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Abstract: Wind speed forecasting has an unsuperseded function in the high-efficiency operation
of wind farms, and is significant in wind-related engineering studies. Back-propagation (BP)
algorithms have been comprehensively employed to forecast time series that are nonlinear, irregular,
and unstable. However, the single model usually overlooks the importance of data pre-processing
and parameter optimization of the model, which results in weak forecasting performance. In this
paper, a more precise and robust model that combines data pre-processing, BP neural network,
and a modified artificial intelligence optimization algorithm was proposed, which succeeded
in avoiding the limitations of the individual algorithm. The novel model not only improves
the forecasting accuracy but also retains the advantages of the firefly algorithm (FA) and overcomes
the disadvantage of the FA while optimizing in the later stage. To verify the forecasting performance
of the presented hybrid model, 10-min wind speed data from Penglai city, Shandong province, China,
were analyzed in this study. The simulations revealed that the proposed hybrid model significantly
outperforms other single metaheuristics.

Keywords: back propagation (BP); forecasting accuracy; modified firefly algorithm; wind speed;
singular spectrum analysis

1. Introduction

Wind power is one of the most significant recycled energy resources presently being applied [1].
Recently, due to the pollution of the global environment, recyclable energy [2] and non-polluting
sources such as wind energy have been gaining extensive attention [3]. Wind energy, which is one of
the most promising and active recyclable sources, is providing an increasingly strong supplement to
traditional energy sources [4]. When it comes to the accurate forecasting of wind speed and its wide
use in wind power, we encounter great challenges, because the wind is a periodical phenomenon [5]
with a nonlinear, anomalistic, and stochastic nature. Wind speed forecasting is applied in several
domains, for instance, target tracking, shipping, weather forecasting, agricultural production, and
electric load forecasting. To dispatch wind energy before wind power grid integration, it is very
important for a wind farm operator to accurately determine the wind speed. This is because the local
wind speed is always the foremost factor affecting wind power generation, and can be used for wind
turbine selection and for wind farm layout [6]. In addition, wind speed can enhance the power
system’s schedule and strengthen resource configuration, promoting the reliability of the power grid.
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Predictions made with higher precision can allow power system operators to dispatch power efficiently
in order to properly meet the demands of consumers [7].

Given a more precise wind speed value, the power operator is able to forecast power delivery.
This is extremely helpful for power systems in terms of optimizing storage capacity, making sensible
and proper programs, and dispatching electric energy well. Because of the wind’s irregularity and
complex fluctuations, variations in wind speed forecasting may result in quick changes in the prediction
results of wind power. This feature indicates that accurate wind speed forecasting is highly important.
The wind speed forecast plays a vital role in utilizing wind power appropriately and efficiently. Various
methods have been proposed to promote the accuracy of wind speed prediction. Three of the most
extensively used methods are the physical forecasting method, the conventional statistical method, and
the artificial intelligence method. Given a series of meteorological parameters, the physical forecasting
method uses physical variables to derive a time series forecast. Therefore, higher prediction accuracy
can be obtained using this method [8]. However, their extremely intricate computations always
lead to it being largely a waste of time. Numerical weather forecasting is one of the most widely
used physical forecasting methods, consisting of a computer program that aims to solve questions
through meteorological data processing and describe how the atmosphere changes as time goes on [9].
In addition, the traditional approaches include the regression analysis method, the auto-regressive
integrated moving average (ARIMA) [10] model, the non-parametric estimation method, exponential
smoothing [11], the state-space model [12], Box-Jenkins models [13], the spatial correlation model,
and the difference method. Furthermore, support vector machines (SVMs) [14] such as non-neural
networks are also frequently applied in wind speed forecasting.

Among the above methods, artificial neural networks (ANNs) have been frequently and widely
applied. By imitating the human brain in handling information with a sequence of neurons, ANNs
obtain a distinguished capacity for mapping, and their complex and highly nonlinear input and output
modes with making nothing of the type of real model can establish some simple models and compose
different networks depending on different connections. Therefore, ANNs demonstrate the following
advantages: high adaptability, excellent ability to learn using cases, and ability to summarize. It is well
known that the multi-layered perceptron (MLP) is one of the most broadly used ANN methods.
The vast majority of available methods that can be used to train ANNs pay close attention only to
the alteration of connection weights in a certain topology, which usually leads to defective results.

MLPs are prosperously applied in many fields, such as pattern classification [15], digit recognition [16],
image processing, coal price prediction [17], function approximation, measurement of object shape [18],
and adaptation control. The back-propagation (BP) algorithm [19] performs most effectively of all
training algorithms for MLP methods. The selection of a suitable structure for the forecasting question
and the alteration of connection weights of the network constitute the two parts of training MLPs for
the problem. Several studies have been successfully used to solve these issues.

A great deal of research has been conducted to precisely forecast the wind energy and the local
value of wind speed. Wind power and speed forecast is a fundamental problem for wind farm
operation, best power flow between the electric system and wind power plant, market price,
electric power system dispatching, and wind power resource reserve, and storage programming
and dispatching. Over the last few decades, the ANN [20,21] has been the superior model, and has
frequently been applied to forecast time series.

The ANN is a pragmatic calculation method, similar to the human biological neuron.
Various improvable neural networks exist, of which the following two are the most frequently
employed: feed forward neural networks and feedback neural networks. Feed forward neural
networks have no feedback. On the contrary, feedback neural networks possess a feedback.
Back-propagation (BP) neural networks, perceptrons, and radial basis function (RBF) networks play
an important role in feed forward networks. Recurrent Neural Networks (RNNs) [22] and pulsed
neural networks are two important models of feedback networks. The feedback networks mainly
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consist of RNN and spiking neural networks [23]. In this paper, we pay more attention to feed forward
neural networks [24].

The BP algorithm has various significant advantages; for example, it can help to roughly estimate
a great many functions, it is relatively simple to implement, and it can be used as a reference method.
In addition, its most effective characteristic is that the momentum parameter and the learning rate
factor can be altered, thereby enhancing the innovation speed of the traditional BP algorithm.

To gain good forecasting accuracy and low deviation, many studies [25–32] have been
conducted to determine the optimal weights of neural networks. However, an original hybrid
model system—a traditional hybrid method based on the rapid searching theory developed by
Xiao et al. [33]—has been put into use. An extensive study was conducted by Xiao et al. [33] using
four test functions to evaluate the optimization algorithm’s capacity for development, searching,
avoiding partial optima, and convergence velocity, and the results of this experiment demonstrated
that the modified method is more sufficient and excellent than the original algorithm. In recent
years, a number of developmental optimization algorithms have been applied to help confirm
the threshold values of a prediction method. Particle swarm optimization (PSO) was applied
by Liu et al. [25] to optimize the parameters of the prediction technique for short-term electric
load prediction in micro-grids. Wang et al. [26] employed a modified PSO to optimize the weight
distribution of their proposed combined model developed for electric load prediction. The cuckoo
search (CS) algorithm [27–29] was applied to determine the parameters of the proposed model for
electric load forecasting. Wang et al. [30] modified the CS method to optimize the parameters of
multi-step-ahead wind speed forecasting models. Xiao et al. [31] applied the genetic algorithm (GA)
to optimize the parameters of the proposed model. In the present paper, a highly valid optimization
method, the Broyden-Fletcher-Goldfarb-Shanno-Firefly Algorithm (BFGS-FA), is used to determine
the parameters of the proposed hybrid model.

