
energies

Article

Optimal Power Allocation for a Relaying-Based
Cognitive Radio Network in a Smart Grid

Kai Ma 1,*, Xuemei Liu 1, Jie Yang 1,2, Zhixin Liu 1 and Yazhou Yuan 1

1 School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
xuemeiys@163.com (X.L.); jyangysu@ysu.edu.cn (J.Y.); lzxauto@ysu.edu.cn (Z.L.); yzyuan@ysu.edu.cn (Y.Y.)

2 Key Laboratory of System Control and Information Processing, Ministry of Education,
Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

* Correspondence: kma@ysu.edu.cn; Tel.: +86-139-3367-9689

Academic Editors: Frede Blaabjerg and Hongjian Sun
Received: 28 April 2017; Accepted: 28 June 2017; Published: 3 July 2017

Abstract: This paper obtains optimal power allocation to the data aggregator units (DAUs) and relays
for cognitive wireless networks in a smart grid (SG). Firstly, the mutual interference between the
primary user and the DAU are considered, and the expressions of the DAU transmission signal are
derived based on the sensing information. Secondly, we use the particle swarm optimization (PSO)
algorithm to search for the optimal power allocation to minimize the costs to the utility company.
Finally, the impact of the sensing information on the network performance is studied. Then two
special cases (namely, that only one relay is selected, and that the channel is not occupied by the
primary user) are discussed. Simulation results demonstrate that the optimal power allocation and
the sensing information of the relays can reduce the costs to the utility company for cognitive wireless
networks in a smart grid.
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1. Introduction

Smart grid (SG) is the modernization of generation, transmission, and distribution of a power
grid system with the integration of advanced information and communication technologies (ICTs).
The decentralized nature enables the integration of renewable energy resources and promises a
two-way communications between consumers and utility company, which will improve the efficiency
of utility company programs such as demand response, customer participation, and advanced smart
metering [1]. In a smart grid, regulation is a type of ancillary service which continuously balance
supply with demand in electricity markets under normal conditions [2]. Generally, the regulation
service can be provided by on-line generation units that are equipped with the automatic generation
control (AGC). In ancillary service markets, the utility company purchases the AGC service according
to the errors between the generation and the load. Thus, the electricity costs to the utility company are
increased with the errors between supply and demand. It was demonstrated that the errors can be
reduced by the demand-side regulation [3,4], which is dependent on the two-way communications
between the utility company and the consumers.

Cognitive radio (CR) [5] is widely recognised as a dynamic spectrum access technique,
which enables unlicensed users to share the spectrum with licensed users [6,7]. The author [8]
investigated how CR can be utilized to serve a smart grid deployment, from a home area network
to power generation. It is recognized as a promising technology to address the communication
and networking problems in the smart grid [9]. Under the background of the smart grid [10],
the two-way communications [11] can be implemented by the advanced metering infrastructure (AMI),
which includes cognitive home area networks, cognitive neighborhood area networks, and cognitive
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wide area networks. Moreover, several advanced communication technologies have been applied
to demand response in a smart grid [12–16]. In Reference [12], the authors propose two different
architectures for CR communications systems based on the IEEE 802.22 standard to accommodate the
current and future needs of SG communications. Cognitive radio-enabled smart grid was presented
for demand response to reduce the communication outage [13]. The book [17] provided readers with
the most extensive coverage of technologies for 5G wireless systems to date. A cooperative spectrum
sharing strategy based on the Nash bargaining solution for cooperative cognitive systems and a power
allocation technique with improved energy efficiency for MIMO-OFDM based CR with tolerable
degradation at system capacity was proposed in References [18] and [19], respectively. The authors
considered the problem of resource allocation in a two-way relay network [20]. In Reference [21],
the authors studied the resource allocation algorithm for CR secondary networks with simultaneous
wireless power transfer and secure communication based on a multiobjective optimization framework.
The differences of the proposed work with the above literature are shown in Table 1.

