricated on a vibration isolation table is based on our
previously reported Raman spectroscopy system [16] but with modifications and improvements, in
which, through a micro-objective (10×, 50× or 100×), a single-mode cw laser diode (Continuum®,
DPGL-2200; wavelength of 532 nm; power of 100 mW; line width of <0.001 pm) in a temperature
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stabilized mount is focused on the solution samples in a cuvette to generate Raman scattering light of
sample molecules (including Rayleigh scattering, Raman Stokes scattering, and Raman anti-Stokes
scattering) [29].To cut down Raman scattering interference from the cuvette materials, quartz cuvette is
designed and fabricated instead of previous vitric one. Then, both of the lasers and generated Raman
scattering light will be collected by the focused micro-objective. However, only the Raman Stokes
scattering photons can be transmitted through two added edge filters (Semrock, LP03-532RE-25; high
pass, 533 nm) and focus into the slit of a spectrometer (Andor, SR-5000i-C; focal length of 500 mm;
three gratings with 600, 1200 and 1800 lines per mm). A liquid nitrogen-cooled charge-coupled device
(CCD, Andor, iDus-416; lowest cooling temperature of −95 ◦C; readout noise of <5 electrons per
pixel) with a response range of 0–5000 cm−1 and 2000 × 256 pixels connected to the spectrometer is
used to measure the intensity of Raman Stokes scattering light. The output of the CCD is digitized,
processed (cosmic rays elimination, baseline correction and smoothing, etc.), and displayed by
a personal computer.
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Figure 1. Schematic diagram of oil-dissolved solution detection platform basing on Raman spectroscopy.

3. Analysis of Dissolved Acetic Acid in Transformer Oil

3.1. Sample Preparation

The transformer oil used in this experiment is a mixture of paraffinic (60.0%), naphthenic (10–40%),
and aromatic (5–15%) oils from Chuanrun Lubricant Company. New oil is degassed and dried before
experiment to avoid its initial state differences effect. The acetic acid (99.5%, analytical reagent) used
in this work is purchased from Aladdin, China.

Acetic acid (2 g) is added to a 250 mL volumetric flask at room temperature. A small amount
of transformer oil of 50 mL is used to dissolve the acetic acid. After shaking up for about 10 min,
40 mg/mL acetic acid solution dissolved in transformer oil is prepared. And the prepared solution is
immediately sealed in a reagent bottle to avoid the potential mass loss caused by evaporation.

3.2. Raman Shift Spectral Lines of Acetic Acid

With a needle, a drop of pure acetic acid (1 mL) is obtained, placed into the quartz cuvette and
the Raman spectral results can be seen in Figure 2. In this, more than ten Raman shift spectral lines
of acetic acid are observed and the line at 2937 cm−1 shows a greatest intensity (Table 1, column 3).
Besides this, the structural model of acetic acid molecule is constructed using B3LYP function and
basis set 6–31G+ of Gaussian 09W software. After optimizing molecular structure parameters (i.e.,
bond length and bond angle) at the lowest total energy, the stimulated Raman spectrum of acetic acid
is obtained as shown in Figure 3 and the Raman shift spectral lines are collected in column 2 of Table 1.
Through the stimulation process, the vibration modes corresponding to each Raman shift spectral
line are identified. The CH3 stretching vibration of acetic acid results in producing Raman scattering
line at 2937 cm−1. The scattering line at 546, 1054, 1131 cm−1 is too weak to be measured, which
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causes the experimental numbers of Raman shift spectral lines to be less than the stimulated value.
Moreover, harmonic approximate phenomenon also results in the difference between experimental and
stimulated results [30]. However, neither of these two phenomena affects the analysis of oil-dissolved
acetic acid directly, because only one Raman shift spectral line is enough to achieve qualitative and
quantitative analysis, which will be elaborated in the next section.
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Table 1. Raman shift spectral lines of acetic acid.

