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Abstract: The economic dispatch problem of a virtual power plant (VPP) is becoming non-convex
for distributed generators’ characteristics of valve-point loading effects, prohibited operating zones,
and multiple fuel options. In this paper, the economic dispatch model of VPP is established and then
solved by a distributed randomized gradient-free algorithm. To deal with the non-smooth objective
function, its Gauss approximation is used to construct distributed randomized gradient-free oracles
in optimization iterations. A projection operator is also introduced to solve the discontinuous variable
space problem. An example simulation is implemented on a modified IEEE-34 bus test system, and
the results demonstrate the effectiveness and applicability of the proposed algorithm.

Keywords: distributed randomized gradient-free algorithm; distributed randomized gradient-free
oracles; non-convex economic dispatch; virtual power plant

1. Introduction

Distributed energy resources (DERs) include distributed generators (DGs), renewable energies
(REs), and energy storage systems (ESs) [1]. Optimizing the output of DERs can greatly improve
the efficiency of their energy utilization. The centralized dispatch methods adopt lambda iterative
algorithms [2] and interior point lambda iterative algorithms [3], both of which need the objective
functions to be smooth and derivable. Actually, the cost functions of DGs are non-convex because of
their features of valve-point loading effects, prohibited operating zones, and multiple fuel options [4].
The charging and discharging of ESs also aggravates the complexity of economic dispatch problems [5].
Based on advanced management concepts and software technologies, the virtual power plant (VPP) [6,7]
has been developed to be a new DERs management tool. Additionally, it is necessary to solve the
non-convex economic dispatch of VPPs in order to realize the optimal scheduling of DERs. Intelligent
optimization algorithms can solve non-convex optimization problems effectively, including the genetic
algorithm (GA) [8], particle swarm optimization (PSO) [9], and differential evolution [10,11]. However,
these algorithms rely on the dispatch center or controller to collect and process DERs’ information,
which may lead to a higher communication cost; they also need a centralized communication structure
with high bandwidth, which has poor system reliability and is more vulnerable to a single point of
failure [12].

At present, the optimization decision process of VPPs is changing from centralized ways to
distributed ones [13]. According to the local communication mechanism, the operation information
of the DERs is collected through communication lines built among DER units and their adjacent
units, and then the real-time scheduling process can be carried out. The distributed consensus
algorithm employed in the distributed scheduling of [14] can greatly reduce communication costs and
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communication delays. Compared with centralized solutions, the distributed gradient algorithm in [15]
can not only obtain comparable optimums but also respond in a timely manner when the operation
conditions of the system change. To solve the problem of the objective function of ESs being not
smooth, the sub-gradient is calculated as an alternative of the gradient [16,17]. The economic dispatch
of a VPP is a non-convex optimization problem for the consideration of valve-point loading effects,
prohibited operating zones, and multiple fuel options. The algorithms mentioned in [14–17] cannot
be applied to the non-convex optimization problem because it is difficult to estimate the gradient
or sub-gradient. The distributed auction-based algorithm designed in [12] can realize the optimal
power output by sharing units’ bidding and then determining the auction results in the process of
consensus. However, it introduces too many intermediate variables, which will make the iteration
format more complex.

This paper adopts a distributed randomized gradient free algorithm (DRGF) [18] to solve
a VPP’s non-convex economic dispatch problem considering DGs’ valve-point loading effects,
prohibited operating zones, and multiple fuel options. The algorithm is established on a distributed
communication structure that has a higher operation reliability and lower communication cost [12].
In addition, the DRGF approach calculates randomized gradient-free oracles, instead of gradients or
sub-gradients, to implement the distributed optimization, which makes the iteration formula simple
and easily solved. The modified IEEE-34 bus system is employed to verify the effectiveness of the
proposed method. The simulation results show that the DRGF algorithm can formulate an economical
scheme for a VPP’s non-convex economic dispatch.

