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Abstract: This work proposes three switched control strategies for aggregated heating, ventilation,
and air conditioning (HVAC) systems in commercial buildings to track the automatic generation
control (AGC) signal in smart grid. The existing control strategies include the direct load control
strategy and the setpoint regulation strategy. The direct load control strategy cannot track the
AGC signal when the state of charge (SOC) of the aggregated thermostatically controlled loads
(TCLs) exceeds their regulation capacity, while the setpoint regulation strategy provides flexible
regulation capacity, but causes larger tracking errors. To improve the tracking performance, we took
the advantages of the two control modes and developed three switched control strategies. The control
strategies switch between the direct load control mode and the setpoint regulation mode according
to different switching indices. Specifically, we design a discrete-time controller and optimize the
controller parameter for the setpoint regulation strategy using the Fibonacci optimization algorithm,
enabling us to propose two switched control strategies across multiple time steps. Furthermore,
we extend the switched control strategies by introducing a two-stage regulation in a single time step.
Simulation results demonstrate that the proposed switched control strategies can reduce the tracking
errors for frequency regulation.

Keywords: automatic generation control (AGC); demand response; heating, ventilation, and air
conditioning (HVAC); switched control; smart grid

1. Introduction

As smart grid construction is rapidly executed and large-scale intermittent renewable energy
resources are being integrated, demand response programs enable consumers to schedule loads in
order to save energy, reduce costs, and help grid operation [1]. Ancillary service, which is required to
support the reliable delivery of electricity and the operation of transmission systems, is an important
component of electric service. Ancillary service includes voltage control, black start, spinning reserve,
replacement, load following, and frequency regulation [2].

In the power grid, the imbalance between the generation and the load often results in mismatches
in frequency [3]. Traditionally, rapidly responding generators and grid-scale energy storage units have
provided frequency regulation [4]. Since the schedulable electrical loads are popular in commercial
buildings and residences, they have become promising candidates in enhancing the property of
power systems. As the main components of schedulable electrical loads, thermostatically-controlled
loads (TCLs), which include heat pumps, chillers, and air conditioners, are suitable for regulating their
aggregate power to serve for the demand response [5–8]. A simple TCL, such as a frequency-fixed
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air conditioner, usually has two operation states, i.e., on/off, each of which corresponds to one
output power level, Prated or 0. The simple on/off state transition makes it possible for the TCLs to
participate in ancillary service. When the generation is in surplus, the TCLs can “charge” by turning on,
and during the periods of scarcity, they “discharge” by turning off [9]. The dynamic modeling of
TCLs was first studied in [10] and applied in cold load pickup. A variation of the alternating direction
method of multipliers (ADMM) algorithm was proposed to achieve the distributed optimization of
aggregated TCLs [11].

As a representative type of TCLs, the heating, ventilation, and air conditioning (HVAC) units,
which are widely installed in commercial buildings, are studied and analyzed widely in terms of
different aspects. It is essential to study the load dynamics, the model parameters, the temperature
evolution, and the power consumption of HVAC units. The control of the air pressure and temperature
for HVAC units was considered to keep rooms in desired conditions by the authors of [12–14].
The energy management of HVAC units was developed to remove the peak load and match supply
with demand by the authors of [15–17].

The HVAC units are usually regulated by turning them on or off directly. A state queuing model
and a temperature priority list strategy were presented in [18] to control the on/off states of the
HVAC units. A centralized control framework of the HVAC units was presented in [19–21] to provide
continuous regulation services, and the operational characteristics were analyzed under different
system states and communication models. A novel two-level scheduling method was proposed
in [22] to minimize the energy imbalance cost. In [23], the authors modeled the aggregated HVAC
units as a generalized energy storage battery and proposed a temperature-priority control strategy to
control the power consumption to track the frequency regulation signal to serve for the grid, and the
tracking errors were reduced by controlling the on/off states directly. The temperature setpoint and
the deadband are not regulated in this control mode, which limits the HVAC units’ ability to “store”
or “release” energy. Furthermore, the tracking error is extremely large when the synchronization of
loads occurs.

