Next Article in Journal
Advantages of Using Supercapacitors and Silicon Carbide on Hybrid Vehicle Series Architecture
Next Article in Special Issue
An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting
Previous Article in Journal
Design and Implementation of a STATCOM Based on a Multilevel FHB Converter with Delta-Connected Configuration for Unbalanced Load Compensation
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Energies 2017, 10(7), 922; doi:10.3390/en10070922

A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer

1,2,* , 1,2,* and 1,2
1
School of Economics and Management, North China Electric Power University, Beijing 102206, China
2
Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China
*
Authors to whom correspondence should be addressed.
Received: 15 May 2017 / Revised: 11 June 2017 / Accepted: 28 June 2017 / Published: 4 July 2017
View Full-Text   |   Download PDF [3920 KB, uploaded 4 July 2017]   |  

Abstract

As one of the most promising kinds of the renewable energy power, wind power has developed rapidly in recent years. However, wind power has the characteristics of intermittency and volatility, so its penetration into electric power systems brings challenges for their safe and stable operation, therefore making accurate wind power forecasting increasingly important, which is also a challenging task. In this paper, a new hybrid wind power forecasting method, named the BND-ALO-RVM forecaster, is proposed. It combines the Beveridge-Nelson decomposition method (BND), relevance vector machine (RVM) and ant lion optimizer (ALO). Considering the nonlinear and non-stationary characteristics of wind power data, the wind power time series were firstly decomposed into deterministic, cyclical and stochastic components using BND. Then, these three decomposed components were respectively forecasted using RVM. Meanwhile, to improve the forecasting performance, the kernel width parameter of RVM was optimally determined by ALO, a new Nature-inspired meta-heuristic algorithm. Finally, the wind power forecasting result was obtained by multiplying the forecasting results of those three components. The proposed BND-ALO-RVM wind power forecaster was tested with real-world hourly wind power data from the Xinjiang Uygur autonomous region in China. To verify the effectiveness and feasibility of the proposed forecaster, it was compared with single RVM without time series decomposition and parameter optimization, RVM with time series decomposition based on BND (BND-RVM), RVM with parameter optimization (ALO-RVM), and Generalized Regression Neural Network with data decomposition based on Wavelet Transform (WT-GRNN) using three forecasting performance criteria, namely MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and RMSE (Root Mean Square Error). The results indicate the proposed BND-ALO-RVM wind power forecaster has the best forecasting performance of all the tested options, which confirms its validity. View Full-Text
Keywords: wind power forecasting; Beveridge-Nelson decomposition method; relevance vector machine; ant lion optimizer; parameter intelligent optimization wind power forecasting; Beveridge-Nelson decomposition method; relevance vector machine; ant lion optimizer; parameter intelligent optimization
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Guo, S.; Zhao, H.; Zhao, H. A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer. Energies 2017, 10, 922.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top