No. Stimulated Value
(cm−1)

Pure Acetic Acid
(cm−1)

Oil-Dissolved Acetic
Acid (cm−1) Vibration Modes

1 408 446 443 H–C–H symmetrical swing and O–H swing
2 546 - - O–H swing and C=O swing
3 638 603/621 599/618 O=C–O bending and C–C stretching
4 815 893 891 H–C–H symmetrical swing and O–H swing

5 969 1014 932 O–C–C asymmetric stretching and H–C–H
symmetrical swing

6 1054 - - C–H asymmetric swing
7 1131 - - O–H swing and C–H swing
8 1284 1280 1289 O–H swing and C–C swing
9 1392 1366 1375 H–C–H bending

10 1454 1428 1422 H–C–H asymmetric swing
11 1661 1664/1758 1654/1741 C=O stretching vibration
12 2953 2937 2935 CH3 stretching vibration
13 3015 2985 2990 C–H asymmetric stretching
14 3069 3020 3031 H–C–H asymmetric stretching
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3.3. Characteristic Raman Shift Spectral Line of Oil-Dissolved Acetic Acid

Pure transformer oil, pure acetic acid, and 40 mg/mL acetic acid solution dissolved in transformer
oil with volume of 1 mL are measured and the results are shown in Figure 4a–c, respectively.
Comparing these three figures, some points have been concluded as follows:

(1) The Raman lines of pure oil have strong interference and will cover many Raman lines of acetic
acid. Only in a range between 400 cm−1 and 1200 cm−1, the pure oil has no Raman lines or
with low intense lines, which has little effect on the measurement of oil-dissolved acetic acid.
Therefore, this range is identified as the detection interval.

(2) In this detection interval, obvious Raman shift lines of oil-dissolved acetic acid are at 443 cm−1,
599 cm−1, 618 cm−1 and 891 cm−1

, which correspond to lines of pure acetic acid at 446 cm−1,
603 cm−1, 621 cm−1, 893 cm−1. The difference of 2~4 cm−1 is called blue-shift, mainly attributing
to influence of transformer oil on Raman vibration mode of acetic acid.

(3) The most intense Raman shift line of acetic acid solution is 891 cm−1, corresponding to H–C–H
symmetrical swing and O–H swing modes. Since the concentration of pure oil is constant, its effect
on intensity of Raman line at 891 cm−1 and 932 cm−1 can be also regarded as a constant value. The
low interference of oil on oil-dissolved acetic acid detection at 891 cm−1 can be eliminated when
cutting down the constant value of Raman intensity of pure oil. In this experiment, for better
detection limit of acetic acid, 891 cm−1 is taken as the characteristic Raman shift spectral line of
oil-dissolved acetic acid and used for its qualitative and quantitative analysis. Besides, the Raman
line of pure oil at 932 cm−1 is taken as an internal standard for improved detection accuracy.Energies 2017, 10, 967 6 of 13 
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3.4. Platform Parameters Optimization

To get higher signal intensity (detection limit) and better spectral resolution (detection accuracy),
the platform detection parameters (laser power, grating, slit width, exposure time and accumulation
number) are optimized.
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3.4.1. Laser Power and Grating

The Raman scattering intensity of sample species j, RIj, is linearly associated with signal losses, k,

differential scattering cross section,
∂σj
∂Ω , collection efficiency, dΩ, laser intensity, I0, optical interaction

length between laser light and samples, l, and concentration of sample species j, Cj, which can be
written as [31]:

RIj = k
∫

Ω

∂σj

∂Ω
dΩI0lCj (1)

where Ω corresponds to collection geometry of Raman scattering. So, in this system, the laser power is
set at its maximum value of 100 mW. The 50× micro-objective and grating with 600 lines per mm is
selected to achieve best collection efficiency and spectral resolution, respectively.

3.4.2. Selection of Slit Width

The slit width of different values with 50, 100, 125, 150, 175, 200 and 250 µm are used for detecting
40 mg/mL acetic acid-transformer oil solution, repetitively. As can be shown in Figure 5, the Raman
intensity at 891 cm−1 demonstrates a trend of initial increase because bigger slit width allows more
Raman scattering photons of acetic acid to come into CCD, then reaches a maximum value at slit width
of 150 µm. After that, the Raman intensity descends because the generated Raman scattering photons
of acetic acid at a certain concentration are constant, but bigger slit width will result in line width
broadening effect. Thus, the optimized slit width is set at 150 µm in this experiment to guarantee high
signal intensity and good resolution.Energies 2017, 10, 967 7 of 13 
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Figure 5. Raman intensity of 891 cm−1 at different slit width.