Setpoint regulation is another control strategy to regulate the HVAC units [24]. The authors
of [25–28] proposed several types of controllers, such as the internal model controller, the linear
quadratic controller and the Lyapunov stable controller to achieve peak shaving or load shifting by
regulating the temperature setpoint. A heuristic algorithm based on the setpoint regulation was
developed for decentralized implementation in [29]. Regulating the temperature setpoint enlarges the
energy storage capacity, but the setpoint regulation causes large chattering effects and tracking errors.

To reduce the errors when tracking the automatic generation control (AGC) signal, we combine
the two types of control strategies and develop three switched control strategies. Specifically, the direct
load control strategy is used when the energy capacity is sufficient, and the setpoint regulation strategy
is adopted when the capacity is insufficient. To implement the switching control strategies, we must
first address two problems: What is the optimal control law for temperature setpoint regulation? What is the
best method for switching between the two control strategies? This study deals with these problems and
achieves the following contributions:

• A discrete-time controller is proposed to adjust the setpoints of the HVAC units and the Fibonacci
optimization algorithm is used in [30] to obtain the optimal parameter of the controller.

• The switching indices are established before presenting the switched control strategies to track
the AGC signal.

• A two-stage regulation strategy is proposed in a single time step to improve the tracking
performance of the switched control strategies.

The rest of the paper is organized as follows. Section 2 describes the operation characteristics of
the HVAC units and the two typical control strategies, and then establishes the switched control model.
Section 3 covers the controller design and parameter optimization using the Fibonacci algorithm and



Energies 2017, 10, 953 3 of 18

presents three switched control strategies across multiple time steps. The simulation results are shown
in Section 4 , and the conclusions are summarized in Section 5 .

2. System Model and Control Strategies

This section introduces the individual HVAC model and the typical control strategies in
commercial buildings before establishing a switched control model.

2.1. Individual HVAC Model

The coupled equivalent thermal parameters (ETP) model includes two temperature variables,
the internal air temperature T and the mass temperature Tm [31], while the simplified HVAC model
only contains T under the assumption that Tm is equal to T [19–21]. In this work, we use the simplified
HVAC model [32]. For a system including N HVAC units, the temperature evolution of the i-th HVAC
unit in the cooling mode can be expressed as:

Ti(k + 1) = (Ta −mi(k)RiPi) (1− ϑ) + Ti(k)ϑ + ω, (1)

where,
ϑ = e−h/(RiCi), (2)

mi(k + 1) =


0, if mi(k) = 1 & Ti(k) ≤ Tmin

i ,

1, if mi(k) = 0 & Ti(k) ≥ Tmax
i ,

mi(k), otherwise,

(3)

Tmax
i = Tset

i + ∆/2, Tmin
i = Tset

i − ∆/2, (4)

and mi is a binary variable, which represents whether the HVAC unit is on or off. The power
consumption of the aggregated HVAC units can be calculated by:

y(k) =
N

∑
i=1

1
ηi

mi(k)Pi (5)

2.2. Typical Control Strategies

The typical control strategies of the aggregated HVAC units in commercial buildings can be
classified into two categories: the direct load control strategy and the setpoint regulation strategy.
The specific control processes are described below.

The first type of control strategies is based upon the on/off state control, namely the direct
load control. According to the state information, the control center decides which loads should be
turned on or off based on certain strategies, such as the temperature priority control strategy [23].
Specifically, the internal air temperatures order the aggregated loads. The “on” loads with lower indoor
temperatures have a higher priority to turn off, and the “off” loads with higher indoor temperatures
have a higher priority to turn on in the cooling mode. Then the loads will be turned on or off in
sequence until the desired objective is achieved, and the on/off operations in sequence can make full
use of the reserve capacity of the HVAC units. It was suggested that the direct load control strategy is
restricted by the state of charge (SOC) of the aggregated loads [23]. When the SOC exceeds the capacity
limits, the aggregated loads cannot track the AGC signal anymore.

