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Abstract: Many electric vehicles’ (EVs) charging strategies were proposed to optimize the operations
of the power grid, while few focus on users’ benefits from the viewpoint of EV users. However, low
participation is always a problem of those strategies since EV users also need a charging strategy
to serve their needs and interests. This paper proposes a method focusing on EV users’ benefits
that reduce the cost of battery capacity degradation, electricity cost, and waiting time for different
situations. A cost model of battery capacity degradation under different state of charge (SOC) ranges
is developed based on experimental data to estimate the cost of battery degradation. The simulation
results show that the appropriate planning of the SOC range reduces 80% of the cost of battery
degradation, and the queuing theory also reduces over 60% of the waiting time in the busy situations.
Those works can also become a premise of charging management to increase the participation.
The proposed strategy focusing on EV users’ benefits would not give negative impacts on the power
grid, and the grid load is also optimized by an artificial fish swarm algorithm (AFSA) in the solution
space of the charging time restricted by EV users’ benefits.

Keywords: electric vehicle; cost model of battery degradation; charging management; optimal
scheduling; load control; Monte Carlo

1. Introduction

The penetration and the market scale of electric vehicles (EVs) have been increasing for the last
couple of years. Electric vehicles will hopefully substitute conventional fossil fuel vehicles to alleviate
environmental pollution due to carbon emission reduction [1].

It is commonly accepted that large-scale EV integration can cause a technical challenge for grid
stability [2–5]. Numerous studies have been performed toward controlling EVs’ charging behaviors
in various ways to mitigate the negative impacts on the power grid [6,7]. A centralized charging
strategy with an aggregated EV charging model was developed to flatten the daily load curve in [8,9],
developing an energy management system to perform peak-load shifting by utilizing EVs, used EV
batteries, and photovoltaicpanels. A new coil design set with a special arrangement which is effective
for dynamic charging of EVs has been proposed to maintain a nearly uniform coupling factor and
negligible power transfer fluctuation in [10]. A method which manages the EVs’ charging demand for
minimizing the distribution network line loss was proposed in [11]. In order to incentivize EV users to
participate in charging management strategies, many charging strategies with pricing mechanisms for
electricity to shift EV charging times have been proposed [12,13]. References [14–16] put forward a
transactive control method which applies market mechanisms to engage self-interested responsive
loads to flatten the daily load curve in the power grid. However, these methods can be an obstacle
to the EVs’ promotion because the high charging cost would make the cheap refuel cost no more an
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advantage of EVs. Some put forward strategies to coordinate EV charging demand and grid operation
through decreasing the charging costs and resolving the overloading of transformers [17]. A dynamic
environmental dispatch model, which coordinates EVs with wind farms and thermal plants to reduce
the system operating costs, CO2 emission, and EV users’ cost is proposed in [18]. The decrease in
queue time is also treated as a benefit, especially for motivating EV users in specific situations, such
as shopping areas and highways [17–19]. Nevertheless, few of those took the cost of battery capacity
degradation into account, although such a cost is a non-negligible part of EVs’ total operating costs.
The battery is one of the most important parts of the EV and the price of the battery is almost half
of the EV price. The batteries’ useful life is greatly affected by different methods of charging and
discharging. Many experiments and studies have been performed focusing on the Li-ion battery,
but these achievements were not applied in the field of charging management. A battery capacity
fading model, which can simulate the battery degradation dynamics in various operating conditions
was developed in [20]. The authors of [21] proposed a novel fusion prognostic model, in which the
time series prediction model is adopted, and implemented a particle filter algorithm for predicting
Li-ion battery life. The CALCE (Center for Advanced Life Cycle Engineering) Battery Group from the
University of Maryland quantified the effect of partial cycling on lithium-ion battery capacity fade
by means of cycling tests operating on graphite/LiCoO2 pouch cells under diverse state of charge
(SOC) ranges, and then developed a model of the battery capacity degradation under partial cycling
conditions [22]. Plenty of research efforts have been devoted to study the contributing factors to battery
capacity fade. The value of used batteries, which is an important factor to derive the cost of battery
capacity degradation, is analyzed in [23,24]. Since the operating SOC range is the most controllable
factor, it should be incorporated in the charging planning for reducing EV users’ total operating costs.
Furthermore, EV users are likely to pay more attention to the waiting time compared to the operating
costs in the aforementioned specific situations [17,19,25,26]. An intention-aware routing system was
developed to calculate a routing policy that minimizes their expected journey time in [27]. A planning
method based on the queuing theory was proposed to determine the capacity of each EV charging
station and minimize the sum of the waiting cost and the charger cost in [28].