This paper is organized as follows. In Section 2, a VPP’s non-convex economic dispatch with
constraints of valve-point loading effects, prohibited operating zones, and multiple fuel options is
discussed. Section 3 introduces the DRGF algorithm, and the simulation results presented in Section 4
show its effectiveness. Finally, the paper is summarized in Section 5.

2. VPPs’ Non-Convex Economic Dispatch

2.1. The Operation Models of the DER’s Units

In traditional economic dispatch, the cost function of a DG is a standard quadratic function [19].
If valve-point loading effects, simulated by sinusoidal terms, and multiple fuel options are taken into
account, the cost function can be described as [4,12]:

C(Pi) =


a1

i Pi
2 + b1

i Pi + c1
i +

∣∣d1
i sin(e1

i Pi − e1
i Pmin

i )
∣∣, Pmin

i ≤ Pi ≤ P1i
...

...
... i = 1, · · · , ng.

aq
i Pi

2 + bq
i Pi + cq

i +
∣∣∣dq

i sin(eq
i Pi − eq

i Pmin
i )

∣∣∣, P(q−1),i ≤ Pi ≤ Pmax
i

, (1)

where ng is the total number of DGs and the power output of DGi is Pi, yielding to the upper limit
Pmax

i and lower limit Pmin
i . When Pi exceeds the value of P(q-1),i, unit i chooses the fuel q and its cost

function C(Pi) uses coefficients of aq
i , bq

i , cq
i , dq

i , eq
i .

Because the power output is usually concentrated in some areas, the operational efficiency can
be greatly promoted by prohibiting units from running in low productivity areas. The power output
constraints considering DGs’ prohibited operating zones can be expressed as [4,12]:

Pmin
i ≤ Pi ≤ Lmi, mi = 1

U(m−1)i ≤ Pi ≤ Lmi, mi = 2, · · · , Mi.
Umi ≤ Pi ≤ Pmax

i , mi = Mi
, (2)

where unit i has Mi prohibited operating zones, the mith of which subjects to the upper boundary Umi
and lower boundary Lmi.
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ESs can work in charging or discharging modes, and their cost functions and operation constraints
are as follows [20,21]:

C(Pei) = 0.5 · Ei · |Pei| , ei = 1, · · · , ne., (3)

− Pmax
ch ≤ Pei ≤ Pmax

dch , (4)
Sup < SOC ≤ Smax, dch
Sdown ≤ SOC ≤ Sup, dch or ch
Smin ≤ SOC < Sdown, ch

, (5)

where ne is the total number of ESs, and the power output of ESi is Pei. C (Pei) represents the charging
(ch)/discharging (dch) cost, and Ei is the charging/discharging efficiency. The maximum charging
and discharging power of ESi is Pmax

ch , Pmax
dch . Additionally, the minimum of both is 0. For the value of

the state-of-charge (SOC), Smax, Smin, Sup, Sdown are the maximum, minimum, upper, and lower values,
respectively [20].

Compared with operating at maximum power, REs will be more flexible in a schedulable mode.
However, this will also cause some profit losses, that is, the schedulable cost C (Pri) [21]:

C(Pri) = ρV (or ρW) ·[Pmax
ri − Pri] , ri = 1, · · · , nr. (6)

s.t. 0 ≤ Pri ≤ Pmax
ri (7)

where nr is the total number of REs, and the power output of REi is Pri. The ρV (photovoltaic systems)
and ρW (wind turbine) are the grid-connected prices, including electricity prices and generation
compensations. The maximum available power of REi is Pmax

ri , and it can be either the maximum
photovoltaic system tracking power PV [22] or the maximum wind power PW [23]:

PV = PVmax
GC

GCmax
[1 + K(Tc − Tr)], (8)

PW =


0 v < vci, v ≥ vco
v−vci
vr−vci

· Pr vci < v < vr

Pr vr ≤ v ≤ vco

, (9)

where PVmax represents the maximum output under standard test conditions. GC means the actual light
intensity; GCmax is the reference intensity under standard test conditions. The conversion coefficient of
temperature to power is depicted by K. Tc and Tr are the environment temperature and the reference
temperature under standard test conditions, respectively. Pr is the rated power output of the wind
generators (WGs). v, vci, vco, and vr are the wind speeds, cut-in wind speeds, cut-out wind speeds, and
the rated wind speeds, respectively.