3.4.3. Selection of Exposure time and Accumulation Number

The exposure time at different values with 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 s are used for detecting
40 mg/mL acetic acid-transformer oil solution again. Figure 6 shows the Raman peak intensity at
891 cm−1 increases along with longer exposure time, which can be explained by additive effects of
Raman scattering photons on CCD. As limit of CCD saturation, the maximum value of exposure time
is set as 0.6 s in this experiment. Accumulation of Raman signal through analysis software is another
way to take use of the additive effect, which can break through the limit of saturation. Ideally, Raman
signal or signal-to-noise ratio (SNR) is linearly associated with accumulation number. However, this
linear relation only exists for a short time because of drift phenomenon from hardware system. The
best accumulation number is determined as 300, according to Allan deviation analysis [32], as shown
in Figure 7.
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4. Results

4.1. Quantitative Analysis

The five parameters of k,
∂σj
∂Ω , dΩ, I0, l in Equation (1) have no relationship with the concentration

of sample species j, Cj. Thus, Equation (1) can be simplified as:

RIj = FjCj (2)

where Fj is defined as the Raman quantification factor of sample species j.
As can be shown in Equation (2), Raman intensity is proportional to the sample concentration.

So, the quantitative analysis based on Raman spectroscopy can be achieved by building a linear
regression curve between Raman intensity and its corresponding known concentrations. However,
the reproducibility of measured Raman spectrum is degraded due to the drift of the optical path, the
variation of the excitation laser intensity and solvent noise. These changes will result in fluctuation of
absolute Raman intensity and a quantitative error. To eliminate these interferences, internal standard
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(ratio) method is used for quantitative analysis [33]. It is effective because the internal standard is
always at a constant value, and the internal standard and the samples are tested under the same
experimental conditions [34]. In this study, Raman shift line of pure oil at 932 cm−1 is taken as
an internal standard. So, the Raman intensity of acetic acid characteristic shift line at 891 cm−1 can be
standardized by:

RI(891cm−1)s =
RI891cm−1

RI932cm−1
+ C (3)

where the influence of the pure oil line at 891 cm−1 on the Raman intensity of acetic acid can be
introduced into the constant, C.

To prepare a series of oil-dissolved acetic acid samples at different concentrations, 40 mg/mL
acetic acid–oil solution is diluted with pure oil at the volume proportion of 1:1 time by time. These
acetic acid samples are measured using IPT and the concentrations are about 2.5, 5, 10, 20 and
40 mg/mL values, respectively. Then, the prepared acetic acid solution samples are measured using the
Raman detection platform with optimizing parameters (laser power of 100 mW, 50× micro-objective,
grating with 600 lines per mm, slit width of 150 µm, exposure time of 0.6 s, accumulation number
of 300). An obtained Raman spectrum of a sample tends to have some irrelevant information, such
as cosmic radiation, fluorescence, baseline drift and thermal stability noise of CCD. Therefore, data
pre-treatment should be performed to eliminate such influence for quantitative analysis. Automatic
baseline correction is first conducted to subtract baseline and fluorescence. Savitsky–Golay smoothing
is used to perform denoising and removing cosmic radiation with polynomial degree of 4 and size value
of 9. Figure 8 shows Raman spectra of oil-dissolved acetic acid samples at different concentrations,
in which Raman intensity of acetic acid at ~891 cm−1 increases clearly along with the increase of
its concentrations.

A least squares model of acetic acid concentration in transformer oil is used to conduct unary linear
regression analysis between the standardized Raman intensity at 891 cm−1 and its concentration. As
shown in Figure 9, an evident linear relationship exists with a slope of 0.19, which can be expressed as:

y = 0.19x + 0.11 (4)

where the goodness-of-fit (R2) is 0.9974. Besides, the standardized Raman intensity of pure oil at
891 cm−1 is included in the intercept value of 0.11. Therefore, using this linear regression equation,
acetic acid concentration can be determined by measuring its standardized Raman intensity.
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4.2. Detection Limit

As can be calculated from Figure 8, the standardized Raman intensity value at 891 cm−1 of
2.5 mg/mL acetic acid is 0.27 regarding that the standardized value of 0 mg/mL and 2.5 mg/L
oil-dissolved acetic acid sample at 891 cm−1 is 1.33 and 1.60, respectively. So, the detection limit of
oil-dissolved acetic acid can be estimated to be 3σ~0.68 mg/mL [25,26], where σ is the ratio between
standard deviation of the Raman spectrum from acetic acid free oil sample (between 858 and 878 cm−1

range) and internal standard Raman intensity at ~932 cm−1. If higher detection limit or sensitivity is
required, it may be achieved by selective surface enhanced Raman scattering (SERS) [35].