Recently, numerous continuous and novel improvements have been made to promote
the effectiveness of the FA for optimizing neural networks, including the binary, Gaussian, firefly,
high-dimensional firefly, Lévy flight, simultaneous firefly, and chaos-based FA [34,35]. Though most
of these improvements to the FA enhance its performance successfully, few of them have been
introduced to optimize the parameters of hybrid models. This paper intends not only to enhance
the research and development abilities of the FA, but also to minimize the drawback of the partial
optima seeking capacity, which appeared in the CS algorithm. On the basis of the BFGS quasi-Newton
method, an original improvement of the FA was proposed to enhance the diversity of species of
fireflies. Obviously, increasing the convergence standard may result in individual fireflies likely
being caught in partial optima; however, it decreased when this optimized algorithm was used.
Of course, the decomposition of the original wind sequence is a significant process for data filtering.
This can always effectively promote the prediction accuracy of the model to obtain better forecast
results [36]. Important techniques, such as empirical mode decomposition (EMD) [37], wavelet
decomposition (WD) [38], and singular spectrum analysis (SSA) are often applied to remove the noise
series. However, the wavelet de-noising algorithm is sensitive to the determination of the threshold,
and the EMD may lead to mode confusion [39], which may result in a badly decomposed performance.
In addition, SSA has many advantages, and overcomes the disadvantages of EMD and WD in terms
of decomposition. Moreover, we analyzed some articles in the literature [40–44] that deal with wind
forecasting by applying neural networks, and that are in line with the theme of the present paper.
From these studies, we found that some data preprocessing or optimization algorithms are insufficient,
and the details are listed in Table 1. Therefore, based on the discussed limitations, this manuscript
proposes a characteristic hybrid model that unites the BP algorithm, SSA theory, and BFGS-FA.
Ten-minute wind speed values collected from Penglai city, Shandong province, China, were applied to
verify the unique hybrid model. The results of tests and practices in this study indicate that the hybrid
model considerably outperformed the other three models. This demonstrates that the hybrid method
could be applied to calculate wind speeds, which would be beneficial for enabling wind power system
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to make optimal decisions, such as providing better sites of wind power, taking early measures to
reduce losses that can be caused due to bad weather, reducing production costs, and minimizing energy
consumption (coal, etc.). This model is also useful for helping wind power companies to make correct
decisions in real life. Thus, the hybrid forecasting method with high accuracy represents a model that
will have potential application in the near future. Furthermore, the practical hybrid model can also be
applied to other forecasting domains, such as target tracking, stock index forecasting, environment
forecasting, shipping, weather forecasting, agricultural production, and electric load forecasting.

The primary contributions and novelties of this manuscript are listed as follows: (a) The BFGS-FA
method, back propagation neural network (BPNN), and the concept of the de-noising algorithm
were combined to form two new models: singular spectrum analysis-back propagation
(SSA-BP), and singular spectrum analysis-Broyden-Fletcher-Goldfarb-Shanno-Firefly Algorithm-back
propagation (SSA-BFGS-FA-BP). (b) This paper evaluates the developed models on the basis of two
aspects: forecasting accuracy and stability. The results indicate that BFGS-FA-BP is a better model
when considering accuracy only, but the hybrid SSA-BFGS-FA-BP is a better model overall: even with
the low cost of calculation, the accuracy remained high. (c) The novel combined BFGS-FA algorithm
successfully avoids the shortcomings of FA while optimizing, during the later period, the low velocity
and the poor convergence performance. (d) The proposed hybrid approach integrates the advantages
of other individual models. (e) A time sequence pre-processing method was applied to de-noise
the raw data successfully.

The remainder of this paper is designed as follows. Section 2 presents the single prediction
method developed according to the BPNN and the hybrid forecasting method theory. This section also
describes the optimization algorithms BFGS, FA, and their combination BFGS-FA, which are applied
to confirm the parameters of the hybrid forecasting model. SSA theory and the Diebold-Mariano
(DM) test, which can help to determine the forecasting effectiveness of the developed hybrid method,
are introduced at the end of Section 2. In Section 3, the wind speed time sequences collected from
three separate sites are used to test the proposed hybrid model. Subsequently, the wind resources and
the evaluation criteria of the forecasting model are described. In Section 4, we give a discussion about
this study. In the end, Section 5 concludes this paper.
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Table 1. Summary of intelligent and hybrid forecasting methods and theoretical comparison of existing forecasting models. RBF: radial basis function; ENN: Elman
neural network; WNN: Wavelet neural network; GA: genetic algorithm; BP: back propagation; FA: firefly algorithm; PSO: particle swarm optimization.

Models Variables Date Set Results Advantages Disadvantages Ref.

RBF Wind
speed

March 2012 in Jiangsu, Ningxia
and Yunnan, China

The proposed methods can provide
higher quality prediction intervals
than the conventional method.

Has a good local
approximation and computer
implementation is easy.

Has a low forecasting
performance. [40]

ENN Wind
speed

January 2010 to March 2011
in Gansu, China.

The proposed approach
is an effective way to improve
prediction accuracy.

Has a good fitting effect and
can deal with nonlinear data.

Has a narrow
forecasting scale. [41]

WNN Wind
speed

720 samplings in Inner
Mongolia, China

The proposed model can be a robust
method for wind speed forecasting.

Has a good forecasting
performance and higher
computational efficiency.

The model is unstable
and highly dependent
on time series.

[42]

Hybrid
GA and BP

Wind
speed

January 2011 in Inner
Mongolia, China.

The method can improve both
forecasting accuracy and
computational efficiency.

The simulation method is easy
to understand and combines
with other methods.

It is easy to get into
local optimum. [43]

Hybrid
FA/PSO
Elman

Wind
speed

January 2011 to November
2011 in Shandong, China.

The proposed model outperforms
other comparative models
in forecasting.

Has good adaptability, and can
take advantage of
other models.

The process of
building models
is relatively complex.

[44]
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2. Methodology

Since McCulloch and Pitts [45] proposed the neural network mathematical model in 1943, ANNs
have been applied in numerous fields, including signal processing, market analysis and forecasting,
pattern recognition, and automatic control. In this part, separate theories of this innovative hybrid
model will be introduced in detail.

2.1. BP Algorithm

In mathematically simulating the human brain system, the BP algorithm benefits from its
underlying processes, fuzzy information processing, and chaotic performance. On account of the error
BP algorithm and the multilayer neural network, the BP neural network performs excellently in training
ANNs. An input layer, one or more hidden layers, and an output layer constitute a representative
BP network. The BP algorithm is always applied to adjust the thresholds, in which the errors from
the output are propagated back into the network, transforming the thresholds as it goes, in order to
keep the error [46] from emerging again. Its topology and flow structure are as follows:

The main procedures of the BP algorithm can be generalized as follows:

Step 1. We obtain the wind speed time sequence and corresponding parameter values from
the wind power plant. The inputs have exhaustive information on historical values. The input value
is often affected by the site, surrounding temperature, air pressure, time, and even the collectors.
Our primary task is to make full use of four different parameters collected from the wind power plant.

Step 2. We transform the original value into the requested form (0 to 1). The normalization
method is summarized as follows:

(Value)normalized = [(Value)actual − (Value)min)]/[(Value)max − (Value)min]

Step 3. We build the BP algorithm and set its parameters, which include the number of neurons
in the input layer, hidden layer, and output layer; the learning rate; the maximum training times;
and training requirement accuracy. The training can be summarized as learning from the historical
values to discover the implied information among the previous time series data, which can be applied
to forecast the future wind speed.

Step 4. We use the testing set to assess the effectiveness of the trained BP network.
Step 5. In the end, the future wind speed value (output) is forecast by the neural network.

The key parameters that emerged in this study are not sensitive in small intervals; therefore,
the key parameters of these algorithms are determined by repeated trails. The corresponding
experimental parameters of the method are summarized in Tables 2 and 3.

Table 2. The experimental set points of BP.