The second type of control strategies is based on setpoint regulation. For instance, a bilinear system
model was derived in [33] to approximate the dynamics of the aggregate HVACs, and a sliding-mode
control strategy in the continuous-time form was developed to regulate the setpoint. It was concluded
that the aggregated loads cannot track the AGC signal when the stability condition is not satisfied [33].
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2.3. Control Strategy Comparison

The main difference between the two control strategies is the temperature range of the loads to
be scheduled. One is to control all the loads directly in the whole deadband, except for the loads
which must be on or off due to the temperature limits. The other is to regulate the loads near the edges
indirectly by their self-operations. The tracking performance is better under the temperature priority
control strategy when the energy capacity is enough. The loads are only turned on or off with one
more or less load than the control objective under the temperature priority control strategy. Although
the energy capacity is enlarged dynamically by adjusting the setpoint in the sliding-mode control
strategy, it will cause a larger tracking error.

We use a Monte Carlo method and MATLAB R2009a (MathWorks, Natick, MA, USA) to evaluate
the performances of 1000 HVAC units under the two control strategies and give the simulation
parameters in Table 1 [9,34], where R, C, and P are assumed to follow Gaussian distributions.
These parameters can be obtained based on the methods in [35,36], e.g., the short-term energy
monitoring (STEM) method. The averages of R, C, and P are shown in Table 1, and the standard
deviations are 0.1. The initial load temperatures are assumed to be distributed uniformly in the
deadband. The baseline power PBL is set as:

PBL(t) =
N

∑
i=1

Ta − Tset
i

ηiRi
. (6)

Table 1. Parameter settings.

Parameters Meanings Values

R Average thermal resistance 2 ◦C/kW
C Average thermal capacitance 2 kWh/◦C
P Average energy transfer rate 14 kW
η efficiency coefficient 2.5

Tset Initial temperature setpoint 20 ◦C
Ta Ambient temperature 32 ◦C
∆ Thermostat deadband 0.5 ◦C
ρ Control gain 8.6 ◦C/h
ζ Boundary layer 200 kW
h Time step 4 s

The AGC signal within two hours is randomly chosen from the Pennsylvania–New Jersey–Maryland
Interconnection (PJM) electricity markets to demonstrate the tracking performance [37]. The power
deviation is defined as the difference between the aggregated power and the baseline power.
The tracking performances during 2 h are shown in Figures 1 and 2. The figure with 1000 HVAC
units contains a lot of data and occupies large storage space. Without loss of generality, we randomly
choose 100 out of them.

As shown in Figure 1, the tracking performance is good when the stored energy is still in the
capacity bounds. However, when the loads are centered at the temperature edges, the synchronization
occurs and the loads cannot track the signal. At the same time, the AGC signal exceeds the energy
capacity so that the loads cannot track the regulation signal. It can be concluded that the centering at
the temperature limits of HVAC units corresponds to the situation that the available energy capacity
is depleted. Due to the temperature limits, some of the HVAC units must be turned on or off, so there
are not enough HVAC units to be scheduled. It means that the energy is fully discharged or charged.
In that case, the loads are turned on or off frequently, and the wear of the HVAC units is severe.
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In Figure 2, the tracking error is caused by the chattering effects and is much larger than that
in Figure 1 when the loads are not centering at edges, but the temperature distribution of loads
is almost uniform. The energy storage capacity is enlarged, and the aggregated HVAC units can
charge or discharge sustainedly. Moreover, since the scheduled loads are near the temperature edges,
the “short-cycling” problem is avoided and the wear of the HVAC units is reduced. However, the
change of the setpoint reduces the thermal comfort of consumers and the satisfaction levels.
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Figure 1. (a) AGC signal tracking under the temperature priority control strategy; (b) Temperature
distribution of 100 HVAC units (randomly chosen out of 1000) and (c) State of charge.
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Figure 2. (a) AGC signal tracking under the sliding-mode control strategy; (b) Temperature distribution
of 100 HVAC units (randomly chosen out of 1000).
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Remark 1. Figure 1 and Figure 2 are given to show the tracing performances of the temperature priority control
strategy and the sliding-mode control strategy, respectively. It can be observed that the AGC signal within 2 h is
enough to show the chattering effects and the case that the AGC signal exceeds the energy capacity.