This study focuses on EV users’ benefits reducing the total operating costs, including the cost of
battery degradation and the electricity cost in regular routes, such as working areas, and reducing
the queue time for charging in irregular routes, such as shopping areas. After maximizing EV users’
benefits, the power grid operation is further optimized considering the constraints which occur in
the process of maximizing EV users’ benefits. A newly-developed cost model of battery capacity
degradation is used to estimate the cost of the battery capacity degradation of individual charging
and to determine the operating SOC range in the charging planning, which is the contribution of this
paper because the cost model of battery capacity degradation or the cost of battery fade for individual
charging with detailed calculation has not been proposed or discussed. The queueing theory is then
applied to reduce the waiting time in irregular routes. An artificial fish swarm algorithm is adopted
to optimize the grid load. The main contributions of this paper are summarized below: (a) a cost
model of battery capacity degradation is developed to estimate the battery costs of charging; (b) the
cost of battery capacity fade of charging is significantly reduced by planning the charging SOC range;
(c) simulation results prove that the grid load curve can be optimized by scheduling EVs with the
constraints which occur in the process of maximizing EV users’ benefits; and (d) the waiting time for
getting into charging stations in busy areas is reduced by applying a method of queuing theory which
combines different charging stations’ queues into one according to queuing theory.

The remainder of this paper is organized as follows: Section 2 briefly describes the proposed
planning method; Section 3 presents the proposed model, algorithm and their formulation process;
Case studies in actual situations in a metropolitan area of China with the proposed methodology are
performed in Section 4; and, finally, the paper is concluded in Section 5.
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2. Methodology Description

EV users drive their cars for many different purposes every day. In this paper, all those various
routes are classified into two types, which are regular routes, including trips to working areas,
universities, etc. and irregular routes, including trips to shopping malls, hospital, etc. In this way, the
different demands and benefits of these two types of trips can be fulfilled by our optimal planning.
The overall structure of the optimal planning is shown in Figure 1.
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For regular routes, the costs of battery capacity degradation and electricity costs are regarded
as the users’ benefits. The cost of battery capacity degradation is calculated by the proposed cost
model of battery degradation based on the experiment data, and the electricity cost is calculated by the
Time of Use (TOU) tariff for EVs in Beijing. After managing the EVs’ mean SOC, charging SOC range
(∆SOC), and charging time slot to ensure that EV users’ can achieve their lowest costs, the grid load
curve is then optimized by an artificial fish swarm algorithm in the time horizon restricted by the EV
users’ benefits. For irregular routes, the waiting time and costs of battery degradation are considered
as main benefits of EV users since the destinations are usually busy areas, such as shopping malls.
To reduce users’ waiting times for charging, queuing theory is adopted. Similarly, a cost model of
battery degradation is applied to manage the EVs’ SOC range to reduce the costs of battery degradation.
Meanwhile, limiting the amount of charging electricity also contributes to reducing the waiting time.