Table 1. Differences of the proposed work with the literature.

Indexes Throughput Power Allocation Cooperation Signal-to-Noise Ratio (SNR) Packet Loss

[18]
√

×
√

× ×
[19] ×

√
× × ×

[20]
√ √ √ √

×
[21]

√
× × × ×

This work
√ √ √ √ √

Recently, cooperative relaying has been proposed for communications in a smart grid. The
basic idea of cooperative relay is to use relays to help mobile users to transmit to the destination,
in order to combat the impact of fading [14] and improve the spectral efficiency [15] for smart grid
communications. In Reference [16], D. Niyato et al. proposed a cooperative relay-based meter data
collection networks in a smart grid, in order to reduce the electricity costs. The authors developed a
scheme that optimized the user assignment and power allocation optimization in CR networks [22].
The secondary user power allocation problem in cognitive radio networks with uncertain knowledge
of interference information was studied in Reference [23]. The authors in Reference [24] investigated
the energy efficient power allocation for orthogonal frequency division multiplexing based cognitive
radio networks (CRNs) in the underlay mode.

Particle swarm optimization (PSO) is a population based stochastic optimization algorithm
which was originally introduced by Kennedy and Eberhart [25,26]. PSO has been extended to
many application areas such as function optimization [27], artificial neural network training [28–30],
fuzzy system control [31–34], power system [35,36] and image processing [37]. This algorithm is
motivated by the emergent motion of the foraging behavior of a flock of birds. PSO consists of a swarm
of particles. Each particle represents a potential solution, which is a point in the multi-dimensional
search space. The global optimum of PSO is regarded as the location of food. Each particle has a fitness
value and a velocity to adjust its flying direction according to the experiences of the particle itself and
its neighbors. PSO is simple in implementation and has good convergence properties when compared
to evolutionary algorithms [38]. The advantages of PSO have caused it to become one of the most
popular optimization techniques.

To the best of our knowledge, the combination of the relaying and CR in a smart grid has not
been considered in the literature. In this paper, we propose to use both relaying and CR in smart
grid communications, in order to reduce the packets loss and improve the spectrum utilization
simultaneously. We consider the cognitive wireless network in a smart grid and focus on how to
reduce the packets loss in the downlink transmission and improve the quality of communication, and
then minimize the costs to the utility company. The main contributions of this paper are as follows:
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• This paper converts the sensing errors into the channel available confidence and introduce the
average interference constraint to the cognitive wireless networks in a smart grid.

• We establish a cost model based on the statistical analysis with the regulation errors of a direct load
control method for cognitive wireless networks in a smart grid. Specifically, the power allocation
problem based on the sensing error information was formulated as a nonlinear optimization
problem. Then we use the PSO algorithm to search for the optimum.

• We demonstrate that the sensing information in power allocation can reduce the costs to the utility
company for cognitive wireless networks in a smart grid.

The rest of the paper is organized as follows. In Section 2, we describe the cognitive wireless
network model and the cost model to the utility company in a smart grid. The power allocation
problem is formulated as a multi-variable optimization problem and PSO algorithm is employed to
seek the optimal solution in Section 3. Simulation results are shown in Section 4. Finally, we draw
conclusions in Section 5.

2. Cognitive Wireless Network Model in a Smart Grid

Consider a downlink cellular cognitive wireless network, which includes the primary network
and cognitive radio network, as shown in Figure 1. The cognitive radio network is implemented by
two-way communications between the utility company and the consumers. The DAU that is deployed
by the utility company collects the temperature settings from the consumers and forwards them to
the utility company in the uplink transmission. Meanwhile, the DAU receives the control commands
from the utility company and forwards them through the relays to the consumers in the downlink
transmission. In the primary network, the primary transmitter (PT) transmits to the primary receiver
(PR). Assume that the PT transmits to the PR with a fixed power, and the DAU uses the vacant channel
to transmit information according to the sensing information.