2.4. Switched Control Model

The switched control model is established based upon the two control strategies described
in Section 2.2. The diagram of the switched control model across multiple time steps is shown
in Figure 3.

HVAC1 HVAC2 HVACi HVACn

Aggregated Loads

AGCP

BLP

Switching conditions

Control strategies

SOC

Robustness 

condition

Temperature

priority

Sliding 

mode

Two-stage 

regulation

i
T i
m Control input

t argetP

Figure 3. Diagram of the switched control model.

The control center uses the SOC or the stability condition of the control gain as the switching
indices and calculates them by collecting the state information of the HVAC units. Different
control strategies are used to perform the tracking according to the values of the switching indices.
The switched control strategies are achieved through the following steps:

(1) First, we design a discrete-time sliding-mode controller to regulate the temperature setpoint and
search for the optimal control gain by the Fibonacci optimization algorithm.

(2) Second, we present a pair of switched control strategies according to two switching indices, which
are then used to decide which control strategy should be applied across multiple time steps.

(3) Third, we introduce a two-stage regulation in a single control cycle, which means that the loads
are regulated twice in one time step. The third switched control strategy is then developed to
further improve the tracking performance.

The specific description of the switched strategies is shown in Section 3 . We obtain the optimal
parameter of the sliding-mode controller, design two switching indices, and consequently present
three switched strategies.

3. Controller Design and Optimization

For a population of aggregated HVAC units, the average temperature deadband is divided
uniformly into n bins, in which each bin contains the “on” loads and “off” loads. In that case,
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there are 2n states and any given HVAC unit corresponds to a certain state. The continuous-time
model in [33] can be discretized into:

x(k + 1) = (A + I)x(k) + Bx(k)u(k), (7)

y(k) = Hx(k). (8)

where x(k) is a 2n × 1 vector that represents the numbers of loads in each state, y(k) is the total
power consumption, and u(k) is the average change of the temperature setpoint in the kth step.
H = [0, ..., 0|n, P/η, ...P/η] is a 1 × 2n vector, I is the identity matrix, and A is the state matrix:

nh
∆



−α 0 −β

α −α
. . . . . . . . .

α −α

0 α β 0
−β β

. . . . . . . . .
−β β

0 0 −β β


, (9)

The input matrix B is given by:

nh
∆



1 0 1
−1 1

. . . . . . . . .
−1 1

0 −1 −1 0
1 −1

. . . . . . . . .
1 −1

0 0 1 −1


. (10)

The parameters in A are detailed as,

α =
1

CR
(Ta − Tset), (11)

β =
1

CR
(Ta − Tset − RP). (12)

The sliding-mode controller u in the discrete-time form is defined as,

u(k) = −ρsgn (e (k)) , (13)

where ρ is the control gain, e (k) = PAGC (k) − y (k), and PAGC (k) is the AGC power signal in
time step k.

It was proven in [38] that the systems (7)–(8) are globally asymptotically stable with the
sliding-mode controller (13) if ρ satisfies a robustness condition:

ρ > ρ̂ =

∣∣∣∣∆PAGC (k)− ϕ

ψ

∣∣∣∣ , (14)



Energies 2017, 10, 953 8 of 18

where ∆PAGC (k) = PAGC (k + 1)− PAGC (k), ϕ = HAx(k), and ψ = HBx(k). The robustness condition
specifies the lower bound of the control gain. Due to the high frequency switching of the signum
function, the chattering effect of the sliding mode controller is inevitable. It causes larger tracking errors
and results in more meaningless state transitions of the HVAC units. To reduce the passive impact of the
chattering effect on tracking performance, we applied the boundary layer-based method. This method
is accomplished by substituting the signum function with a tunable saturation function, i.e.,

sat(s/ζ) =

{
sgn (s) , |s| > ζ,

s/ζ, |s| ≤ ζ,
(15)

where s = e(k), and ζ is the width of boundary layer. The introduction of the boundary layer leads
to the effective convergence of the tracking error to a zone bounded by ζ. Therefore the final control
input is:

u(k) = −ρ sat (e(k)/ζ) (16)

When ρ < ρ̂, the Lyapunov stability is not satisfied and the tracking error is large [33].
The state information (Ti and mi) of the HVAC units should be measured in real time, and the
parameters (Ri, Ci, and Pi) of the HVAC units should be collected to the controller. This depends
on the advanced metering infrastructure (AMI) and the information processing capability of the
control centers.