Experimental Set Point Default Value

The number of units in the input layer 6
The number of units in the hidden layer 7
The number of units in the output layer 1

The learning rate 0.1
The maximum training time 1000

Required accuracy of training 0.00001

2.2. Broyden-Fletcher-Goldfarb-Shanno

The BFGS [47] algorithm is an excellent method, and one of the most useful nonlinear
quasi-Newton procedures.
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Definition 1. Let xt be the consequence at the representative iteration t and xt+1 = xt + λtdt be a recursive
function in which λt is the step size. The hunting path is dt = −Dt∇ f

(
xt) , in which Dt is an n× n positive

certain symmetric matrix as a proximity of the inverse matrix of the real Hessian matrix at xt.

Definition 2. The new path of BFGS can be designed as follows:

Dt+1 =
(

I− ρtptqT
t

)
Dt

(
I− ρtqtpT

t

)
+ ρtptpT

t ;ρt = 1/pT
t qt (1)

where
pt = λtdt = xt+1 − xt (2)

qt = ∇ f
(

xt+1
)
−∇ f

(
xt) (3)

In addition, the primary BFGS algorithm is generalized in Appendix A.

2.3. Firefly Algorithm

The FA was first proposed by Xin-She Yang in 2008 [48]. The FA was inspired by the flashing
nature of fireflies [49,50]. The firefly will be shining while flying, which can be regarded as a signal to
attract other companions. The method has three regulations:

(1) All fireflies are unisexual; in addition, any firefly can be attracted by others.
(2) Attraction is directly proportional to their brightness; that is, for any two fireflies, the less bright

one will be attracted by the brighter one, and will move towards it; the brightness will decrease
as the distance between them increases.

(3) If there are no brighter fireflies around a known firefly, it will fly at random. The brightness of
the firefly must be tightly related to the objective function.

The experimental set points of the FA are described in Table 3.

Table 3. The experimental set points of FA.

Experimental Set Point FA

Maximum iteration 1000
Population size 20

Alpha 0.25
Beta 0.2

Gamma 1
Convergence tolerance 0.00001

The FA is a developed computational method that is also used to optimize controller parameters.
Each firefly in the FA indicates a solution to the problem, which is defined on the basis of
position. In a d-dimensional vector space, the present location of the ith firefly is acquired by
xi = (xi1, . . . , xin, . . . , xid). The random positions of m fireflies are initialized within the specified
range. The position updating equation for the ith firefly, which is attracted to move to a brighter firefly
j, is given as follows:

xi(t + 1) = xi(t) + β0 exp(−γr2
ij)(xj − xi) + α(rand− 0.5) (4)

In addition, the position updating equation for the brightest firefly is given as follows:

xbesti(t + 1) = xbesti(t) + α(rand− 0.5) (5)
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where the first terms xi(t) and xbesti(t) of Equations (4) and (5) are the current positions of a less bright
firefly and the brightest firefly, respectively. The second term in Equation (4) is the firefly’s attraction
to light intensity. β0 is the original attraction at r = 0, γ is the absorption parameter in the range [0,
1], and rij is the distance between any two fireflies i and j, at position xi and xj, respectively, and can
be formulated as a Cartesian or Euclidean distance as follows:

rij =

√√√√ d

∑
n=1

(xin − xjn)
2 (6)

where xi and xj are the position vectors for fireflies i and j, respectively, with xin representing
the position value for the dimension, and the third term in Equation (4) and the second term
in Equation (5) are used to reduce the randomness; that is, the movement of the fireflies is gradually
reduced according to α = α0δt, where α0 is in the range [0, 1]. δ is the random reduction parameter
where 0 < δ <1, and t is the iteration number. Every new position must be evaluated by a fitness
function, which is assumed to be integral square error. The flow chart of the FA is presented in Figure 1,
and the original FA algorithm is summarized in Appendix B.
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the combined BFGS-FA Algorithm.

2.4. BFGS-FA

FA possesses good global optimization and development capacities; however, it will usually
be manifest a low velocity and poor convergence performance while optimizing in the later stage.
Therefore, as shown in Figure 1, the BFGS is applied while FA renews the answers after a generation to
search for a sub-optimization solution, which can be used to promote the partial optimization capacity
and the rate of partial convergence of the total method. The primary method of BFGS-FA is generalized
in Appendix C.



Energies 2017, 10, 954 9 of 29

2.5. Singular Spectrum Analysis (SSA)

In America and England, SSA has been exploited separately based on singular spectrum analysis,
whereas in Russia, it was proposed under the name Caterpillar-SSA [51]. SSA possesses the superiority
of statistics and probability theory; meanwhile, it assimilates the knowledge of power systems and
signal processing ideas.

Suppose that y = [y1, y2, . . . , yT ] is a time sequence with T elements. The SSA method contains
two parts: decomposition and reconstruction [52,53].

2.5.1. Decomposition

In decomposition, an observed unidimensional time series data y = [y1, y2, . . . , yT ] is converted
into its trajectory matrix. Subsequently, XXT and its corresponding singular value decomposition
(SVD) are computed. This can be divided into two steps: embedding and SVD.

Step 1. The primary aim of this step is to propose the concept of the trajectory matrix or deferred
edition of the initial time sequence y. The main purpose of this step is to propose the concept of a trajectory
matrix or a hysteretic version of the initial time sequence y. The resulting matrix has a window width
W (W≤ T/2), which is usually determined by the operator. Suppose that P = T−W + 1, the trajectory
matrix is denoted as follows:

X = [X1, . . . , XP] =


y1 y2 y3 . . . yP
y2 y3 y4 . . . yP+1

y3 y4 . . . . . . . . .
. . . . . . . . . . . . . . .
yW yW+1 yW+2 . . . yT

 (7)

In fact, this trajectory matrix is a Hankel matrix; that is, all the elements of the diagonal i + j = const
are equal [54].

Step 2. We obtain the covariance matrix XXt from X. XXt processed by the SVD will result
in a group of L eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and their corresponding eigenvectors U1, U2, . . . ,
UL, which are often defined by empirical orthogonal functions. Therefore, the SVD of the trajectory
matrix could be denoted as X = E1 + E2 + . . . + Ed, where Ei =

√
λiUiVi

t, d is the rank of XXt

(the total amount of non-zero characteristic values) and V1, V2, . . . ,Vd are the corresponding principal
components, which are denoted by Vi = XtUi/

√
λi. The set (

√
λi, Ui, Vi) is the ith eigenvalue of

the matrix X. Suppose that T =
d
∑

i=1
λi, then λi/T—the ratio of the variance of X—which is defined by

Ei:E1, has the highest contribution [55], and Ed has the minimum contribution. The SVD will consume
more elapsed time if the length of the time sequence is long enough (i.e., T > 1000).

2.5.2. Reconstruction

We compute XXT and its SVD to obtain its L eigenvalues:λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and its
corresponding eigenvectors. Each signal, as represented by the eigenvalue, is analyzed and assembled
to reconstruct the new time series. This section can be resolved into two steps: grouping and averaging.

Step 1. Here, the designer chooses r out of d eigenvalues. Define I = {i1, i2, . . . , ir} to be a set of r
chosen eigenvalues and XI = Xi1 + Xi2 + . . . + Xir, in which XI is connected to the “information” of y;
nevertheless, the remaining (d–r) eigenvalues, which are not selected, represent the error term ε.

Step 2. The set of r elements chosen from the foregoing section is then applied to regroup
the definitive elements of the time sequence. The fundamental concept is to convert each of the terms
Xi1, Xi2, . . . , Xir into the reconstructed data time series yi1, yi2, . . . , yir by using the Hankelization process
H(Z) or diagonal averaging: assume Zij is an element of the ordinary matrix Z, then the kth term



Energies 2017, 10, 954 10 of 29

of the rebuilt time sequence could be acquired by averaging Zij, on the precondition of i + j = k + 1.
Obviously, H(Z) is a time sequence with T elements rebuilt by matrix Z.