3. Problem Formulation and Transformation

3.1. Cost Model of Battery Capacity Fade

The battery is one of the most important parts of an electric vehicle. The price of an EV’s battery is
nearly half of the price of an EV. However, the battery’s useful life is limited. It is no longer competent
to run a vehicle when the capacity has faded to 80% of the initial battery capacity [29]. Therefore,
estimating the cost of battery capacity degradation is necessary, and then we can obtain the actual total
operating cost of EVs instead of considering the electricity cost only. In this section, the battery capacity
degradation affected by different charging behaviors (especially different SOC ranges) is analyzed and
a cost model of battery capacity fade is developed.
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3.1.1. Battery Capacity Degradation Analysis

Battery capacity fading mechanism is extremely complex and affected by many factors [30]. In this
part, we only discuss the effect of different SOC ranges, which is the most controllable contributing
factor to battery capacity degradation for EV users.

The experimental data of partial charge-discharge cycling on Li-ion battery capacity degradation
by means of cycling tests conducted on graphite/LiCoO2 pouch cells under different SOC ranges
and charge/discharge currents, which is experimentalized and collected by the CALCE battery group
at the University of Maryland [31], is adopted in our research. We only focus on the data collected
when the batteries are cycled at a current rate of 0.5 C corresponding to level 1 charging. The capacity
degradation results for different SOC ranges are shown in Figure 2.
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Figure 2. (a) Battery capacity retention rate versus equivalent full cycles of batteries cycling at 50%
mean SOC; (b) battery capacity retention rate versus charging times of batteries cycling at 50%
mean SOC; (c) battery capacity retention rate versus equivalent full cycles of batteries cycling at
60% ∆SOC; and (d) battery capacity retention rate versus number of charging times of batteries cycling
at 60% ∆SOC.

The capacity retention rate indicates the battery degradation. The equivalent full cycles have been
used for assessing the cycle life performance of the cells. The number of equivalent full cycles is defined
as the number of times that the cumulative charge or discharge energy of battery cycling in a specific
SOC range equals to a full cycle energy. For instance, if a battery cycles at the SOC range of 40–60% for
five times, these five cycles can be regarded as one equivalent full cycle since the cumulative charge or
discharge energy equals to a full cycle energy. It is a unified standard widely used in battery studies,
and the actual cycle life performance of the battery cells can be assessed in this way. It is important to
note that there is no data missing, although the 40–60% curve in Figure 2a is shorter than the others.
The reason is that cells cycling at 40–60% SOC need more time for one equivalent cycle since there is
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a rest period of at least 30 min after every charge and discharge step. However, the existing data is
enough to reveal the capacity fading trend. For EV users, they care more about the battery capacity
degradation of individual charging. Thus, the cost model of battery capacity degradation should be
built with the number of charging times, as well. The equivalent full cycles (EFC) can be transferred to
charging times by Equation (1):

Charging times = EFC/∆SOC (1)

where ∆SOC denotes the difference between the max and the minimum SOC of the operating SOC
range as mentioned above. Then we can obtain the capacity retention rate versus charging times,
which is shown in Figure 2b.

3.1.2. Cost of Battery Capacity Degradation Modeling

To estimate the varying costs of battery capacity degradation due to different operating SOC
ranges in the overall operating costs, a cost model of battery degradation is necessary. A power law
model of capacity loss for batteries under partial or full cycling conditions using the results of the
same dataset mentioned before is developed by the curve fitting of MATLAB (The MathWorks, Inc.,
Natick, MA, USA) in [22]. The mean SOC, ∆SOC, and EFC are three independent variables of the
model, and the capacity retention rate (CRR) is the dependent variable. The model is presented in
Equation (2) [22]:

CRR(%) = 100− 3.25× SOCmean

(
1 + 3.25× ∆SOC− 2.25× ∆SOC2

)
× (EFC/100)0.453 (2)

where SOCmean denotes the mean SOC of the operating SOC range, and ∆SOC means the difference
between the maximum and the minimum SOC of the operating SOC range. The number of EFC can be
easily derived by this model:

EFC = 100
[

100− CRR
3.25SOCmean(1 + 3.25∆SOC− 2.25∆SOC2)

]2.21
(3)