Remark 2. In this control mode, the upper and lower temperature bounds are regulated along with the setpoints
of the TCLs according to (4), and the deadband of each TCL is fixed.

3.1. Parameter Optimization

The tracking error in the setpoint regulation strategy is related to the control gain of the
sliding-mode controller. It is necessary to find the optimal controller gain ρ to improve the
tracking performance. The root-mean-square error (RMSE) percentage is used to evaluate the
tracking error, i.e., the deviation between the AGC signal and the actual response:

RMSE =

√√√√√√
Ns
∑

k=1
e(k)2

Ns(Pmax
AGC − Pmin

AGC)
2

(17)

Adjusting the control gain ρ according to the robustness condition in real time is a challenging
work in practice because the AGC signal is highly unpredictable. In that case, ρ is usually chosen
large enough to satisfy (14). However, the large gain ρ can induce the sliding-mode chattering effect,
which results from the high frequency switching of the signum function. If ρ is excessively large,
the chattering effect is serious and the RMSE will increase significantly.

To find the relationship between RMSE and the gain ρ, we calculated the actual RMSE values
at different ρ in Figure 4. From the figure, we can observe that the relationship between them is a
unimodal function and there exists a minimum RMSE value. However, the exact analytic expression
RMSE = f (ρ) is unknown. In that case, the analytical solution at the minimum RMSE cannot be
obtained. However, the numerical solution can be achieved using the Fibonacci optimization Algorithm
A1 [30]. The detailed description of it is shown in the Appendix A.

According to the diagram shown in Figure 5, ρ∗ = 8.4 ◦C/h is calculated based on the historical
statistical AGC data and can be used for future control. By utilizing the daily signals for 1 May
through 10, 2014, we can observe that the optimal gains in different days are close across the time of
day, as shown in Table 2. Thus, it is reasonable to take the mean value of them as the optimal gain.
In this case, the mean value ρ̄∗ is 8.6 ◦C/h, and it will be applied in the switched control strategies.
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Figure 4. The relationship between the RMSE and ρ.
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Figure 5. Diagram of the Fibonacci optimization algorithm.

Table 2. The optimal controller gains in different days.

Day 1 2 3 4 5 6 7 8 9 10

ρ (◦C/h) 8.95 8.39 9.43 8.39 8.60 8.08 8.39 8.94 8.60 8.39

3.2. Switched Control Strategies I and II

In this subsection, two switched control strategies across multiple time steps are proposed to
further reduce the tracking error. To achieve a smaller tracking error, we adopt different control
strategies according to the operation states of the loads. It is necessary to define the switching indices
and decide which control strategy should be applied.

For energy storage devices, an index named SOC is used to denote the state of charge; the index is
the ratio of the remaining energy and rated capacity. The populations of HVAC units are represented
as generalized battery models to analyze the aggregate flexibility. The SOC of the aggregated HVAC
units under the cooling mode can be defined as:

SOC(t) =

N
∑

i=1
(Tmax

i (t)− Ti(t))/∆i

N
(18)

If all room temperatures reach their upper limits, the SOC is 0, which means the stored energy is
used up; if all room temperatures reach their lower limits, the SOC is 1, which means the stored energy
is full. For traditional energy storage devices, the significant deep-discharging and over-charging
process will reduce the service time. The same is true for the aggregated HVAC units because
when the SOC is 1 or 0, the loads are centered at the edges and turn on or off frequently. We have
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noted that the loads are never centered at the edges in the setpoint regulation mode, which means
that the deep-discharging or over-charging state can be avoided. Thus the SOC can be chosen as a
switching index. The lower bound ρ̂ in (14) was selected as another switching index because when
ρ > ρ̂ is not satisfied, the tracking error is large.