PT

PR 

(Gateway)

DAU

Relay 1

The transmission of data from PT to PR

The transmission of data from DAU to Relay

The transmission of data from Relay to PR

The transmission of data from DAU to PR

Utility 

Company
PR

Consumer 1

Consumer k

Consumer n

The transmission of data from Utility  Company to DAU

The transmission of data from Gateway to Consumers

Relay l

Relay m

Figure 1. The cognitive wireless network in a smart grid.
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2.1. Cognitive Wireless Network

The DAU accesses to the channels of the primary user by spectrum sensing. The available channel
of the primary user is divided into k carriers, and the existing probability of the primary user in
each carrier is pq. We use the binary variables to represent the activity of the primary user on the
carrier k . We denote Ck = 1 when the primary user is active on the carrier k and Ck = 0 when the
primary user is inactive. Ĉk is the sensing results of the DAU on carrier k. We denote Ĉk = 0 when
the carrier is occupied by the primary user and Ĉk = 1 otherwise. In practice, the sensing results of
the DAU are not accurate, which causes false alarm and mis-detection. The false alarm denotes the
carrier that is actually vacant when the DAU believes that the primary user occupies the carrier due to
sensing errors. The mis-detection denotes the carrier that is actually occupied by the primary user but
refers to the case when DAU believes that the carrier is vacant. We denote the false alarm probability
is p f and the mis-detection probability is 1− pd. When the mis-detection happens, the cognitive
network communication can produce interference to the PR, and the instantaneous interference can be
expressed as

Isp = Psr|Hsr,p|(1− Ck), (1)

where Psr is the transmission power of the DAU transmitter or relays and Hsr,p is the channel gain from
the DAU transmitter or relays to the PR. We need to ensure that the average interference of the primary
user is lower than the interference temperature threshold when the DAU occupies the communication
channel of the primary user [39–41], i.e.,

Īsp = ECk |Ĉk
[Psr|Hsr,p|(1− Ck)]

= Psrδ2
sr,p(1− E[Ck|Ĉk]) ≤ I0,

(2)

where I0 denotes the interference temperature threshold of the primary user. The instantaneous
interference from the primary user to the gateway or relay is described as follows:

Ipd = Pp|Hp,dm|(1− Ck), (3)

where Pp is the transmission power of the primary user, Hp,dm is the channel gain from the PT to the
DAU receiver or relay. The corresponding average interference can be expressed as

Īpd = ECk |Ĉk
[Pp|Hp,dm|(1− Ck)]

= Psrδ2
p,dm(1− E[Ck|Ĉk,dm])

(4)

2.2. Packets Loss Model

We consider a communication model as shown in Figure 1, where the transmission strategy is the
cooperative relaying. Without loss of generality, we only consider the packets loss in the downlink
transmission and formulate the packets loss rate as

Pr =
(T − R)g′

T
, (5)

where T denotes the arriving rates of the DAU, R is the receiving rate of the gateway, and g′ is the
correct transmission ratio from the gateways to the consumers.

2.3. Transmission Formulation of The Network

We assume that the PT can adjust the transmission power according to its own throughput
requirements. Moreover, the utility company is restricted to the average interference temperature of
primary user and improve the transmission quality as far as possible, in order to reduce the packets
loss and the costs. Under the condition of the mutual interference, the DAU and the relays constitute a
virtual antenna array through collaboration, and the relays terminal and DAU receiver will introduce
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two beamforming weights. In addition, the weight of the relays terminal can eliminate or reduce the
interference from other networks, and the DAU is able to obtain a higher Signal to Noise (SNR). Next,
we utilize the channel confidence levels to denote the degree of the available channel. We assume that
the DAU scans all the channels of the primary user and the results are sent to the DAU transmitter.
The channel confidence level is formulated by the following conditional probability:

γk = E[Cm||Ĉk|]
= Pr[Cm = 1|Ĉk]

=
(1−pq)Pr [|Ĉk |=1]