2.2. Dispatch Objectives and Constraints

According to the operation mode of a VPP, the economic dispatch objective function and the
system constraints can be defined as [16,21]:

maxFVPP = ρdPD + ρsPS − CVPP, (10)

CVPP =
ng

∑
i=1

C(Pi) +
ne

∑
i=1

C(Pei) +
nr

∑
i=1

C(Pri), (11)

ng

∑
i=1

Pi +
ne

∑
i=1

Pei +
nr

∑
i=1

Pri = PD + PS, (12)

Pmax
VPP
− PD ≥ γ1 · PD + γ2 · PV + γ3 · PW , (13)
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where FVPP denotes the total income of the VPP, and CVPP represents its total generation cost. The
maximum generation capacity of the VPP is Pmax

VPP
, that is, the sum of the maximum power output of

each DER unit. The total load demand is PD and PS is the interface power at the point of common
coupling (PCC). If PS is negative, the power will flow from the VPP into the main grid. ρd is the
bidding of the VPP and ρS is the electricity price of the main grid. γ1, γ2, and γ3 are the reserved
capacity coefficients of the load demand, photovoltaic systems, and wind turbines, respectively.

3. Distributed Randomized Gradient-Free (DRGF) Algorithm

The DERs’ power output vector P =
[
P1, P2, · · · Png, Pe1, Pe2, · · · Pne, Pr1, Pr2, · · · Pnr]T can be

denoted as a variable vector x =
[
x1, x2, · · · xn]T , and there exists n = ng + ne + nr. Accordingly, the

upper and lower bounds of the variables are represented by xmax
i , xmin

i . Thus, the active power balance
constraint of the original VPP economic dispatch problem can be denoted as:

PS =
n

∑
i=1

xi − PD, (14)

Substituting formula (14) into formula (10), one can obtain:

maxFVPP = (ρd − ρs) · PD −
n

∑
i=1

[C(xi)− ρs · xi], (15)

It can be seen that the FVPP is only dependent on variables xi when the values of ρd, ρS, and PD
are constant. If we set fi(xi) = C(xi)− ρs · xi, the original objective function can be equivalent to
a minimization problem:

min
x∈X

f (x) =
n

∑
i=1

fi(xi), (16)

where f (x) denotes the objective function, and X is the feasible space of x, that is, x ∈ X may represent
the power output constraints of DERs.

Based on a distributed optimization framework, the DERs can collect neighboring units’
information and the information at the PCC, and then this information will be calculated by weighted
mean values [14,18]

xi[k] =
n

∑
j=1

Wij[k]xj[k] + εi · PS, (17)

where εi is the power regulation factor, and xi is the weighted mean value of xi. Unit j is connected to
unit i with the communication weight Wij [k], and its calculation format is shown in [12].

This paper employs a DRGF algorithm [18] to solve the problems of a discontinuous solution
space and the non-convex objective function. Although the objective function of a VPP is not smooth,
it is Lipschitz continuous in the variable space [24], and its smooth form can be written as:

min
x∈X

f µ(x) =
n

∑
i=1

f µi
i (xi), (18)

where µi is the smoothing coefficient of the objective function, and f µi
i (xi) is its smooth form,

calculated by:

f µi
i (xi) =

1
γ

∫
X

fi(xi + µiτi)e−0.5τ2
dτi, (19)

where the conversion coefficient denotes as γ = (
√

2π)
n
, and the random sequence τi meets the

Gaussian distribution. The theory of Gauss approximation is shown in the Appendix A.
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Now, distributed randomized gradient-free oracles can be constructed to implement the
optimal iteration:

gµi(xi[k]) =
f µi
i (xi[k] + µiτi[k])− f µi

i (xi[k])
µi

τi[k], (20)

where gµi(xi[k]) represents the distributed randomized gradient-free oracle of xi at the kth iteration.
By the above steps, the iterative form of the optimization variables can be derived as:

xi[k + 1] = PX

[
xi[k]− α[k]gµi(xi[k])