Four thresholds (a, b, c, d) of the SOC were introduced to establish the switched control strategies.
The thresholds represent different energy states of the aggregated HVAC units. We can decide which
control strategy should be applied according to whether the SOC reaches the thresholds and which
thresholds the SOC reaches. The values of a and b represent that the SOC is close to the lower and
upper energy limits, respectively. Once the SOC reaches a or b, the temperature priority control strategy
should be switched to the sliding-mode control strategy. c and d represent that the SOC is far enough
from the energy limits, and thus the temperature priority control strategy should be used.

3.3. Switched Control Strategy III

To further reduce the tracking error, we can utilize the precision tracking character of the
temperature priority control and the ability of enlarging energy capacity of the sliding-mode control
by adopting the two methods in a single time step. Figure 6 describes this basic idea. Assume that
the loads are operating in the temperature region [Tmin, Tmax] on the basis of the initial setpoint.
In the first stage, the sliding-mode control strategy is used to increase or decrease the temperature
setpoint, and the temperature region is changed to [T

′
min, T

′
max]. After that, the loads are divided

into an out-of-region group and an in-region group, namely Part 1 and Part 2. In the second stage,
the temperature priority control strategy is used to control the loads in Part 2 to further reduce the
tracking error.

t t

T

Part 1

Part 2

0
t

min
T

max
T

'

max
T

'

min
T

t

T

1
t

Figure 6. Two-stage regulation in a time step [t0, t1].

This two-stage regulation in a time step is detailed as follows.

• Utilize the sliding-mode control strategy to track the AGC signal and output the tracking error.
• Divide the loads into Part 1 and Part 2.
• Control the loads in Part 2 based on the temperature-priority control strategy to compensate for

the tracking error.

Combined with the two-stage regulation, the process of the three switched control strategies is
shown in Figure 7. In the flow chart, blocks A, B, and C have different meanings under the three
switched control strategies. The detailed description is presented in Table 3.
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Figure 7. Flow chart of the switched control strategies.

Table 3. Flow chart description.

Control Strategies Block A Block B Block C

Switched Control Strategy I Temperature-priority control Calculate ρ̂ in (14) ρ < ρ̂?
Switched Control Strategy II Temperature-priority control Calculate SOC(k) c< SOC(k)<d?
Switched Control Strategy III Two-stage regulation Calculate SOC(k) c< SOC(k)<d?

4. Simulation Results

In the simulation, we are referring to the theoretical HVAC systems described in Section 2.
Here, 104 HVAC units are used to track the daily AGC signal from the PJM electricity markets [37].
The simulation and control parameters are shown in Table 1. The initial upper and lower limits are
calculated according to Equation (4), and the initial load temperatures are assumed to be distributed
uniformly in the deadband. The switching thresholds were chosen based on the rule in Section 3.3.
Their values are defined as a = 0.15, b = 0.85, c = 0.3, d = 0.7, and ρ = ρ̄∗ = 8.6 ◦C/h. The power
deviation is defined as the difference between aggregated power and baseline power.

The AGC tracking results, the temperature setpoint trajectories, and the SOC under the three
switched control strategies are shown in Figures 8–10, respectively.
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Figure 8. (a) AGC signal tracking; (b) temperature setpoint trajectory; (c) SOC of Switched Control I.
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Figure 9. (a) AGC signal tracking; (b) temperature setpoint trajectory; (c) SOC of Switched Control II.

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Time (h)

P
o
w

er
 (

k
W

)

 

 

Power deviation AGC signal

(a)

0 0.5 1 1.5 2
19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

Time (h)

T
se

t  (
°
C

)

(b)

0 0.5 1 1.5 2
0

0.15

0.3

0.5

0.7

0.85

1

Time (h)

S
O

C

Sliding−mode

Two−stage regulation

Sliding−mode

Two−stage regulation

(c)

Figure 10. (a) AGC signal tracking; (b) temperature setpoint trajectory; (c) SOC of Switched Control III.