(1−pq)Pr [|Ĉk ||Ck=1]+pqPr [|Ĉk ||Ck=0]
,

(6)

where γk ∈ [0, 1], and |Ĉk| denotes the number of Ĉk = 1 in the sensing results. For cognitive wireless
networks in a smart grid, the communication is composed of two scheduled time slots: within the
first time slot, the relay receives the information from the DAU and the interference from the PT
simultaneously. xs and xp are the information generated from the DAU transmitter and the PT,
respectively. The received signal [42–44] at the relay is denoted by ys,m,

ys,m =
√

Pshs,mxs + (1− Ck)
√

Ppgmxp + ηs,m, (7)

where Ps and Pp are the transmission power of the DAU transmitter and the PT, respectively. hs,m and
gm are the channel-to-noise ratio from the DAU transmitter and the PT to the relay, respectively.
ηs,m denotes the zero-mean circular symmetric complex Gaussian noise at the DAU transmitter and
the relays. In Equation (7), the received signal at the relays consists of three parts. The first part is the
information that the relays receive from the DAU transmitter. The second part is the interference that
the relays receive from the primary user. The third part is the background noise. The relays receive
average information from the DAU sender as follows:

ȳs,m = ECk |Ĉk
(
√

Pshs,mxs + (1− Ck)
√

Ppgmxp

+ ηs,m)

=
√

Pshs,mxs + (1− ECk|Ĉk)
√

Ppgmxp

+ ηs,m

=
√

Pshs,mxs + (1− γk)
√

Ppgmxp + ηs,m,

(8)

In the second time slot, we employ the amplify-and-forward (AF) [45] relay strategy for the
cognitive wireless network in a smart grid. The relay receives the information that the DAU transmitter
retransmits to the PR. By introducing the beamforming weight vector wm, the retransmission signal
can be represented as

xm,d = wm
ȳs,m

|ȳs,m
=

wmȳs,m√
Pshs,m + (1− γk)2Ppgm + Ns,m

, (9)

In the DAU receiver, by introducing the beamforming weights wd [46], the received signal at the DAU
receiver is

ym,d = wd(
√

Pmhm,dxm,d + (1− Ck)
√

Ppgdxp + ηm,d)

= wd(wm

√
Pmhm,dPshs,mxs

A

+ (wm(1− γk)

√
Pmhm,dPshs,m

A
+ (1− Ck)

√
Ppgd)xp

+ wmηs,m
Pmhm,d

A + ηm,d),

(10)

where A =
√

Pshs,m + (1− γk)2Ppgm + Ns,m.
According to Equation (10), we can obtain the signal-to-noise ratio [47] that the information from

the DAU transmitter through the relays to the DAU receiver as follows:
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SNR =
l

∑
m=1

Sm

Nm
, (11)

where Sm and Nm are the received signals and background noise, respectively. And the expression are
as follows:

Sm =
|wd|2|wm|2Pmhm,dPshs,m

Pshs,m + (1− γk)2Ppgm + σ2 , (12)

and

Nm =
|wd|2|wm|2Pmhm,dσ2

Pshs,m + (1− γk)2Ppgm + σ2 + |wd|2σ2. (13)

Without loss of generality, we assume that the noise power of all links are the same and denoted
as σ2. For the cooperative relaying transmission from the utility company to the consumers under the
amplify-and-forward (AF) relaying strategy, the receiving rate [48] of the gateway is defined as

R =
W
2

log2(1 + SNR), (14)

where W is the transmission bandwidth of the DAU.
Substituting Equations (11)–(14) into Eqiation (5), gives

Pr =

(T − W
2 log2(1 +

l
∑

m=1

|wd |
2 |wm |2Pmhm,dPshs,m

Pshs,m+(1−γk)
2Pp gm+σ2

|wd |2 |wm |2Pmhm,dσ2

Pshs,m+(1−γk)
2Pp gm+σ2 +|wd |2σ2

))g′

T
, (15)

2.4. Costs to Utility Company

In this section, a case of the temperature-priority control strategy which was developed in [49]
is studied. As illustrated in Figure 2, the “on” loads with lower indoor temperatures have higher
priorities to turn off, and the “off” loads with higher indoor temperatures have higher priorities to
turn on. Therefore, the aggregated loads are ranked by their indoor temperatures. Then the loads with
lower priorities will be turned on or off in sequence until the load can combine the AGC signal with
the baseline load to follow the reference signal.