After averaging, we can obtain the approximation of y, which is the regrouped time series,
and is given as follows:

y = H(Xi1) + H(Xi2) + . . . + H(Xir) + ε (8)

From the whole time series, a singular eigenvalue will be reconstructed as suggested by
Alexandrov and Golyandina. This indicates that SSA is not an awkward algorithm, and is therefore
strong to abnormal values.

In addition, as shown in Figure 2, the original wind speed preprocessed by SSA is forecast by
the BP algorithm, and its parameters are optimized by BFGS-FA.
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2.6. Proposed Hybrid Model

The BP algorithm is selected as the forecasting method to forecast the wind speed time series
in this paper. However, because of its unstable structure, we could not obtain more accurate forecasting
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results with minor error; therefore, it is important to determine the optimal parameters and threshold
values of the BP network to promote the predictive effectiveness. BFGF-FA is proposed to determine
the weight and threshold. In addition, large amounts of noise present in the original wind sequence
will lead to a poor forecasting performance. Therefore, we choose the SSA to remove the noise from
the raw time sequence. The corresponding basic procedures are presented as follows, and are depicted
in Figure 2.

Step 1. SSA is used to remove the noise from the raw data. It also aims to remove the high
frequency of the original sequence after decomposing, and then reconstructs them into new
experimental data.

Step 2. BFGS-FA is used to determine the weight and threshold of the BP neural network. Thus,
the ability of the global optimization of the BP algorithm is greatly promoted.

Step 3. The optimized BP neural network is applied to predict the wind speed time sequence.
Step 4. The proposed hybrid model indeed outperforms the single models in forecasting time

sequences based on historical values. Multi-step forecasting also proves that the proposed hybrid
method has a higher effectiveness, and their forms can be described as follows:

(1). One-step prediction: The predictive value p̂(t + 1) is calculated on the basis of the past
time sequence {p(1), p(2), . . . , p(t− 1), p(t)}, where t is the sample size of the wind speed
time sequence.

(2). Two-step prediction: The predictive value p̂(t + 2) is calculated on the basis of the past time
sequence {p(1), p(2), . . . , p(t− 1), p(t)} and the former predictive value p̂(t + 1).

(3). Three-step prediction: The predictive value p̂(t + 3) is calculated on the basis of the past time
sequence {p(1), p(2), . . . , p(t− 1), p(t)} and the former predictive value p̂(t + 1) and p̂(t + 2).

(4). Higher-step forecasting value will be obtained on the basis of the above form.

2.7. Testing Method

In this paper, we also employed a testing method called the Diebold-Mariano (DM) test to estimate
the proposed model.

The Diebold-Mariano (DM) test [56], which is focused on predictive accuracy, compares and
evaluates the predictive effectiveness of the proposed hybrid method with other simple models.
In practical applications, there will be two or more time sequence models available for predicting
a specific variable of interest.

Real values:
{cn; m = 1, · · · , t + l} (9)

Two predictions: {
ĉ(1)m ; m = 1, · · · , t + l

}
;
{

ĉ(2)m ; m = 1, · · · , t + l
}

(10)

The prediction errors according to the two models can be described as follows:

ϕ
(1)
t+g = ct+g − ĉ(1)t+g, g = 1, 2, · · · , l. (11)

and:
ϕ
(2)
t+g = ct+g − ĉ(2)t+g, g = 1, 2, · · · , l. (12)

The precision of each forecasting model is evaluated by an appropriate loss function,
L
(

ϕ
(i)
t+g

)
; i = 1, 2.

The most widespread and available loss function is square error loss, and its formulation
is as follows:
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Square error loss:

L
(

ϕ
(i)
t+g

)
=
(

ϕ
(i)
t+g

)2
(13)

The DM test statistic assesses the prediction according to the random loss function L(p):

DM =

l
∑

g=1
kg

l
√

S2/l
s2 (14)

where S2 is the estimated value of the variance of kg = L
(
]ϕ

(1)
t+g

)
− L

(
ϕ
(2)
t+g

)
, and the null hypothesis is:

H0 : E
(
kg
)
= 0 ∀m (15)

in contrast, the alternative hypothesis is:

H1 : E
(
kg
)
6= 0 (16)

Under the null hypothesis, the two predictions possess uniform precision. In contrast,
the alternative hypothesis has different standards, namely, the two predictions differ in accuracy.
If the null hypothesis is right, the Diebold-Mariano statistic will be an asymptotically standard
normal distribution N(0,1). The null hypothesis should not be refused if the calculation of DM
statistic falls inside the interval [−Zα/2, Zα/2], otherwise we must reject it; that is, the reject region
is (−∞,−Zα/2)&(Zα/2,+∞), which is defined as follows:

|DM| > Zα/2 (17)

where Zα/2 is the positive Z-value from the standard normal table according to half of the confidence
level α of the experiment.

3. Experimental Design and Results

In this section, the wind speed data gathered from three sites are forecast by the developed hybrid
method. The data location and effectiveness of the prediction estimation standard are also presented.
All the experiments in this paper were conducted in MATLAB R2014b on Windows 7 with 3.30 GHz
Intel (R) Core (TM) i5 4590 CPU, 64 bit and 8 GB RAM.

3.1. Data Sets

The hybrid SSA-BFGS-FA-BP method was tested using data from experiments of wind speed
prediction time sequences at three sites. A data set gathered at 10-min intervals from Penglai city,
Shandong province, China, was used. Figure 3a displays the geographical position of Penglai city
in China.

In this study, wind speeds are taken from three different sites, and we chose 1728 of them as
observation values. Of these, 1440 values were used to train the network, and the remaining 288 values
were selected as the testing set for each station.

The original data from the three sites are shown in Figure 3b, which illustrates the inordinance,
wave, and mutability of the original time series.
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3.2. Forecast Error Metrics

Forecasting errors are applied to assess the ability of the applied forecasting approaches and to
evaluate the effectiveness of the proposed method on account of on-site/true measures.

The metric equations in Table 4 show us the universal error index applied to most forecasting
models for renewables. The mean absolute error (MAE), the root mean square error (RMSE) [57],
and the mean absolute percentage error (MAPE) are used to estimate the forecasting effectiveness of
the proposed method. They are denoted as follows:

pt and p̂t are the true value and the predicted value, respectively. T is the total number of elements
in this data array. The MAE depends on pt and p̂t, the RMSE depends on pt and p̂t, and furthermore,
the MAPE gives the relative error between |pt − p̂t| and pt. Quantified by these three frequently
used indices, we can clearly and concisely perceive the difference between the predicted and exact
wind speed values. A smaller difference value indicates that the forecasting method has a better
performance. Nevertheless, MAPE, a unit-free estimator, has better sensitivity for small-scale variation,
does not reveal some weak characteristics of data, such as asymmetry, and has lower abnormal value
protection. Therefore, a better MAPE will be chosen as the standard in this paper.
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Table 4. The metric equations.

Error Index Definition Formula

MAE The mean absolute error of T times
predictive results

1
T

T
∑

t=1
|pt − p̂t|

RMSE The root mean square error

√
1
T

T
∑

t=1
(pt − p̂t)

2

MAPE The mean absolute percentage error 1
T

T
∑

t=1

∣∣∣ pt− p̂t
pt

∣∣∣× 100%

3.3. Comparison Method and Its Corresponding Results

Our main contribution is not only to provide an optimization algorithm, but also to propose
a novel hybrid wind speed forecasting model. Experimental results prove that the proposed method
can be perfectly used for short-term wind speed forecasting, and that it has considerable practical value
and strong operability in wind farms and grid management. In addition, we performed a comparative
experiment to compare the proposed model with other forecasting approaches, and the corresponding
results are presented in Table 5, revealing that the proposed hybrid method achieves higher forecasting
accuracy than the other methods.