From the temperature setpoint trajectories in Figures 8b and 9b, it can be observed that the control
modes were switched during the simulation. When the setpoint is not changed, the temperature
priority mode is active, and otherwise, the sliding-mode strategy is active. Moreover, the switches can
also be observed from the SOC results, i.e., Figures 8c and 9c. Once one of the thresholds is reached,
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the control mode is changed correspondingly. However, the switches under Switched Control III can
be only observed by the SOC results in Figure 10c because the temperature setpoint is regulated all the
time in Figure 10b.

Furthermore, Table 4 provides comparisons of the RMSE, the variation range of the setpoint,
and the number of on/off operations with the related works.

Table 4. Comparisons with the related works.

Control Strategies RMSE Setpoint Range (◦C)
The Number of on/off Operations
Average Maximum Minimum

Temperature priority control [23] 19.15% 20 6710 7804 5623
Sliding mode control [33] 2.78% 19.42∼22.33 159 211 123

Sliding mode control (ρ̄∗ = 8.6) 2.51% 19.41∼22.32 159 209 123
Switched Control Strategy I 1.59% 19.64∼22.17 299 417 223
Switched Control Strategy II 1.15% 19.61∼22.19 307 441 230
Switched Control Strategy III 0.94% 19.66∼22.16 363 495 279

The large tracking error associated with the temperature priority control strategy was caused by
the energy storage limits of the aggregated HAVC units. In fact, the tracking error is very small when
the SOC does not exceed the energy storage limits [23]. The following observations were obtained
from the simulation and comparison results:

• The tracking performances of the HVAC units under the three switched control strategies
are better than they were when using the temperature priority control or the sliding-mode
control individually. This is because that the switched control strategies select the appropriate
control methods according to the system states. Hence, the disadvantage of each individual
method is mitigated. It is observed that the switched control strategies have smaller RMSE and
less stepoint changes, and thus they are promising for the frequency regulation.

• On the system operator side, the RMSE value is an important factor. A large RMSE means more
reserve capacity is needed, which increases the costs. A small RMSE value stands for good AGC
tracking performance, and thus Switched Control Strategy III is the best candidate.

• On the consumer side, the temperature should be maintained in a comfortable region.
Thus, the small variation range of the temperature setpoint is preferable. It is observed from
Table 4 that the setpoint range of Switched Control Strategy III is the smallest, hence it should be
considered first.

• Considering the computing overhead, Switched Control Strategy III is more complex than
the others, which is caused by the two-stage regulation. Therefore, to achieve a tradeoff between
the RMSE and the computing overhead, Switched Control Strategy I and II are the better choices.

• Considering the wear and tear of the HVAC units, greater numbers of on/off state operations
result in more severe wear and tear. The on/off state operations of the sliding-mode control
strategy is the least, as shown in Table 4. Hence, to prolong the lifespan of the HVAC units,
the sliding-mode control strategy is preferred.

5. Conclusions

In this paper, we proposed three switched control strategies for the HVAC units to support
frequency regulation in smart grid. We observed that the tracking errors under the proposed switched
control strategies are smaller than that under a single control mode. The variation ranges of setpoint
under the three strategies are also smaller, which means the strategies can relieve consumer discomfort.
The findings of this research are two-fold: First, the optimal parameter ρ of the sliding-mode controller
was obtained using the Fibonacci optimization algorithm. The aggregated HVAC units performed
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better with the optimal parameter. Second, with the established switching indices and the two-stage
control in a time step, three switched control strategies across multiple time steps were designed to
track the AGC signal. It is shown that the switched control strategies have smaller tracking errors
than the direct load control and sliding-mode control strategies, and the variations of the temperature
setpoint and the numbers of on/off operations are acceptable.

For the implementation, the electricity company should sign contracts with consumers in advance
to determine the responsibilities and obligations of both parties. Then, according to the contracts, the
electricity company choose appropriate methods to regulate the power consumption of the loads, and
the regulation can be achieved based on the advanced metering infrastructure.

Acknowledgments: This research was supported in part by National Natural Science Foundation of China
under Grants 61573303, 61503324, and 61473247, in part by Natural Science Foundation of Hebei Province
under Grant F2016203438, E2017203284, and F2017203140, in part by Project Funded by China Postdoctoral
Science Foundation under Grant 2015M570233 and 2016M601282, in part by Project Funded by Hebei Education
Department under Grant BJ2016052, in part by Technology Foundation for Selected Overseas Chinese Scholar
under Grant C2015003052, and in part by Project Funded by Key Laboratory of System Control and Information
Processing of Ministry of Education under Grant Scip201604.