]
, (21)

where the projection operator PX is defined as in [25]. The iteration step-size satisfies the
following conditions:

α[k] > 0,
∞

∑
k=0

α[k] = ∞,
∞

∑
k=0

(α[k])2 < ∞, (22)

The implementation process of a VPP’s non-convex economic dispatch via the DRGF algorithm is
shown in Figure 1, and the specific procedures are as follows:

1. The input data includes the coefficients of cost functions, various limits of the DERs’ power
output, the total load demand, etc. The maximum available power output of the REs is calculated
by formula (8) and (9).

2. The optimization variable xi [0] is initialized according to references [8,10,15]. Then, set up the
smoothing coefficient of the objective function and generate the random sequence.

3. According to formula (14), calculate the initial PS at PCC.
4. Correct the iteration step by k = k + 1, where the initial number of iteration steps is k = 1.
5. According to formula (17), calculate the weighted mean values; and according to formula (19),

calculate the Gauss approximation. When DGs have multiple fuel options, as shown in equation
(2), select the cost function curves on the basis of the DG’s actual power output.

6. According to formula (20), calculate distributed randomized gradient-free oracles; according to
formula (22), calculate the current iteration step by α[k] = 1/

√
k + 1.

7. According to formula (21), implement the optimal iteration of the power output variables.
8. Determine whether the current variables are within the available space. If they satisfy, proceed to

the next step; otherwise, the variables take the upper (xi[k + 1] ≥ xmax
i ) or lower (xi[k + 1] ≥ xmin

i )
limits of the constraints. When variable xi falls into prohibited zone mi during the decreasing
process, such as xi [k] > xi [k + 1], its value will be set at the upper boundary Umi. Additionally,
when xi falls into prohibited zone mi during the increasing process, such as xi [k] < xi [k + 1],
the value will be set at the lower boundary Lm.

9. According to formula (14), update the initial PS at PCC.
10. Determine whether the current power imbalance satisfies the allowable value. If it satisfies,

proceed to the next step; otherwise, return to step (5) to recalculate the weighted mean values.
11. Calculate the iteration error.
12. Determine whether the iteration error satisfies the allowable value. If it satisfies, proceed to the

next step; otherwise, return to step (4) for the next iteration.
13. Output the optimal solution vector.



Energies 2017, 10, 1051 6 of 12
Energies 2017, 10, 1051 6 of 12 

 

Start

Input parameters and 
constraints

Calculate the initial PS  at PCC

k=k+1

 Initialize  xi[0],τi , μi 

Calculate fi μi(xi)

Calculate gui(xi)

Iterative xi[k+1]

Calculate  xi[k]

Calculate α[k]

Update the PS  

|PS| < 5 kW
?

xi[k+1]

∈ X ?

xi=xi
min or xi

max or Lmi or Umi

Calculate δ= (xi[k]-xi[k+1])/xi[k+1]

|δ| < 10-5 ?

Output  the optimum

End

Yes

Yes

Yes

No

No

No

 

Figure 1. The flowchart for a virtual power plant’s (VPP’s) non-convex economic dispatch via the 
distributed randomized gradient free algorithm (DRGF) algorithm. 

4. Numerical Examples 

Based on a modified IEEE 34 bus system, a VPP system is built to verify the effectiveness of the 
proposed algorithm. It mainly investigates DGs’ valve-point loading effects, prohibited operating zones, 
and multiple fuel options. The reference [18] shows that the convergence coefficient has little effect on the 
convergence of the algorithm, so the smoothing coefficient of the cost function is set to 0.0005 in this 
example. The communication topology is shown in Figure 2. The operation parameters are listed in 

Figure 1. The flowchart for a virtual power plant’s (VPP’s) non-convex economic dispatch via the
distributed randomized gradient free algorithm (DRGF) algorithm.