Turn 
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Priority order
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edge

Upper 
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loads
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Upperr 

edgeedgeedge

LoLower 

ededge

LoLower 

edgeedgeedge

On

loads

Offff

loads

PPriioriity ordder

Figure 2. Temperature-priority control strategy.
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Taking the packets loss rate Pr = 5% as an example, we can obtain the tracking error
distribution of the load control strategy through the MATLAB and EasyFit software [50]. As shown
in Figure 3, the tracking errors follow the normal distribution. For the reliability of the communication,
the probability of providing ancillary service is required to be larger than 99%. Thus, the utility
company has to purchase u + 3σ AGC service because there is P(µ− 3σ <= x <= µ + 3σ) ≥ 99%
under the normal distribution. We have

Z = pa(µ + 3σ), (16)

where µ is the expectation, σ is the standard variance, and pa is the price per unit fraction of
AGC service.

Figure 3. The tracking error distribution under the packets loss.

Assume the expectation and the standard variance scale linearly with the packets loss rate, i.e.,
µ = APr + B and σ = CPr + D. Substituting the expression of µ and σ into Equation (16) and
combining with Equation (15), we obtain

Z = pa((A + 3C)

(T−W
2 log2(1+

l
∑

m=1

|wd |
2 |wm |2Pmhm,dPshs,m

Pshs,m+(1−γk)
2Pp gm+σ2

|wd |2 |wm |2Pmhm,dσ2

Pshs,m+(1−γk)
2Pp gm+σ2 +|wd |2σ2

))g′

T
+ B + 3D).

(17)

3. Problem Formulation and Solutions

In this section, we first give the problem formulation and then derive the optimal power allocation
to the DAU and the relays. The problem is equivalent to selecting the optimal power allocation of the
DAU ps and the relay pm such that the costs to utility company are minimized, and the optimization
problem is cast into the following problem.

(P1) min Z

s.t. Ps +
l

∑
m=1

Pm ≤ Pt

(1− γk)Pshs,p ≤ I0

(1− γk)
l

∑
m=1

Pmhm,d ≤ I0
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The first constraint is the total power restrictions of the cognitive radio network, the second
constraint is the interference temperature threshold constraints, and the third constraint denotes that
the transmission of DAU transmitter and the relays should be less than the interference temperature
threshold constraints for primary user.

Remark 1. We can observe that (P1) is a non-convex optimization problem according to Equation (17).
The traditional gradient optimization methods cannot be applied to solve it. Next, we employ PSO to search for
the optimum. Specially, the optimal solution can be obtained by using the KKT condition when the optimization
problem has only one relay .

3.1. PSO Algorithm

We use the PSO algorithm to solve the multi-variable optimization problem [51]. For an
optimization problem of D variables, the potential solution of the optimization problem can be
described as a point in D-dimensional space. Each particle has a velocity vector to determine its
direction and a fitness value to measure its corresponding optimization state., The position and
velocity are adjusted in D-dimensional search space according to the current optimal particle.