Table 5. The results of the hybrid model, ARIMA and SVM model at three sites.

Model
Site 1 Site 2 Site 3

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 0.5210 0.6832 7.9275 0.4496 0.5995 6.8094 0.5404 0.7606 10.4179
SVM 0.5069 0.6789 7.5806 0.4526 0.6118 6.8365 0.5379 0.7573 10.3284

Hybrid model 0.1849 0.2461 4.8496 0.2337 0.2465 4.5512 0.2407 0.2851 6.7548

3.4. Case Studies

This study consists of three classic experiments. Each of them is grouped into two sections,
one of which uses the primary wind speed data and the other applies data preprocessed by the SSA
approach. Original data are forecast by the single BP algorithm, and the BP algorithm is optimized
using combined BFGS-FA (BFGS-FA-BP); decomposed data are also predicted by the single BP and
BFGS-FA (BFGS-FA-BP).

The two model aim to compare the single BP with the optimized BFGS-FA-BP to determine
the performance of the hybrid method. The parameters of SSA are presented in Table 6.

Table 6. The experimental parameters of singular spectrum analysis (SSA).

Experimental Parameters SSA

Embedding dimension 50
Components 10

Method of calculating the covariance matrix
Unbiased (N-K weighted)

Biased (N-weighted or Yule-Walker)
BK(Broomhead/King type estimate)

3.4.1. Case Study 1

In this section, all results will be clearly demonstrated in the figures and tables to reveal
the effectiveness of each model. First, the predicted values of wind speed in the three locations
are presented in Tables 7–9. Considering the random disturbances of the forecasts, it is necessary
to repeat each experiment many times to ensure the reliability of results. Therefore, in our study,
we performed each experiment 20 times and then used the average values as the final results, to make
sure that the results are dependable.
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Figure 4a shows the data of the estimated performance with and without using the SSA approach
at site 1. The effectiveness of the experiment that used real values is displayed at the top left side
of the chart, and was forecast by models without using the SSA approach. The effectiveness of
the experiment that used processed data is described at the bottom left side of the Figure, and was
forecast by models using the SSA approach. We can conclude from the Figure that the SSA-BP model
predicts values close to the true values, especially SSA-BFGS-FA-BP. In other words, the experiment
that used processed data showed better performance than the other.

Figure 4b shows the difference between the forecast values and the exact values collected from
site 1, and their corresponding errors. We can clearly see that the error of the SSA-BFGS-FA-BP
model is much lower than that of the BP, BFGS-FA-BP, and SSA-BP models, which implies that the
SSA-BFGS-FA-BP method performs much better than other models.
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effect without SSA algorithm and with SSA algorithm; (b) The comparison between the forecast values
and raw data and their corresponding errors.

3.4.2. Results of Analysis

In this section, another two samples are described in Figures 5a and 6a, whose predictive
performance with and without using the SSA method are compared. Furthermore, Figures 5b and 6b
illustrate the difference between the forecast values and the real values collected from the other two
sites and their corresponding errors.

Similar to what was described above, and as shown in Figures 5a and 6a, the BP and BFGS-FA-BP
models closely approached the actual values, but the SSA-BP model and especially the SSA-BFGS-FA-BP
model performed much better in forecasting. Therefore, we can conclude that the experiment using
the SSA approach outperforms the other. As revealed in Figures 5b and 6b, the deviations of
the SSA-BFGS-FA-BP model are much smaller than those of the BP, BFGS-FA-BP, and SSA-BP models.
In particular, it is very clear that the SSA-BFGS-FA-BP model gets extremely close to the exact wind
speed, and has higher performance than the other three models.
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To test the accuracy of the experiment and guarantee the practicability and feasibility of
the developed method, we performed another three experiments. As shown in Table 10, data were taken
during four seasons (spring, summer, autumn, and winter) from a fixed location to verify the stability
of the model. The results presented in this indicate that (1) the variance of the proposed hybrid
SSA-BFGS-FA-BP method is minimal; and (2) the predicted value of the hybrid SSA-BFGS-FA-BP
model is closer to the true value, having higher stability than the other three models.

In another experiment, the new predicted value based on historical data was used as the new
real value to test. Using this, we performed three-step iterative, six-step iterative, and twelve-step
iterative experiments. The final experimental results are shown in Table 10. The results indicate that the
variance of the hybrid SSA-BFGS-FA-BP model is smaller, and that the predicted value within six steps
of hybrid SSA-BFGS-FA-BP model is closer to the true value, having higher stability than the other
three models. However, in the 12-step iterative experiment, the proposed SSA-BFGS-FA-BP model did
not show better accuracy than the other three models. This indicates that the optimal results will be
worse with an increase in the number of iterations beyond a certain extent, because of the increase
in randomness. This also verifies that, with an increase in the number of iterations, the accuracy of
prediction is low and the deviation is high.

Finally, we collected data at different time intervals (10, 30 and 60-min intervals) from a fixed
location to conduct an experiment, and the results of the experiment are shown in Table 11. We can
conclude from the table that the effects of the optimization method will run into a bottleneck when the
time interval of the data becomes too great. The hybrid SSA-BFGS-FA-BP model did not show a better
performance. The error of forecasting reached a high value when the time interval was so long.

In conclusion, the SSA-BFGS-FA-BP has much higher effectiveness than the single BP, BFGS-FA-BP,
and SSA-BP models. We can confirm that the hybrid SSA-BFGS-FA-BP model can make a more accurate
prediction on account of the original time sequence.
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3.5. The Results of the DM Test

The DM test was employed to verify the levels of accuracy forecasted by the proposed hybrid
method and the other three single models. Table 12 shows that the values of the DM statistics between
the proposed hybrid model and the BP, SSA-BP and BFGS-FA-BP models are 8.1064, 8.0468 and
8.1696, respectively. Under a 1% confidence level, the upper limit value is much smaller than these
DM statistics; therefore, we cannot accept the null hypothesis and we have to admit the alternative
hypothesis. Thus, we can conclude that the hybrid method outperforms the other single methods.

Remark. We could learn from the results in terms of estimations on the basis of the DM test that the novel
hybrid method achieves a more precise and stable prediction capacity than the other three models, and that
the forecasting effectiveness of the hybrid method differs from that of the BP, SSA-BP, and BFGS-FA-BP models.
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Table 7. MAE, RMSE, and MAPE of site 1 for each forecasting model.