4. Numerical Examples

Based on a modified IEEE 34 bus system, a VPP system is built to verify the effectiveness of the
proposed algorithm. It mainly investigates DGs’ valve-point loading effects, prohibited operating
zones, and multiple fuel options. The reference [18] shows that the convergence coefficient has little
effect on the convergence of the algorithm, so the smoothing coefficient of the cost function is set to
0.0005 in this example. The communication topology is shown in Figure 2. The operation parameters
are listed in Tables 1 and 2. The total load demand is 650 kW, and the initial power outputs of the DGs,
REs, and ESs are 75, 75, and 0 kW, respectively. For solving non-convex economic dispatch problems,
a PSO solution used in [9] has achieved the lowest cost among numerous centralized algorithms.
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As contrast, we will also adopt the PSO [9] (one of the centralized dispatch method) to deal with the
VPP’s economic dispatch model. Table 3 provides the optimization results when one of the centralized
dispatch method (PSO) is adopted, and Table 4 shows the VPP’s average profits made by PSO and
DRGF. This section sets up three simulation scenarios as follows: (A) the VPP’s distributed economic
dispatch with valve-point loading effects; (B) the VPP’s distributed economic dispatch with prohibited
operating zones; (C) the VPP’s distributed economic dispatch with multiple fuel options.

Table 1. Coefficients of the distributed generators’ (DGs’) production cost. DER, Distributed
Energy Resources.

DERs
Units

Fuel
Type

aq
i Pi

2 + bq
i Pi + cq

i +
∣∣dq

i sin(eq
i Pi − eq

i Pmin
i )

∣∣ ($/kWh) Operation
Range (kW)ai bi ci di ei

DG 1
1 0.0751 25.734 996.57 310 0.053 40–55
2 0.0578 21.462 996.57 295 0.048 55–80

DG 2
1 0.0814 21.215 1002.1 225 0.062 40–55
2 0.0581 19.893 1002.1 218 0.061 55–80

DG 3
1 0.0857 22.188 1058.3 436 0.042 40–55
2 0.0596 22.095 1058.3 402 0.041 55–80

DG 4
1 0.0704 28.026 978.52 289 0.046 40–55
2 0.0672 27.684 978.52 275 0.039 55–80

Table 2. The virtual power plant’s (VPP’s) other operation parameters.

Operation Parameters Values

γ1, γ2, γ3 0.05, 0.2, 0.15
SOC(min, down, up, max) 0.05, 0.20, 0.80, 0.95

[L1, U1], [L2, U2] [45, 50], [55, 65] (kW)
ρrV, ρrW, ρd, ρS 0.0839, 0.0721, 0.0780, 0.0736 ($/kWh)

Ei; EC; Pmax(ch, dch) 85%; 100 (kWh); 20, 20 (kW)
Pr; v, vci, vco, vr 120 (kW); 12, 3.0, 25, 15 (m/s)

PVmax; GCmax, GC; K; Tr, Tc 180 (kW); 1, 0.9 (kw/m2); −0.45%; 25, 18 (◦C)

Table 3. Optimization results under one of the centralized dispatch method (PSO).

Distributed Energy
Resources(DERs) Units

The Optimization Results (kW)

Scenarios A Scenarios B Scenarios C

Distributed Generator (DG) 1 44.6364 44.4128 47.6625
Distributed Generator (DG) 2 47.8850 50.0000 44.4135
Distributed Generator (DG) 3 41.3855 41.1637 41.1637
Distributed Generator (DG) 4 51.1345 50.9133 50.9136

Renewable Energy (RE) 1 123.7492 123.5162 123.7500
Renewable Energy (RE) 2 109.0612 108.8276 109.0614
Renewable Energy (RE) 3 118.8540 118.6203 118.8541
Renewable Energy (RE) 4 113.9585 113.7249 113.9587

Energy Storage (ES) 1 2.6756 1.8496 2.0834
Energy Storage (ES) 2 4.2515 6.0170 6.2511
Energy Storage (ES) 3 −3.4227 −2.3173 −2.0838
Energy Storage (ES) 4 −4.4134 −6.4850 −6.2517

Table 4. The VPP’s average profits obtained by two dispatch strategies (PSO and DRGF).