The process can be converted into a mathematical problem as follows. The PSO is
initiated by a group of random particles (solutions), and then it searches for the optimum by
updating generations. Each particle updates its position by using best present (pbest) and
global best (gbest) in the next iteration. The ith particle in D-dimensional space is represented
as xi = (xi

1, xi
2, ..., xi

d, ..., xi
D), where xi

d ∈ [xmin, xmax], d ∈ [1, D]. The velocity corresponding to the
ith particle is vi = (vi

1, vi
2, ..., vi

d, ..., vi
D), where vi

d ∈ [vmin, vmax]. The velocity and location update
strategies of the ith particle are defined by :

vd
i ← vd

i + c1 · rand1d
i · (pbestd

i − pd
i )

+c2 · rand2d
i · (gbestd − pd

i ),
(18)

pd
i = pd

i + vd
i , (19)

where c1 and c2 are the constriction factors. c1 represents the weight that the ith particle tracks its
own historical optimal value pbesti, and c2 represents the weight that the ith particle tracks the whole
group’s optimal value gbest. All particles use the same values c1 and c2. pbesti and gbest are updated
all the time according to each particle’s fitness value. Moreover, rand1d

i and rand2d
i stand for random

values that are in the range between 0 and 1.
The position of each particle represents the variables of the system. In this paper, the variables

are the DAU’s power allocation Ps and the relays’s power allocation Pm. The flowchart of the PSO
algorithm is given in Figure 4, and the pseudo-code of PSO is given in Algorithm 1 as below.

Algorithm 1 PSO Algorithm

Input: Z: size of the whole population; iter-max: maximum iterations; Initialize each particle’s position

pd
i and velocity vd

i .
Output: each particle’s position pd

i .
1: for iter=1: iter-max do

2: Calculate their fitness values and update pbesti, gbest;
3: Update each particle using Equations (18) and (19) and revise vd

i , pd
i using vd

i =min(vmax,

max(vmax, vd
i )), pd

i =min(pmax, max(pmax, pd
i ));

4: end for
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Initialization

Calculate the fitness and update  pbesti, 

gbest 

Update position x
d
i and 

velocity  
v

d
i

iter=iter_max

Optimal solution

NO

Set the number of particles Z,  initial 

position xd
i,

  

 initial velocity vd
i,

YES

Figure 4. The flow chart of particle swarm optimization (PSO) algorithm.

3.2. The Solution with One Relay

The DAU selects one relay to transmit information to the consumers. In that case, the costs to the
utility company can be denoted as

Z1 = pa((A + 3C)

(T−W
2 log2(1+

|wd |
2 |wm |2Pmhm,dPshs,m

Pshs,m+(1−γk)
2Pp gm+σ2

|wd |2 |wm |2Pmhm,dσ2

Pshs,m+(1−γk)
2Pp gm+σ2 +|wd |2σ2

))g′

T
+ B + 3D).

(20)

In order to minimize the costs to utility company we need to select the optimal power allocation
of the DAU ps and the relay pm. And The optimization problem can be described as follows:

(P2) min Z1

s.t. Ps + Pm ≤ Pt

(1− γk)Pshs,p ≤ I0

(1− γk)Pmhm,d ≤ I0

We solve the above optimization problem by the Karush Kuhn Tucker (KKT) conditions and
obtain the optimal power allocation solution:
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( P∗s , P∗m) =



(Ps, Pm),
i f Ps ≤ Pmax

s and Ps ≤ Pmax
s

(min(Pt − Pmax
m , Pmax

s ), Pmax
m ),

i f Ps < Pmax
s and Ps > Pmax

s
(Pmax

m , min(Pt − Pmax
s , Pmax

m ),
i f Ps > Pmax

s and Ps < Pmax
s

(Pmax
s , Pmax

m ),
i f Ps > Pmax

s and Ps > Pmax
s ,

where
(Ps, Pm) =

(
hm,dPt+σ2±

√
(hs,mPt+σ2)(hm,dPt+σ2)
hm,d−hs,m

,
hm,dPt+σ2±

√
(hs,mPt+σ2)(hm,dPt+σ2)
hm,d−hs,m

),

(21)

and

(Pmax
s , Pmax

m ) = (
I0

(1− γk)2hs,p
,

I0

(1− γk)2hs,p
). (22)