Numbers of Test
BP BFGS-FA-BP SSA-BP SSA-BFGS-FA-BP

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

1 0.5017 0.6789 7.6543 0.5113 0.6892 7.5143 0.3482 0.4643 5.2833 0.1835 0.2453 4.9052
2 0.5217 0.6871 7.7668 0.5145 0.6868 7.6611 0.3479 0.4632 5.2902 0.1853 0.2454 4.8152
3 0.5038 0.6769 8.2622 0.508 0.6758 7.5722 0.3487 0.4645 5.3063 0.1831 0.2461 4.7851
4 0.5064 0.6767 8.0176 0.5098 0.678 7.6388 0.3472 0.4633 5.2917 0.1833 0.246 4.0152
5 0.5364 0.6951 8.041 0.5225 0.6869 7.6698 0.3475 0.4638 5.292 0.1883 0.2462 4.8752
6 0.5118 0.6848 7.7139 0.5122 0.684 7.6718 0.3483 0.4636 5.302 0.1813 0.2465 4.6995
7 0.5051 0.6848 7.9229 0.5234 0.692 7.5886 0.3478 0.4636 5.2923 0.1873 0.2462 4.8905
8 0.5133 0.6827 7.9593 0.5121 0.6826 7.5832 0.3473 0.4637 5.303 0.1835 0.2461 4.7775
9 0.5243 0.6855 7.7893 0.5155 0.6805 7.6507 0.3474 0.4632 5.2966 0.1839 0.2462 4.9824
10 0.5161 0.6838 8.2 0.5068 0.6807 7.6527 0.3466 0.4631 5.2993 0.1983 0.2462 4.9867
11 0.5333 0.6941 7.6998 0.5109 0.6829 7.5984 0.348 0.4636 5.2924 0.1884 0.2461 4.2015
12 0.5091 0.6785 7.708 0.5121 0.6835 7.6684 0.3475 0.4637 5.2859 0.1823 0.246 4.2152
13 0.5277 0.6877 7.9615 0.5063 0.6757 7.5189 0.3467 0.4631 5.2933 0.1835 0.2459 4.5952
14 0.5106 0.6864 7.74 0.5123 0.6824 7.6302 0.3475 0.4634 5.2884 0.1833 0.2465 4.8951
15 0.5218 0.6858 8.1374 0.5042 0.6834 7.6242 0.3471 0.4633 5.2926 0.1803 0.2458 4.3895
16 0.5111 0.6874 7.7658 0.5027 0.6812 7.6604 0.3471 0.4631 5.3006 0.1893 0.2464 4.8679
17 0.5086 0.6832 7.6895 0.5117 0.6853 7.6 0.3481 0.4636 5.2913 0.1836 0.2462 4.2509
18 0.5078 0.6773 7.7802 0.5075 0.6767 7.6615 0.3469 0.4633 5.2944 0.1834 0.2463 4.5995
19 0.5199 0.6811 7.8523 0.508 0.6802 7.5538 0.3471 0.4633 5.3011 0.1813 0.2466 4.7655
20 0.515 0.6859 7.9596 0.501 0.6662 7.663 0.3474 0.4634 5.2851 0.1843 0.2457 4.4792

Average value 0.5153 0.6842 7.8811 0.5106 0.6817 7.6191 0.3475 0.4635 5.2941 0.1849 0.2461 4.8496
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Table 8. MAE, RMSE, and MAPE of site 2 for each forecasting model.

Numbers of Test
BP BFGS-FA-BP SSA-BP SSA-BFGS-FA-BP

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

1 0.473 0.6309 7.0188 0.444 0.5972 6.6955 0.3272 0.426 4.9888 0.2327 0.2427 4.3499
2 0.4704 0.6253 7.0698 0.4447 0.608 6.6478 0.3268 0.4254 4.9841 0.2033 0.2343 4.45
3 0.4785 0.6279 7.0767 0.444 0.594 6.6344 0.3272 0.4261 4.9866 0.2433 0.2243 4.65
4 0.4688 0.6207 7.0969 0.4423 0.5955 6.6792 0.3272 0.4258 4.9942 0.2433 0.2543 4.7499
5 0.4563 0.6109 6.8203 0.4471 0.6016 6.6969 0.3286 0.428 5.0096 0.2533 0.3278 4.4995
6 0.468 0.6236 6.9768 0.445 0.5972 6.7103 0.3276 0.4268 4.994 0.2733 0.2043 4.5105
7 0.4767 0.6394 7.1899 0.4424 0.5932 6.6757 0.3282 0.4269 5.0038 0.2133 0.2427 4.992
8 0.4682 0.6276 6.9898 0.4519 0.6107 6.7899 0.3277 0.4266 4.998 0.2432 0.2333 4.3489
9 0.4848 0.6525 7.3656 0.4419 0.5975 6.6656 0.3272 0.4262 4.9893 0.2328 0.2554 4.4655

10 0.4608 0.6133 6.8227 0.4482 0.6016 6.7711 0.3275 0.4262 4.9952 0.2328 0.2412 4.651
11 0.462 0.6164 6.8987 0.4455 0.6022 6.7745 0.3272 0.4265 4.9918 0.2631 0.2943 4.8215
12 0.4547 0.6126 6.9756 0.4455 0.6025 6.721 0.3274 0.4265 4.996 0.2328 0.2342 4.3499
13 0.4592 0.612 6.8545 0.4439 0.598 6.6876 0.3276 0.4268 4.994 0.3026 0.2444 4.585
14 0.509 0.6582 7.4376 0.4444 0.6028 6.6422 0.3268 0.4258 4.9876 0.2533 0.2453 4.251
15 0.5148 0.6677 7.3453 0.4438 0.5961 6.7134 0.3269 0.4256 4.9842 0.2132 0.2433 4.815
16 0.4474 0.5996 7.0924 0.4467 0.5991 6.7905 0.328 0.4274 4.9991 0.2031 0.2121 4.2501
17 0.4674 0.6244 6.9551 0.4426 0.5946 6.679 0.3276 0.427 4.9964 0.2234 0.2543 4.495
18 0.4688 0.6245 7.0109 0.441 0.5963 6.6643 0.3274 0.4261 4.9922 0.2132 0.2314 4.625
19 0.4704 0.6391 7.0898 0.4427 0.5936 6.6678 0.3265 0.4252 4.9808 0.1935 0.2333 4.4635
20 0.4685 0.615 7.1212 0.444 0.5965 6.6865 0.3277 0.4272 5.0004 0.2032 0.2768 4.7011

Average value 0.4714 0.6271 7.0604 0.4446 0.5989 6.6997 0.3274 0.4264 4.9933 0.2337 0.2465 4.5512
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Table 9. MAE, RMSE, and MAPE of site 3 for each forecasting model.

Numbers of Test
BP BFGS-FA-BP SSA-BP SSA-BFGS-FA-BP

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

1 0.5404 0.7577 10.7941 0.5488 0.7665 10.4888 0.3887 0.5128 7.5209 0.2389 0.2851 6.752
2 0.5612 0.7752 10.9005 0.5623 0.7899 10.4192 0.3891 0.5143 7.5248 0.2389 0.2905 6.7538
3 0.5503 0.7679 10.784 0.5426 0.7681 10.5803 0.3905 0.5148 7.5595 0.2439 0.3051 7.0753
4 0.5519 0.7718 11.1111 0.5472 0.7707 10.6574 0.3882 0.5124 7.5094 0.2139 0.2885 6.6716
5 0.5509 0.7757 10.7029 0.5475 0.7694 10.6845 0.3902 0.5152 7.5699 0.2563 0.2768 6.9975
6 0.5518 0.7843 10.7331 0.5485 0.7601 10.6767 0.3888 0.5132 7.5312 0.2609 0.2905 7.1275
7 0.552 0.7628 10.8619 0.5645 0.7787 10.4793 0.3893 0.5142 7.5439 0.2389 0.279 6.8768
8 0.5561 0.7801 10.7375 0.5531 0.772 10.6667 0.3893 0.5135 7.5346 0.2204 0.2676 6.6675
9 0.553 0.7762 11.4947 0.534 0.7523 10.6886 0.3906 0.5154 7.5668 0.2539 0.2595 6.9075