4.3. Analysis of Oil-Dissolved Acetic Acid from an Operating Transformer

In addition, the developed Raman platform is used to analyze seven oil samples taken from
different operating transformers at substations of Sigongli, Dazhulin, Yuping, Laisu, Nanchuan,
Longjing and Youting in the Chongqing Electric Power Company, State Grid of China. The main
characteristics including model, operation time and fault or not of these power transformers can be
seen in columns 1 to 4 of Table 2. Acetic acid concentrations of oil samples are calculated according to
Equation (2) and are shown in column 5 of Table 2 after averaging over five measurements. Among
them, acetic acid concentration from Youting is too small to be accurately determined. Figure 10 shows
the Raman spectrum of transformer oil sample from Longjing. Besides, acetic acid concentration in
transformer oil samples are also measured using IPT as a basis and results are shown in column 6 of
Table 2. The Raman detection accuracy for oil-dissolved acetic acid from an operating transformer
is obtained at about 91.66% after comparing the detection errors (column 7 of Table 2) of these two
methods. In addition to this, the obtained concentration of oil-dissolved acetic acid from operating
transformers using Raman spectroscopy can be used to amend the linear regression Equation (2) and
improve Raman detection accuracy further.



Energies 2017, 10, 967 10 of 12

Table 2. Dissolved acetic acid detected by Raman spectroscopy and indicator-potentiometric
titration (IPT).

Main Characteristics of Power Transformers from Which the Oil Samples
Are Obtained

Raman
Spectroscopy

(mg/mL)

IPT (mg/mL) Detection
Error (%)

Substation Model Operation Time Fault or Not

Sigongli SFSZ-240000/220 20 October 2004 N 18.26 20.11 9.20
Dazhulin SSZ11-180000/220 27 July 2007 N 11.15 10.04 11.06
Yuping SFSZ9-120000/220 30 June 2008 N 4.31 5.02 14.15
Laisu SFPSZ10-M-120000/220 5 January 2009 N 9.73 10.28 5.35

Nanchuan SFPSZ10-180000/220 10 May 2011 N 3.22 3.43 6.12
Longjing SFPSZ10-180000/220 2 April 2014 N 1.24 1.19 4.20
Youting ODFS-250000/500 15 April 2015 N <0.68 0.15 /
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Figure 10. Raman spectrum of transformer oil from an operating transformer of Longjing of the
Chongqing Electric Power Company, State Grid of China.

5. Discussion

In this paper, good Raman detection limit and accuracy of oil-dissolved acetic acid concentration
is obtained. However, there is still a long way to achieve accurate evaluation insulation aging state of
an operating power transformer using Raman spectroscopy for the following reasons: (1) Simultaneous
detection of low-molecular-weight acids concentration, include acetic acid, formic and levulinic is
unaccomplished; (2) In this study, Raman spectroscopy system is fabricated on a vibration isolation
table and only used to analyze oil samples in the Laboratory. At disturbance environment of strong
vibration, intense electromagnetic field, and so on, whether the system is suitable for in situ analysis of
oil-dissolved acids in an operating transformer or not is unclear. (3) In international electrotechnical
commission (IEC) standard, the concentration of low-molecular-weight acids is not currently used
to diagnose aging state of paper insulation, because the correlation between acids concentration and
aging rate has not been fully determined [14]. These unsolved questions or problems above should
and will be focused on in our further work.

6. Conclusions

Raman spectroscopy is a potential analytical technique for dissolved substances in transformer
oil. In this study, improvements made on our previously introduced solution Raman detection
platform is reported for getting higher detection limit, including using a quartz cuvette and two
edge filters. The Raman shift spectral lines of acetic acid and its corresponding vibration modes
are obtained through simulation and experiment. The optimizing parameters are determined as
laser power of 100 mW, 50× micro-objective, grating with 600 lines per mm, slit width of 150 µm,
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exposure time of 0.6 s and accumulation number of 300, respectively. Raman shift spectral line of
oil-dissolved acetic acid at 891 cm−1 corresponding to H–C–H symmetrical swing and O–H swing
modes is taken as its characteristic value and Raman shift line of pure oil at 932 cm−1 is taken as
the internal standard for quantitative analysis. A linear regression curve for quantitative analysis is
obtained with a slope of 0.19. The current concentration detection limit and accuracy for oil-dissolved
acetic acid are determined as about 0.68 mg/mL and 91.66%, separately. Compared to the traditional
acetic acid measurement methods, Raman spectroscopy is a more convenient and time-saving way,
which is especially important for the quick acetic acid assessment in oil and may be useful for condition
assessment of operating transformer.
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