The optimal power allocation solution Equation (21) is meaningless when γk = 1, therefore, we
need to analyze the special case that γk = 1, which denotes that there is no interference between
the primary user and the DAU. Thus, the corresponding interference constraints should be deleted.
Moreover, the relay receives the signal of the primary user as follows:

ys,m =
√

Pshs,mxs + ηs,m. (23)

The relaying signals under AF relay strategy are as follows:

y
′
s,m = wm

ys,m√
Pshs,m + Ns,m

. (24)

The received signals from the relay at the DAU receiver are:

ym,d = wd(
√

Pmhm,dy
′
s,m + ηm,d), (25)

Substituting Equations (23) and (24) into Equation (25), gives

ym,d =

√
PsPmhs,mhm,dwmwdxs√

Pshs,m + Ns,m

+ (

√
Pmhm,dwmwdηs,m√
Pshs,m ++Ns,m

+ ηm,dwd),

(26)

and the signal-to-noise ratio can be expressed as

SNR =
PsPmhs,mhm,d

Pmhm,dNs,m + Nm,d(Pshs,m + Ns,m)
. (27)

Therefore, the optimization problem (P1) can be converted to the following optimization problem:

(P3) min Z2

s.t. Ps + Pm ≤ Pt
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The optimal power solutions based on the KKT conditions are as follows:

(P∗s , P∗m) =

(
hm,dPt+σ2±

√
(hs,mPt+σ2)(hm,dPt+σ2)
hm,d−hs,m

,
hm,dPt+σ2±

√
(hs,mPt+σ2)(hm,dPt+σ2)
hm,d−hs,m

)

(28)

4. Simulation Results

In the simulation, we consider a communication system consisting of a primary user, a DAU,
a relay, and one gateway shared by the consumers. The primary transmitter is located at the origin,
the DAU is distributed in (0 m, 30 m), the gateway is located at (20 m, −20 m), and the relays
are randomly distributed in the area of (100 m × 100 m). The total system bandwidth is set to be
W = 104 Hz, the probability of correct transmission from the gateway to the consumers is g′ = 0.99,
and the base price of the AGC service is pa = 20 $/MW. The arriving rates of the DAU are 100 bits/s,
i.e., T = 100 bits/s, and the noise power of all communication links is 10−1 W, i.e., σ2 = 10−1 W.
In addition, the existing probability of primary user in the carrier is pq = 0.5, the false alarm probability
is p f = 0.2, the correct detection probability is pd = 0.8, and the interference threshold is I0 = 6.3096 db.
In addition, the DAU’s maximum and minimum power allocation are 12 mW and 0 mW, respectively.
The relays’s maximum and minimum power are 5 mW and 0 mW, respectively.

In the cognitive radio network, the relays sense the occupancy of the PR’s carriers, and then
transmit the sensing results to the DAU. Hence, the DAU calculates the channel confidence level by
combining all the sensing results. Furthermore, the DAU determines the relaying power allocation.
In the simulation, we use the binomial distribution of 0 and 1 to generate the sensing results.

The convergence results of the best fitness values (i.e., the costs to the utility company) with
different number of relays are shown in Figure 5. It is observed that the PSO algorithm can converge
to the optimal solution. Comparing the fitness values with different number of relays, we observe that
the the costs to the utility company can be reduced by deploying multiple relays.
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Figure 5. The convergence curve of the fitness value with different number of relays.
(a) The convergence of the fitness value with one relay; (b) The convergence of the fitness value
with six relays; (c) The convergence of the fitness value with ten relays.

The costs to the utility company Z versus the total power Pt are given in Figure 6. The costs to the
utility company have the similar changing trend under the direct transmission and the cooperative
relaying, but the cooperative relaying can reduce the costs to the utility company dramatically.

The performance comparisons between the direct transmission and the cooperative relaying are
given in Table 2. It is shown that the cooperative relaying can reduce the SNR , the packets loss rate,
and the costs to the utility company dramatically.
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Figure 6. The costs to utility company under the transmission modes.