10 0.5407 0.7588 10.6916 0.5515 0.7753 10.4897 0.3913 0.5158 7.6121 0.2339 0.3151 6.1558
11 0.5583 0.7745 10.9143 0.5571 0.7755 10.5834 0.3888 0.5135 7.5325 0.239 0.3005 6.8776
12 0.5615 0.7698 10.8 0.5462 0.7687 10.307 0.3884 0.5127 7.5142 0.2432 0.2982 6.6275
13 0.5447 0.7655 10.9335 0.5554 0.7754 10.5456 0.3897 0.514 7.526 0.2733 0.2775 6.8098
14 0.5491 0.7628 10.7102 0.5522 0.7697 10.5567 0.3915 0.5157 7.586 0.214 0.2591 6.4725
15 0.5466 0.77 10.8156 0.5456 0.7632 10.5918 0.3884 0.5134 7.537 0.2399 0.2835 6.7357
16 0.5415 0.7591 10.7132 0.549 0.7696 10.5576 0.3896 0.5142 7.5376 0.2238 0.2499 7.1752
17 0.5526 0.7702 10.9634 0.5483 0.7623 10.4912 0.3902 0.5151 7.5778 0.2546 0.29 6.3975
18 0.5608 0.7855 10.9059 0.5423 0.7615 10.4807 0.389 0.5124 7.5297 0.2434 0.2945 6.7595
19 0.5486 0.7667 11.2402 0.5378 0.7585 10.6654 0.3885 0.5126 7.5293 0.2386 0.2795 6.9808
20 0.5426 0.7708 10.9645 0.5437 0.7586 10.5158 0.3874 0.5122 7.4898 0.2444 0.3125 6.2753

Average value 0.5507 0.7703 10.8886 0.5489 0.7683 10.5563 0.3894 0.5139 7.5417 0.2407 0.2851 6.7548
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Table 10. MAE, RMSE, and MAPE of four seasons and various iterations in one site for each forecasting model.

Model Error Index
Season Iteration

Spring Summer Autumn Winter One Three Six Twelve

BP
MAE 0.5153 0.5975 0.4804 0.6708 0.5153 0.7955 1.0541 1.2740

RMSE 0.6842 0.8103 0.6054 1.0172 0.6842 1.0229 1.3421 1.6878
MAPE 7.8811 9.5102 13.7179 7.4235 7.8811 12.4853 16.7727 20.3831

BFGS-FA-BP
MAE 0.5106 0.6049 0.4629 0.5272 0.5106 0.7745 1.0051 1.3240

RMSE 0.6817 0.7996 0.5854 0.6651 0.6817 1.0064 1.2991 1.7399
MAPE 7.6191 9.2133 13.1582 6.1367 7.6191 12.0691 16.1433 21.2589

SSA-BP
MAE 0.3475 0.4486 0.3368 0.3625 0.3475 0.3651 0.6742 1.3673

RMSE 0.4635 0.5659 0.4243 0.4544 0.4635 0.4824 0.8456 1.7684
MAPE 5.2941 7.1654 9.9706 4.2700 5.2941 5.4943 10.6671 21.2998

SSA-
BFGS-FA-BP

MAE 0.1849 0.3875 0.2863 0.3159 0.1849 0.3354 0.6370 1.4349
RMSE 0.2461 0.4961 0.3941 0.4018 0.2461 0.4389 0.8154 1.8355
MAPE 4.8496 5.2463 7.5297 3.4269 4.8496 4.8671 9.9499 22.5317

Table 11. MAE, RMSE, and MAPE of various intervals in one site for each forecasting model.

Time (minutes) Model Error BP BFGS-FA-BP SSA-BP SSA-BFGS-FA-BP

10
MAE 0.5153 0.5106 0.3475 0.1849

RMSE 0.6842 0.6817 0.4635 0.2461
MAPE 7.8811 7.6191 5.2941 4.8496

30
MAE 0.9769 0.9444 0.6193 0.5854

RMSE 1.3655 1.2808 0.8087 0.7426
MAPE 9.9414 9.4053 6.6134 5.4780

60
MAE 0.9253 0.8890 0.6244 0.6043

RMSE 1.1464 1.1116 0.7881 0.7392
MAPE 28.3766 26.0956 19.1245 17.4441
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Table 12. Results of the DM test and operational time (s).

Performance Metric Compared Model Average Value

DM-test
BP 8.1064 *

SSA-BP 8.0468 *
BFGS-FA-BP 8.1696 *

Operational time

BP 0.3
SSA-BP 0.6

BFGS-FA-BP 490.3
Hybrid model 157.1

Note: * Indicates the 1% significance level.

4. Discussion

In this section, we initially discuss the application of SSA in preprocessing the original data, which
influences the forecasting performance. We also examine the MAPEs of decreased relative percentage
(DRP) between the proposed model and other forecasting approaches. Furthermore, we present and
discuss variations of the data selection.

4.1. Data Pre-Processing

In general, plenty of noise and high-frequency time series lie in the raw wind speed time
sequence. Therefore, the decomposition of the original data sequence is a significant process in data
filtering. This can always effectively enhance the prediction accuracy of the model to obtain better
forecast results. Through the comparison between BP and SSA-BP, we can assess the effectiveness of
the data pre-processing using a new metric called DRP (%), and its corresponding defining equation
is summarized as follows:

DRP =
MAPEi −MAPEj

MAPEi
× 100 (17)

The experimental results show that the method significantly enhances the forecasting effectiveness:
it decreases the MAPE by 32.8%, 29.3% and 30.7% for site 1, site 2 and site 3, respectively.

4.2. Neural Networks

In the field of practical engineering, the quality of a model depends on its effectiveness, rather
than its complexity. However, the question of how to seek an effective forecasting method to enhance
performance is not only a problem that is in urgent need of a solution, but also a critical problem
in the field of forecasting. The relevant study [58] showed that there was no one unified model for
forecasting time series, and model effectiveness under different circumstances should be analyzed
and understood, with incremental improvements being made on the basis of the knowledge gained;
therefore, it is impossible to find one model to solve all forecasting problems.

Thus, our attention should be more focused on the DRP of the error forecast by different
approaches using different data sets, in order to find a relatively good model for forecasting wind
speed time series. Through analyzing the difference between the proposed model and the other
comparative models, we can find that the proposed model improves effectiveness by 38.4654%, 35.5391
and 37.9645% for site 1, site 2 and site 3, respectively. The detailed results are presented in Table 13.
From the Table, we can see that the developed method has a very good performance in decreasing
wind speed forecasting error.
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Table 13. The DRP of MAPE of the proposed model and comparison models.

Cases
DRP of MAPE (%)

ENN WNN PSO/FA Elman Proposed Model

case 1 15.6250 10.2506 13.9158 38.4654
case 2 24.0000 32.1063 12.7855 35.5391
case 3 47.8261 - 15.4897 37.9645
case 4 35.2941 - - -

4.3. Data Selection

According to the forecast results, the 10-min interval data sequence achieves the best forecasting
effectiveness for all three observation sites, with an MAPE of approximately 6%; therefore, the proposed
hybrid model shows excellent performance in forecasting the wind speed time sequence at 10-min
intervals. The 10-min interval time series at each observation site decreases the forecasting error by
12.59%, 10.14% and 11.41%, respectively.

For the time series data with a 60-min interval, the forecast results are good for all three observation
sites, while the forecasting performance is worse than for the data with a 10-min interval. Therefore,
the SSA-BFGS-FA-BP is more applicable to forecasting the wind speed time sequence with a 10-min
interval, and the data selection will have a serious effect on forecasting effectiveness. However,
regardless of the time interval, the forecasting effectiveness is in an acceptable range. Many works
apply the wind speed series with time resolutions including 10, 30 and 60 min for the purpose of
the forecast, which is representative for studying wind speed forecasting. The detailed comparison
results are presented in Table 14.

Table 14. Comparison results of three observation sites with different time intervals.