It is important to note that batteries are no longer competent for EVs when the capacity fades
to 80% of the original capacity, so a battery’s useful life is from 100% to 80% of the original capacity.
The battery cost can be measured by this degradation range. Given that used battery can be sold and
reused, the cost of each percent degradation can be calculated by Equation (4):

C1% =
pnew − pused

20
×Q (4)

where C1% denotes a one percent capacity degradation cost of batteries, Q denotes the battery capacity,
pnew denotes the price of new battery, and pused denotes the price of used battery. The battery resale
price model in [23] is adopted in this paper and is given by:

pused =

(
1− rdep

)Tuse
× pnew

(1 + DR)Tuse−1 (5)

where Tuse is the lifetime of EV battery, rdep is the annual depreciation rate in percentage and is set as
20%, and DR is discount rate which is set as 6%. In this case, the battery cost of individual charging
can be calculated in Equation (6):

Cbattery =
C1% × (100− CRR)

Nch
(6)

where Cbattery denotes the battery cost of every time charging, Nch denotes the number of charging
times that an EV ever got through, and (100 − CRR) denotes the percentage of capacity degradation.
Then the cost model of battery degradation, which reflects the cost of battery capacity degradation
of one time charging for a certain SOC range, can be achieved by combining Equations (1), (3), (4),
and (6):
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Cbattery

= (pnew−pused)(100−CRR)×Q×∆SOC
2000 ×

[
3.25SOCmean(1+3.25∆SOC−2.25∆SOC2)

100−CRR

]2.21 (7)

It is necessary to mention that the result of this cost model is a rough value. Since the battery
capacity fading mechanism is an extremely complex chemical process, we cannot achieve an accurate
result with existing technologies. However, this model is sufficient to help EV users evaluate and
reduce the cost of battery capacity degradation in the overall operating cost.

For the purpose of reducing costs of battery capacity degradation, the mean SOC and ∆SOC
should be managed beforehand according to the cost model above. Generally, the mean SOC and
∆SOC should be arranged as small as possible to achieve a low cost of battery degradation according
to the cost model.

3.2. Electricity Cost

For the EV users, the electricity cost of charging is the main cost, conventionally. In order to
evaluate the total charging cost, the electricity cost must be taken into account. Most places around
the world adopt peak-valley time of use (TOU) price. Then the electricity cost of charging can be
calculated by Equations (8)–(10):

Ech = Q× ∆SOC (8)

Tch =
Ech
P

(9)

Cch = pch(t)× Tch (10)

where Ech is the electricity to charge, ∆SOC is the SOC range to charge, P indicates the charging power,
Cch denotes the charging cost of electricity, pch(t) denotes the TOU price at charging time t, and Tch
denotes the duration of charging.

In this paper, we adopt the Beijing peak-valley TOU charging price as an example for simulation
results. The details are shown in Figure 3 and Equation (11):

pch(t) =


1.8044 t ∈ (10:00 ∼ 15:00 &, 18:00 ∼ 21:00)
1.4950 t ∈ (7:00 ∼ 10:00 &, 15:00 ∼ 18:00, 21:00 ∼ 23:00)
1.1946 t ∈ (23:00 ∼ 7:00 &)

(11)
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After setting the SOC range for charging, the optimal charging start time ts and charging duration
Tch should be found to achieve the lowest electricity costs restricted by the EVs’ arrival time and
departure time.
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3.3. Grid Load Curve Optimization

Now that the users’ benefits have been maximized, the load demand on grid should be considered.
The artificial fish swarm algorithm (AFSA) is applied to optimize the distribution network load curve
in the restricted SOC range and charging time scope. The objective function and constraints are shown
in Equations (12) and (13):

min var(P)
subject to ts + Tch ≤ td

ts ≥ ta

(12)

SOCmean −
∆SOC

2
≥ 10% (13)

where ts is charging start time of an EV, ta denotes an EV’s arrival time, and td indicates the departure
time. The first two constraints restrict the charging time horizon, and the third constraint is to ensure
that EVs always keep the SOC over 10% for unpredictable situations. The flowchart of AFSA is shown
in Figure 4 and the following are the procedures:

Step 1. Initialize the parameters visual distance, step length, population size, crowded degree, and
iteration times. The visual distance and step values will decrease as the number of iterations
increases. A group of artificial fish M is generated randomly in the water, and the information
contained in each fish is a charging start time matrix U of all EVs. Each artificial fish here
represents a charging start time scheme for all EVs.