Author Contributions: Kai Ma wrote the paper and performed the experiments; Chenliang Yuan conceived
the experiments; Jie Yang contributed the idea and designed the experiments; Zhixin Liu analyzed the data;
Xinping Guan contributed the analysis tools.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

T The internal air temperature (◦C)
Tm The internal mass temperature (◦C)
Ta The outdoor air temperature (◦C)
Ti The internal air temperature of i-th HVAC (◦C)
mi The on/off state of i-th HVAC
Ri The thermal resistance of i-th HVAC (◦C/kW)
Ci The thermal capacitance of i-th HVAC (kWh/◦C)
Pi The energy transfer rate (kW)
Tset

i The temperature setpoint of i-th HVAC (◦C)
Tmax

i The upper temperature limit of i-th HVAC (◦C)
Tmin

i The lower temperature limit of i-th HVAC (◦C)
∆ The width of the temperature deadband (◦C)
h The time step (s)
ω The disturbances
ηi The efficiency coefficient of i-th HVAC
y The power consumption of aggregated HVAC units (kW)
x The number of loads in corresponding temperature bins
R The average thermal resistance (◦C/kW)
C The average thermal capacitance (kWh/◦C)
P The average energy transfer rate (kW)
PBL The baseline of power consumption (kW)
Tset The initial average temperature setpoint (◦C)
ρ The control gain of the sliding-mode controller (◦C/h)
ζ The boundary layer of the sliding-mode controller (kW)
PAGC The power of AGC signal (kW)
Pmin

AGC The minimum power of AGC signal (kW)
Pmax

AGC The maximum power of AGC signal (kW)
N The number of aggregated HVAC units
Ns The number of simulation steps
a, b, c, d The thresholds of SOC
n The number of temperature bins
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Appendix A

The Fibonacci optimization algorithm is an interval contraction algorithm, which is widely
used in searching for the extreme value of one-humped function. It is necessary to introduce the
Fibonacci sequence in order to calculate the interval contraction ratio. The elements of the Fibonacci
sequence {Fn} satisfy the following conditions:

F0 = F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.

At the beginning of the algorithm, the number of test points n can be calculated according
to the initial interval and the final interval width. Next, the ratio of interval contraction in k-th
iteration is Fn−k/Fn−k+1. Based on this, the test points can be determined in each iteration, and the
interval is updated by comparing the function value of them. The detailed procedure of the algorithm
to solve our problem is described as follows.

Algorithm A1 Fibonacci optimization

Input: The initial optimization interval: [α, β]; The final interval width: δ; The Fibonacci numbers:

F0 = F1 = 1
Output: Controller gain: ρ∗

Find the minimum n that satisfies Fn ≥ (β− α)/δ

Set k = 1

Calculate test points: ρ1 = α + (β− α)Fn−2/Fn; ρ2 = α + (β− α)Fn−1/Fn;

and RMSE1 = f (ρ1); RMSE2 = f (ρ2)
while (k < n− 2) do

if RMSE1 > RMSE2 then

α← ρ1; (ρ1, RMSE1)← (ρ2, RMSE2); Update ρ2 = α + (β− α)Fn−k−1/Fn−k and RMSE2
else

β← ρ2; (ρ2, RMSE2)← (ρ1, RMSE1); Update ρ1 = α + (β− α)Fn−k−2/Fn−k and RMSE1
end if

k = k + 1
end while
if RMSE1 > RMSE2 then

α← ρ1
else

β← ρ2 (ρ2, RMSE2)← (ρ1, RMSE1)
end if

Update ρ1 = ρ2 − 0.1(β− α) and RMSE1
if RMSE1 > RMSE2 then

ρ∗ = 0.5(ρ1 + β)
else if RMSE1 < RMSE2 then

ρ∗ = 0.5(α + ρ2)
else

ρ∗ = 0.5(ρ1 + ρ2)
end if
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