Table 2. Comparison results.

Indexes SNR Pr Z($)

SI (Direct transmission) 4.3731× 106 0.8808 1.8879× 105

SI (m = 1) 2.3229× 1011 0.8031 1.7214× 105

SI (m = 6) 2.3555× 1011 0.2177 4.6664× 104

SI (m = 10) 9.7531× 107 0.0985 2.1114× 104

The relationship between the costs to the utility company Z and the total power Pt under Sensing
Information (SI) and Non-Sensing Information (NSI) is shown in Figure 7. It is straightforward to
observe that the costs to the utility company increases with the total power, however, the costs to the
utility company under SI has lower cost than the costs under NSI significantly.
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Figure 7. The costs to utility company under Sensing Information (SI) and Non-Sensing
Information (NSI).
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As shown in Figure 8, the costs to the utility company are examined with the change of the
existence probability of primary user under different total power Pt. It can be observed that the costs to
utility company under different total power have the similar trend and the costs to utility company is
decreasing with the total power before the critical total power and remain the same and then increasing
with the total power after that.
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Figure 8. The costs to utility company under different Pt.

The relationship between the costs to the utility company and the existence probability of primary
user in different total power Pp is shown in Figure 9. The costs to the utility company both reach the
rock bottom and remain the same, but begin a slow increase after that.
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Figure 9. The cost to utility company under different Pp.

5. Conclusions

This paper studies the power allocation problem for a cognitive wireless network in a smart grid
based on the sensing information and minimizes the costs to a utility company by using the PSO
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algorithm to search for the optimal power allocation under the interference temperature threshold
constraints of primary users. We obtain the optimal power allocation for cognitive wireless networks
in a smart grid and study the cases that only one relay is selected by DAU and the channel is not
occupied by the primary user. The simulation results illustrate that the optimal power allocation and
the sensing information can decrease the costs to the utility company for cognitive wireless networks in
a smart grid. This paper only considers one DAU and that will limit the performance of the cognitive
radio network in a smart grid. In the future, we will extended the model to the case with multiple
DAUs and multiple relays.
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Nomenclature

Ck, Ĉk Binary variable.
pq The existing probability of the primary user in each carrier.
p f The false alarm probability.
pd The correct detection probability.
Psr The transmission power of the DAU transmitter or relays.
Hsr,p The channel gain from the DAU transmitter or relays to the PR.
I0 The interference temperature threshold of the primary user.
Pp The transmission power of the primary user.
Hp,dm The channel gain from the PT to the DAU receiver or relay.
T The arriving rates of the DAU.
R The receiving rate of the gateway.
g′ The correct transmission ratio from the gateways to the consumers.
γk The channel confidence level.
xs The information generated from the DAU transmitter.
xp The information generated from the PT.
ys,m The received signal at the relay.
Ps The transmission power of the DAU transmitter.
Pp The transmission power of the PT.
hs,m The channel-to-noise ratio from the DAU transmitter.
gm The channel-to-noise ratio from the PT to the relay.
ηs,m The zero-mean circular symmetric complex Gaussian noise at the DAU transmitter and the relay.
wm, wd The beamforming weight.
S The received signals.
N The background noise.
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Pr The packets loss rate.
µ The expectation.
σ The standard variance.
pa The price per unit fraction of AGC service.
Z The costs to utility company with multiple relays.
Z′ The costs to utility company with a relay.
vd

i The dth dimension of the velocity for the ith particle.
xd

i The dth dimension of the position for the ith particle.
gbest The whole group’s optimum value.
pbesti The ith particle’s historical optimum value.
rand1d

i Uniform random number over [0,1].
rand2d

i Uniform random number over [0,1].
lworstk

i The two worst particles for each sub-swarm.
lbesti The better particle for each sub-swarm.
c1, c2 The learning factors.
ω Inertia weight.
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