Step 2. Calculate the food concentration of each fish’s position, record the best result on the bulletin
board. The food concentration (i.e., the variance of distribution network) load is calculated
based on the objective function.

Step 3. Artificial fishes move one step by performing one of the four kinds of behavior, which are
cluster behavior, following behavior, foraging behavior, and random behavior, according to
their situation.

Step 4. Calculate the food concentration of each fish’s new position. Record the best result to the
bulletin board if it is better than the old one.

Step 5. If the ending condition is met, finish the algorithm. If not, go to step 3.
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3.4. Queuing Theory for Busy Areas

For irregular routes, especially those in busy areas, waiting time is another primary consideration
of EV users, since the time of trips for shopping or emergencies are always limited. The queuing
theory is adopted to solve this problem. The queuing model for charging stations are built to analyze
their status and calculate the waiting time for EV drivers. When an EV enters the area, and begins
to choose a charging station, the driver could get information, such as the waiting time of nearby
charging stations from communication devices and make a choice. Consequently, queues for several
charging stations in the area are combined into one queue, virtually. The method is shown in Figure 5.
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In this way, the EV drivers can avoid lining up in the same charging station so that the average
waiting time of all EV users can be reduced. Planning the charging SOC range according to the cost
model of battery degradation and drivers’ next destinations can also reduce the waiting time since the
electricity quantity to charge and charging duration are restricted. The waiting time of EVs for each
charging station can be calculated by Equations (14)–(16):

Ti,j
w = ti,j

s − ta,i (14)

ti,j
s,min = min

{
ti−N,j
s + Tch,i−N , ti−N+1,j

s + Tch,i−N , . . . , ti−1,j
s + Tch,i−1

}
(15)

ti,j
s =

{
ti,j
s,min, ta,i ≤ ti,j

s,min

ta,i, ta,i > ti,j
s,min

(16)

where Ti,j
w denotes the waiting time of the i-th EV for charging station j, ti,j

s indicates the charging start
time of EV i at charging station j, ta,i is the arrival time of EV i. N is the number of charging piles
in charging station j. ti,j

s,min denotes the earliest end time of charging of N EVs which arrive earlier
than EV i in the charging station j, including those that are being charged and in line. Equation (16)
means that if the arrival time of EV i is earlier than ti,j

s,min, the driver has to wait until ti,j
s,min. If the

arrival time of EV i is later than ti,j
s,min, the driver does not need to wait and the waiting time Ti,j

w will
be 0. EV users can go to the charging station with the shortest waiting time after receiving the nearby
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charging station’s information transmitted by technology such as Intelligent Transport System (ITS)
and Internet of Things (IoT).

4. Numerical Results

In this section, the proposed charging management for regular routes and irregular routes are
simulated by EVs generated by the Monte Carlo method, based on real data of a campus area and a
shopping area. The results compared to disordered charging (DC) show a great advantage in EVs’
operating costs, including the cost of battery degradation, electricity cost, distribution network load
curve, and waiting time in line.

4.1. Regular Routes Planning Simulation

4.1.1. Monte Carlo Method

To investigate the habitual arrival and departure time of EV users, the data of a campus area
containing charging piles is analyzed. Assuming that vehicle owners will drive their EVs in a similar
way as they drive their internal combustion engine vehicles (ICEVs) today, this data is used for the
simulation of EVs. The result of arrival and departure time distribution is shown in Figure 6.
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The origin-destination pattern (OD) is assumed to follow a normal distribution, as shown in
Equation (17). The average distance is 18.9 km according to the report in [32]:
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5
√

2π
exp (− (x− 18.9)2

50
) (17)



Energies 2017, 10, 952 10 of 15

Then, examples of EVs with real trip characteristics can be generated by the Monte Carlo (MC)
method. The 24 h in a day are divided into 96 parts, with each part representing 15 min. One-hundred
EV examples are generated with information of arrival time, departure time, and OD distance.
Meanwhile, the available charging time, charging electricity quantity, and charging duration Tch
are determined also.