Algorithm The PSO [8] The DRGF

Scenarios a 0.0642 ($/kWh) 0.0642 ($/kWh)
Scenarios b 0.0645 ($/kWh) 0.0645 ($/kWh)
Scenarios c 0.0649 ($/kWh) 0.0649 ($/kWh)
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4.1. Scenario A: The VPP’s Distributed Economic Dispatch with Valve-Point Loading Effects

The characteristic of valve-point loading effects makes the DGs’ cost function have many
non-differentiable points. The operation coefficients of DGs are shown in Tables 1 and 2. Figures 3
and 4 provide the optimal scheduling process of this scenario. It can be seen that the DGs’ power
output will have a great fluctuation during the initial stage of optimization, and then the ESs will
change their power output to reduce the impact of valve-point loading effects on the system’s active
power balance. In addition, the VPP also exchanges power with the main grid through the PCC to
stabilize the supply-demand balance. After a certain number of iterations, the DERs’ optimization
curves tend to be stable, and the DRGF algorithm finally achieves the same results as centralized
algorithms (shown in Tables 3 and 4). However, if considering the communication cost and operability,
the distributed dispatch will be more economical and practical.

Energies 2017, 10, 1051 8 of 12 

1 2 3 4

5

6 7

16

17

18

8

9

10

11

12 13

14 15

19

20
21

22

23

24

25

26

27 28

29
30

31

32

33 34

E2

R4

E4

E3

R1 G2

E1

G1

R2

R3

G3

Main
grid

R

GE Distribured Generator

Renewable Energy

Energy Storage System

G4
Virtual Power Plant

Communicatiuon Line

PCC

Figure 2. The communication topology based on a modified IEEE 34 bus system.

4.1. Scenario A: The VPP’s Distributed Economic Dispatch with Valve-Point Loading Effects 

The characteristic of valve-point loading effects makes the DGs’ cost function have many non-
differentiable points. The operation coefficients of DGs are shown in Tables 1 and 2. Figures 3 and 4
provide the optimal scheduling process of this scenario. It can be seen that the DGs’ power output
will have a great fluctuation during the initial stage of optimization, and then the ESs will change 
their power output to reduce the impact of valve-point loading effects on the system’s active power
balance. In addition, the VPP also exchanges power with the main grid through the PCC to stabilize
the supply-demand balance. After a certain number of iterations, the DERs’ optimization curves tend 
to be stable, and the DRGF algorithm finally achieves the same results as centralized algorithms
(shown in Tables 3 and 4). However, if considering the communication cost and operability, the
distributed dispatch will be more economical and practical. 

Figure 3. The optimized scheduling scheme of scenario A: (a) Optimization results of distributed
generators (DGs); (b) Optimization result of renewable energies (REs); (c) Optimization results of
energy storage systems (ESs); (d) The power PS at the point of common coupling (PCC). 

 

 

 

 

 

 

  

   

 
  

   
 
 

 
 

   

 

    
 

   

 

 

 

 

 

 

 

 

 

 

 

 

80 140 

po
w

er
 o

ut
pu

t o
f G
（

kW
）

po
w

er
 o

ut
pu

t o
f R
（

kW
）

70 120 
G1 

G2 

G3 

G4 

R1 

R2 

R3 

R4 

60 

50 

100 

80 
40 

iteration number iteration number 
(a) (b) 

0 50 100 0 50 100 

20 

10 

0 

-10 

E1 

E2 

E3 

E4 

po
w

er
 a

t P
C

C
（

kW
）

50 

0 

PS 

po
w

er
 o

ut
pu

t o
f E
（

kW
）

-20 -50 
0 50 100 0 50 

iteration number iteration number 
(c) (d) 

100 

Figure 3. The optimized scheduling scheme of scenario A: (a) Optimization results of distributed
generators (DGs); (b) Optimization result of renewable energies (REs); (c) Optimization results of
energy storage systems (ESs); (d) The power PS at the point of common coupling (PCC).
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Figure 4. The active power balance of scenario A.