Observation Sites 10-min 30-min 60-min

Site 1 4.8496 5.4780 17.4441
Site 2 4.5512 9.8730 14.6964
Site 3 6.7548 12.9558 18.1605

5. Conclusions and Future Work

As a kind of non-polluting and renewable energy source, wind energy has been increasingly
applied in the development of industry and agriculture, and its forecasting is becoming increasingly
important for wind farms. Recently, academia and wind farm projects have been gradually paying
more attention to wind speed forecasting. Perfect prediction can not only reduce costs and enhance
personal safety, but also help wind farm management develop more effective programs. The accuracy
of a model is as important as its stability in forecasting. It is of great interest to propose an outstanding
method for wind speed prediction with high accuracy and long-term stability. Nevertheless, wind
speed prediction has been generally considered a challenging task in terms of the effects of various
intangible factors, such as temperature, location, tides, atmospheric pressure, and other factors. In this
paper, to overcome these difficulties, a hybrid model that combines the SSA approach, BFGS-FA
algorithm, and BP method is presented.

The results based on evaluation criteria such as the MAE, RMSE, MAPE and a statistical test
are shown in a sequence of charts, in which the superior qualities of the developed hybrid method
are revealed most vividly. From the data in the tables and figures, we can draw the conclusion
that the proposed hybrid method achieves the best forecasting effectiveness and a higher stability
and reliability.

SSA is a practical decomposition approach, which can remove the noise from the raw data, leaving
the principal component for forecasting. The BP model, based on feed forward neural networks,
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has increasingly turned into a fairly distinguished tool. It is shown that the BP model can get its final
predictive results in a remarkably short time.

In brief, the hybrid model always has the lowest MAPE value compared with other single
forecasting methods, which implies that the hybrid method has the best performance and higher
reliability. Improvements in forecasting accuracy and stability can not only help to save large amounts
of energy and money, but also help to reduce the time the system requires. The experiments performed
in the present study show that the developed hybrid method is a potential algorithm with high
accuracy. In addition, the hybrid method could be applied to other fields of practical engineering,
such as electric load forecasting, stock price prediction, and solar resource forecasting.
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Abbreviations

ARIMA auto-regressive integrated moving average Genmax
the maximum number of
iterations

BFGS Broyden-Fletcher-Goldfarb-Shanno MAPE mean absolute percentage error
MLP multi-layer perceptron MAE mean absolute error
BP back propagation RMSE root mean square error
RBF radial basis function betamin minimum value of beta
RNN Recurrent Neural Networks gamma absorption coefficient
BPA back propagation algorithm DM Diebold-Mariano
PSO particle swarm optimization SVM Support Vector Machine
ANN artificial neural network T the length of time series
FA firefly algorithm Valuemin the minimum real value
BPNN back propagation neural network K the length of the trajectory matrix
CS cuckoo search SVD singular value decomposition
MCS modified cuckoo search GA genetic algorithm
Valueactual real value H0 the null hypothesis
SSA singular spectrum analysis H continuous function
EMD empirical mode decomposition WD wavelet decomposition
Valuenormalized data after linear transformation H1 the alternative hypothesis
Valuemax the maximum real value Zα/2 upper (or positive) Z-value
Zij an element of a generic matrix Z DRP decreased relative percentage
ENN Elman neural network WNN Wavelet neural network

Appendix A

Algorithm A1. BFGS.

Parameters:
δ–the tolerance of convergence. t –present iterative times.
Genmax–the max iterative times.
1: /*Initialize the convergence tolerance δ and present iterative times.*/
2: Set the convergence tolerance δ > 0, t← 0
3: Assess the inverse matrix of Hessian matrix at an initial value x◦

4: WHILE (t < Genmax) RUN
5: /* Compute search path.*/
6: dt = −Dt∇ f (xt)
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Algorithm A1. Cont.

7: /* Compute step size.*/

8: λt = argmin
λ≥0

f (xt + λdt)

9: /*Obtain the new iteration.*/
10: xt+1 = xt + λtdt

11: IF(xP
t+1 > xP

up) WELL
12: Xp

t+1 = xp
up

13: ELSE IF(xp
t+1 < xp

l◦) WELL
14: Xp

t+1 = xp
l◦

15: END
16: Compute Dt+1

17: Set t←t+1
18: END

Appendix B

Algorithm A2. FA.

Input:
x0

h = (x0(1), x0(2), . . . , x0(k))–a series of data for training.
x0

m = (x0(k + 1), x0(k + 2), . . . , x0(k + d))–a series of data for verifying.
Output:

xb−the corresponding value of x when it acquires the optimal fitness among all fireflies.
Parameters:

Genmax–the max iterative times. n–the total number of fireflies.
Fp–the fitness function according to firefly p. xp–nest p. g–the present number of iterations.
Lp–the brightness of firefly p. d–the dimension of the parameter.
1:: /* Define all the parameters related to FA.*/
2: /* Initialize the species of fireflies xp(p = 1, 2, . . . , n) at random.*/
3: FOR p = 1:n RUN
4: Assess the relevant fitness function Fp

5: END
6: /* Confirm light intensity. */
7: FOR p = 1:n RUN
8: Confirm the brightness Lp through F(xp)
9: END
10: WHILE (g < Genmax) RUN
11: FOR p = 1:n RUN
12: FOR q = 1:n RUN
13: /* Adjust the firefly from p to q in any direction.*/
14: IF (Lq > Lp) WELL

15: rpq =
∣∣xp − xq

∣∣ = √∑d
t=1 (xp,t − xq,t)

2

16: xp = xp + β0e−γr2
(xq − xp) + α(rand− 0.5)

17: END
18: Attraction changes with the distance r via e−r2

19: END
20: END
21: /*Renew the best nest xm of the d generation*/
22: FOR p = 1:n RUN
23: IF (Fm < Fb) WELL
24: xb ← xm;
25: END
26: END
27: END
28: RETURN xb
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Appendix C

Algorithm A3. BFGS-FA.

Input:

x(0)h = (x(0)(1), x(0)(2), . . . , x(0)(k)) –a series of data for training.

x(0)m = (x(0)(k + 1), x(0)(k + 2), . . . , x(0)(k + d))–a series of data for verifying
Output:

xb–the corresponding value of x when it acquires the optimal fitness among all fireflies.
Parameters:

Genmax–the max iterative times. n–the total number of fireflies.
Fp–the fitness function according to firefly p. xp–nest p. g–the present number of iterations.
Lp–the brightness of firefly p. d–the dimension of the parameter.

1: /*Define all the parameters related to FA and BFGS.*/
2: /* Initialize population of n fireflies xp(p = 1, 2, . . . , n) at random.*/
3: FORp = 1:nRUN
4: Assess the relevant fitness function Fp

5: END
6: /* Confirm light intensity*/
7: FOR p = 1:n RUN
8: Confirm brightness Lp through F(xp)
9: END
10: WHILE (g < Genmax ) RUN
11: FOR p = 1:n RUN
12: FOR q = 1:n RUN
13: /* Adjust the firefly from p to q in any direction */
14: IF(Lq > Lp) WELL

15: rpq =
∣∣xp − xq

∣∣ = √∑d
t=1 (xp,t − xq,t)

2

16: xp = xp + β0e−γr2
(xq − xp) + α(rand− 0.5)

17: END
18: Attraction changes with the distance r via e−r2

19: Apply BFGS to help to renew the new site of fireflies xp(p = 1, 2, . . . , n) quickly.
20: /*Assess the new position and renew the new light intensity Lp.*/
21: FOR p = 1:n RUN
22: Assess the relevant fitness function Fp

23: END
24: /* Update the brightness*/
25: FOR p = 1:n RUN
26: Confirm the brightness Lp through F(xp)
27: END
28: END
29: END
30: /*Update best nest xm of the d generation.*/
31: FOR p = 1:nRUN
32: IF(Fm < Fb)WELL
33: xb ← xm

34: END
35: END
36: END
37: RETURN xb
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