The capacity Q of EVs is simulated by the EV sales data from [33]. Parameters of the top four
popular types of EV shown in Table 1 are randomly dispatched to the EVs generated by MC.

Table 1. Parameters and sales volume of top popular EVs in China.

Vehicle Type Capacity (kWh) Consumption (kWh/100 km) Sales in 2016

BYD e6 82 19.5 20605
BAIC E-Series EV 25.6 15 18814
BAIC EU260 EV 41.4 15.9 18805
Geely Emgrand 41 15.8 17181

For disordered charging EVs are assumed to be charged as soon as they arrive until 100% SOC
every time.

4.1.2. Results of Regular Routes Simulation

After setting those parameters, the necessary ∆SOC of regular routes is determined. Given that
drivers need some extra electricity for unexpected things or emergencies, 10% is a floor of the planning,
i.e., the EVs’ SOC will not be below 10% even if it might lead to lower operating costs. This lower
boundary is to keep batteries from running out of charge. Then the charging SOC ranges are determined
by the cost model of battery degradation to reduce the costs of capacity fade. The electricity costs
are reduced by managing EVs’ charging time in their available charging time according to Equations
(8)–(11). This step will restrict the charging start time in a smaller scope to achieve the lowest electricity
costs. The optimization of distribution network will be conducted in this restricted scope. The charging
power is assumed as level 1 charging, i.e., 3 kW here since EV users always have enough time for
charging in the working area.

The costs of battery capacity degradation and electricity costs of ordered charging (OC) and
disordered charging are calculated and the comparisons of the average values are shown in Figure 7
and Table 2.
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Table 2. Operating cost comparison of one time charging.

Operating Costs DC OC

Cost of Battery Degradation (USD) 0.94 0.17
Electricity Cost (USD) 0.51 0.46

It can be easily observed that the proposed method reduces a great amount of the cost of battery
capacity degradation which plays a more important role than the cost of electricity in the total operating
costs. This benefit is usually not appreciated by most users. The cost of battery capacity degradation
also presents a greater elasticity to be adjusted and is more controllable than the cost of electricity.

Figure 8 and Table 3 show the subsequent optimization for the grid’s load demand by AFSA.
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Table 3. Load variance comparison of disordered charging and ordered charging.

Method Variance Peak (kW) Valley (kW)

DC 4098 864.0 442.2
OC 3885 822.7 464.7

Orignal load 3016 741.0 409.4

Although the adjustable range is restricted by the requirement of EV users’ benefits, the grid
load curve still has significant room to be improved. The proposed method greatly optimized the
distribution network load, as shown in Figure 8 and Table 3. Many strategies proposed by other
researchers seem to show a better effect for grid load than our result. However, those are the results
with the assumption of a perfect participation rate, which is not realistic and has baffled researchers for
a long time. The method proposed in this paper will, hopefully, be a solution of this problem, because
the EV users’ benefits are put as the top priority. Given that the participation rate will be higher, the
charging planning proposed in this paper will not show a worse effect than other strategies. In this
way, the EV users and power grid can achieve a “win-win” situation.

4.2. Irregular Routes Planning Simulation

For irregular routes, EV drivers focus more on waiting time since the destinations are always
busy areas, such as shopping malls. Therefore, reducing waiting time is given priority by the proposed
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queuing theory and SOC range planning. Similar to the work done before, 1000 EVs are generated
by the MC method with initial SOC, battery capacity, arrival time, dwell time, and distance to the
next destination. The data probability distributions are taken from “The US National Household
Travel Survey (NHTS)” [34] and organized in [25]. A shopping area with two charging stations nearby
is chosen as an example. All the EVs are assumed to be charged by fast charging with a charging
power of 30 kW because the drivers have limited time for charging. The geographical placement of the
shopping mall and charging stations are shown in Figure 9.