4.2. Scenario B: The VPP’s Distributed Economic Dispatch with Prohibited Operating Zones

The DGs’ power output is discontinuous for some prohibited operating zones. Figures 5 and 6
show the simulation results under this scenario. In Figure 5a, the platforms in the curve indicate the
situation where DGs fall into prohibited operating zones. When DGs jump out of these areas, they
will resume normal operation. ESs can flexibly charge and discharge, greatly reducing the impact
of prohibited operating zones on the active power balance. As can be seen from Table 3, the DRGF
algorithm can get the same results as the centralized algorithms, which demonstrates that the DRGF
algorithm can effectively deal with DGs’ prohibited operating zones.
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Figure 5. The optimized scheduling scheme of scenario B: (a) Optimization results of DGs;
(b) Optimization result of REs; (c) Optimization results of ESs; (d) The power PS at PCC.
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Figure 6. The active power balance of scenario B.
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4.3. Scenario C: the VPP’s Distributed Economic Dispatch with Multiple Fuel Options

According to actual power output, DGs will choose the most economical fuel selection with
different cost coefficients, leading to some non-differentiable points. Figures 7 and 8 provide this
scenario’s simulation results. In Figure 7a and Table 1, when the power output is within 40–55 kW,
DGs select the No. 1 fuel; if the power output is within 55–80 kW, DGs will select the No. 2 fuel.
Then, the allocation of DERs should be re-optimized. The VPP’s total power output may have a large
fluctuation when the fuel changes, and the system will recover the active power balance quickly by
absorbing some power from the main grid. The distributed dispatch can get the same result as the
centralized one, which shows the DRGF algorithm’s effectiveness in solving DGs’ multiple fuel options.
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Figure 7. The optimized scheduling scheme of scenario C: (a) Optimization results of DGs;
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Figure 8. The active power balance of scenario C.

5. Summary

A technology of a VPP is adopted to manage DERs by modeling its non-convex economic dispatch
considering DGs’ characteristics of valve-point loading effects, prohibited operating zones, and
multiple fuel options. A DRGF algorithm is introduced to solve this nonlinear and non-differentiable
optimization problem. The objective function is converted to its Gauss approximation, and then
used to construct distributed randomized gradient-free oracles instead of gradients or sub-gradients.
A projection operator is also employed to deal with the discontinuous variable space. Three typical
simulation scenarios are implemented on a modified IEEE 34 bus system. The results indicate that
the proposed DRGF algorithm can effectively cope with a VPP’s non-convex economic dispatch, and
shows a good applicability.
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Appendix A

According to [24] (theorem 1 and 4, Formula (11) and (22)), the following lemma is introduced
to provide some important properties of the function f µi

i (xi) and the random gradient-free oracle
gµi(xi[k]).

Lemma A1. For each i, there has:

(a) f µi
i (xi) is convex and differentiable, and it satisfies:

fi(xi) ≤ f µi
i (xi) ≤ fi(xi) +

√
nµiG0( fi), (A1)

(b) The gradient ∇ f µi
i (xi) satisfies: [

gµi(xi[k])
]
= ∇ f µi

i (xi), (A2)

(c) The random gradient-free oracle satisfies:[
‖gµi(xi[k])‖

2] ≤ (n + 4)2G0( fi)
2, (A3)

where G0(fi) is Lipschitz constant; E[x] denotes the expected value of a random variable x. The further
principle description and proof can be found in [18,24].
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