The method proposed in Sections 3.1 and 3.4 are applied as an ordered charging method to
reduce EV drivers’ waiting time and the cost of battery degradation. The disordered charging method
assumes that each EV driver chooses the charging station randomly and charges their EVs to 100%
SOC. The comparison results are shown in Figures 10 and 11.

Energies 2017, 10, 952 12 of 15 

 

to the next destination. The data probability distributions are taken from “The US National 
Household Travel Survey (NHTS)” [34] and organized in [25]. A shopping area with two charging 
stations nearby is chosen as an example. All the EVs are assumed to be charged by fast charging with 
a charging power of 30 kW because the drivers have limited time for charging. The geographical 
placement of the shopping mall and charging stations are shown in Figure 9. 

The method proposed in Sections 3.1 and 3.4 are applied as an ordered charging method to 
reduce EV drivers’ waiting time and the cost of battery degradation. The disordered charging method 
assumes that each EV driver chooses the charging station randomly and charges their EVs to 100% 
SOC. The comparison results are shown in Figures 10 and 11. 

Shopping 
mall

10 Fast 
Charging 

piles

10 Fast
Charging 

piles
 

Figure 9. Geographical placement of the shopping mall and charging stations. 

F
re
q
u
e
nc
y（

%
）

0

10

20

30

40

50

60

0 0~3 3~5 5~10 >10

Waiting time(min)

OC DC

minmin min min min

 

Figure 10. Average waiting time distribution comparison of ordered charging and disordered charging. 

Figure 9. Geographical placement of the shopping mall and charging stations.

Energies 2017, 10, 952 12 of 15 

 

to the next destination. The data probability distributions are taken from “The US National 
Household Travel Survey (NHTS)” [34] and organized in [25]. A shopping area with two charging 
stations nearby is chosen as an example. All the EVs are assumed to be charged by fast charging with 
a charging power of 30 kW because the drivers have limited time for charging. The geographical 
placement of the shopping mall and charging stations are shown in Figure 9. 

The method proposed in Sections 3.1 and 3.4 are applied as an ordered charging method to 
reduce EV drivers’ waiting time and the cost of battery degradation. The disordered charging method 
assumes that each EV driver chooses the charging station randomly and charges their EVs to 100% 
SOC. The comparison results are shown in Figures 10 and 11. 

Shopping 
mall

10 Fast 
Charging 

piles

10 Fast
Charging 

piles
 

Figure 9. Geographical placement of the shopping mall and charging stations. 

F
re
q
u
e
nc
y（

%
）

0

10

20

30

40

50

60

0 0~3 3~5 5~10 >10

Waiting time(min)

OC DC

minmin min min min

 

Figure 10. Average waiting time distribution comparison of ordered charging and disordered charging. Figure 10. Average waiting time distribution comparison of ordered charging and disordered charging.



Energies 2017, 10, 952 13 of 15

Energies 2017, 10, 952 13 of 15 

 

 
(a) (b) 

Figure 11. Cost of battery degradation and average waiting time comparison of ordered charging and 
disordered charging: (a) cost of battery degradation; and (b) average waiting time. 

5. Conclusions 

The EV users’ benefits are set as the highest priority in the proposed charging strategy. The types 
of driving are classified into two groups, namely, regular routes and irregular routes, and analyzed 
individually. The major contributions of the proposed strategy are summarized as follows: 

 A cost model of battery capacity degradation is developed to estimate the cost of battery capacity 
degradation, which is usually not paid much attention by EV users. The optimal SOC range planning 
based on this model enables the the cost of battery degradation to be significantly reduced. 

 For regular routes, to keep the operating cost low for the routes, such as commuting, charging 
time is also shifted to achieve the lowest electricity cost. 

 For regular routes, the grid operation is optimized by AFSA with constraints which occur in the 
process of maximizing EV users’ benefit. In the meantime, the daily load curve in the distribution 
network can still be flattened markedly. 

 For irregular routes, the average queue time is greatly decreased due to the application of 
queuing theory, and the cost of battery degradation is also reduced by the SOC range planning 
based on the cost model of battery degradation. 

This study proposed a method for EV users to satisfy their expectations, which are depicted as 
the cost of battery degradation, the electricity cost in regular routes, and the waiting time and the cost 
of battery degradation in irregular routes, respectively. Thus, this method is expected to increase the 
participation of EV users for the proposed charging strategy. Both the electricity portion of the 
operating costs and the battery capacity degradation costs under different SOC ranges are notably 
reduced and, thus, the overall economic outcomes become beneficial to the EV drivers. Numerical 
results show that the proposed strategy has markedly provided positive effects for both types of 
routes. It should be emphasized that the battery capacity degradation cost is a non-negligible part 
and a more elastic part than the electricity cost in the total operating costs. Although this study 
contributes to promote EVs in our society, the model of battery capacity degradation can be further 
improved using more real-life examples, and the strategies to optimize the daily load curve in 
irregular routes should be further improved possibly with the application of energy storage systems. 

Acknowledgments: This project is supported in part by the National Natural Science Foundation of China 
(NSFC) (51677004) and the Fundamental Research Funds for the Central Universities (E16JB00140). The authors 
gratefully acknowledge the contributions of the Center for Advanced Life Cycle Engineering (CALCE) at the 
University of Maryland for their great work on battery capacity loss experiments and open source data. Senior 
researcher Koji Yamashita also provided help for the research in this paper. 

0
0.5

1
1.5

2
2.5

3
3.5

DC OC

Cost of battery degradation(CNY)

0
2
4
6
8

10
12
14
16

DC OC

Average waiting time(min）

Figure 11. Cost of battery degradation and average waiting time comparison of ordered charging and
disordered charging: (a) cost of battery degradation; and (b) average waiting time.

5. Conclusions

The EV users’ benefits are set as the highest priority in the proposed charging strategy. The types
of driving are classified into two groups, namely, regular routes and irregular routes, and analyzed
individually. The major contributions of the proposed strategy are summarized as follows:

• A cost model of battery capacity degradation is developed to estimate the cost of battery
capacity degradation, which is usually not paid much attention by EV users. The optimal
SOC range planning based on this model enables the the cost of battery degradation to be
significantly reduced.

• For regular routes, to keep the operating cost low for the routes, such as commuting, charging
time is also shifted to achieve the lowest electricity cost.

• For regular routes, the grid operation is optimized by AFSA with constraints which occur in the
process of maximizing EV users’ benefit. In the meantime, the daily load curve in the distribution
network can still be flattened markedly.

• For irregular routes, the average queue time is greatly decreased due to the application of queuing
theory, and the cost of battery degradation is also reduced by the SOC range planning based on
the cost model of battery degradation.

This study proposed a method for EV users to satisfy their expectations, which are depicted as
the cost of battery degradation, the electricity cost in regular routes, and the waiting time and the cost
of battery degradation in irregular routes, respectively. Thus, this method is expected to increase the
participation of EV users for the proposed charging strategy. Both the electricity portion of the operating
costs and the battery capacity degradation costs under different SOC ranges are notably reduced and,
thus, the overall economic outcomes become beneficial to the EV drivers. Numerical results show that
the proposed strategy has markedly provided positive effects for both types of routes. It should be
emphasized that the battery capacity degradation cost is a non-negligible part and a more elastic part
than the electricity cost in the total operating costs. Although this study contributes to promote EVs in
our society, the model of battery capacity degradation can be further improved using more real-life
examples, and the strategies to optimize the daily load curve in irregular routes should be further
improved possibly with the application of energy storage systems.
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