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Abstract: Wind and Solar Energy resources are an increasingly large fraction of generation in global
electricity systems. However, the variability of these resources necessitates new datasets and tools
for understanding their economics and integration in electricity systems. To enable such analyses
and more, we have developed a free web-based tool (Global Renewable Energy Atlas & Time-series,
or GRETA) that produces hourly wind and solar photovoltaic (PV) generation time series for any
location on the globe. To do so, this tool applies the Boland–Ridley–Laurent and Perez models
to NASA’s (National Aeronautics and Space Administration) Modern-Era Retrospective Analysis
for Research and Applications (MERRA) solar irradiance reanalysis dataset, and the Archer and
Jacobson model to the MERRA wind reanalysis dataset to produce resource and power data, for a
given technology’s power curve. This paper reviews solar and wind resource datasets and models,
describes the employed algorithms, and introduces the web-based tool.

Keywords: wind power time series data; solar photovoltaic time series data; reanalysis data;
open-access web tool

1. Introduction

Global wind and solar photovoltaic (PV) capacity have been growing rapidly, reaching 432 GW for
wind [1] and 180 GWp for solar [2] in 2015. With this rapid deployment of variable renewable energy
(VRE) resources, a greater understanding of their spatial–temporal nature is desirable for resource
characterizations, grid integration analyses, and project development planning. However, freely
available VRE datasets either have limited temporal resolution or spatial coverage. While commercial
datasets including Meteonorm [3], SolarGIS [4], and Vaisala [5] provide improved resolution, they are
costly for preliminary analyses or research applications. This paper closes this gap by publishing a free
tool for downloading hourly, global wind and solar PV generation time series, called GRETA (Global
Renewable Energy Atlas & Time-series). GRETA adds to the growing body of work that develops
publicly available research datasets [6–10] and modelling tools [11–14]. With regard to solar data more
specifically, the US Department of Energy’s recent “Orange Button” initiative will create open data
standards to facilitate data exchange, reduce soft costs, and expedite financing [15].

The GRETA platform includes several advantageous attributes: free access, hourly temporal
resolution, global spatial coverage, multi-decadal historical data period (from 1979), formulation
of both wind and solar resources, and production of intermediate parameters in addition to power
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generation. The user-friendly and open-access design of the GRETA portal will facilitate a breadth
of end-users, including “prosumers” optimizing decentralized energy exchange [16], commercial
self-consumers evaluating alternative scenarios [17], as well as residential households performing
economic analyses [18], balancing a PV and electric vehicle charging [19] or optimizing battery storage
system design [20]. Further, GRETA enables the energy system modelling community focused on
generating VRE integration alternatives [21]. Such modelling exercises, which have been reviewed
by [22], embody a range of objectives and scales. Country or regional analysis of renewable resource
potential are an essential step for any long-term energy planning exercise, including diffusion, market,
or econometric analyses [23]. The implications of renewable resource variability characteristics [24]
have been reviewed by [25]. Deterministic or stochastic unit commitment dispatch models have been
used for a variety of VRE integration analyses, for example, to determine the optimal procurement of
reserves [26]. Longer-term modelling exercises, which explore the implications of climate change on
future energy systems, also often rely on long historical meteorological time series data [27].

This paper summarizes the models that convert meteorological data into generation data, reviews
previous validations of the MERRA reanalysis data, and introduces the freely available web tool
GRETA. An overview of the GRETA inputs, outputs, and algorithm, is shown schematically in Figure 1,
and described in more detail in the remainder of the paper.
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Energies 2017, 10, 1007 4 of 14Energies 2017, 10, 1007 4 of 13 

 

 

Figure 3. Example average solar power output for Ontario, Canada. 

2. Wind and Solar Resource Datasets 

Wind and solar PV time series can be derived from either meteorological station data or 
reanalysis data. Resource datasets simulated from meteorological station data typically scale and/or 
time shift the measured data to nearby hypothetical plants, as in [28–32], and others. However, 
challenges with this approach include the following: data gaps [33], limited global coverage [34], data 
quality control issues [35], limited collection durations [35], data inconsistencies [35], and 
susceptibility to the local topography [36,37]. Moreover, surface observations are often relatively 
unavailable [36]. 

Reanalysis datasets aggregate weather observations from satellite and surface stations, aircraft, 
and balloons through numerical weather prediction (NWP) modelling [36]. Such datasets offer key 
advantages when creating VRE resource estimates, namely their global coverage and long data 
collection periods [38], and consistent extrapolation methodology [36,39]. While reanalysis data 
cannot represent site-specific resource characteristics at a sub-grid scale, they represent a region of 
interest well [35].  

GRETA uses the Modern-Era Retrospective Analysis for Research and Applications (MERRA) 
reanalysis dataset developed by NASA (National Aeronautics and Space Administration) [40,41]. 
This dataset provides the variables required to compute wind and solar generation potential on a 
global 1/2 by 2/3 latitude–longitude grid with hourly resolution, from early 1979 to the within  
2 months of the present. Thus, the proposed GRETA platform is primarily of interest for preliminary 
VRE assessments and exploration of long-term planning options at a large spatial (utility) scale; 
ground measurements would be required for site-specific resource data, for example, at the 
distribution scale. Several studies have validated the MERRA wind data against other datasets, 
including the National Renewable Energy Laboratory [39], National Climatic Data Centre and the 
University of Massachusetts wind stations [42], historic met mast and wind generation data [35,43,44]; 
while others have compared the derived power output from wind farms [45]. The MERRA solar data 
have been compared to solar production data from five North American sites [46], the Helio-Clim-1 
dataset and in situ irradiance measurements [47], the ERA-Interim re-dataset and ground 
measurements [48], and the Meteosat-based CM-SAF SARAH satellite dataset [49]. Many of these 
studies have concluded that MERRA provides an accurate representation of wind speed and solar 

Figure 3. Example average solar power output for Ontario, Canada.

2. Wind and Solar Resource Datasets

Wind and solar PV time series can be derived from either meteorological station data or reanalysis
data. Resource datasets simulated from meteorological station data typically scale and/or time shift
the measured data to nearby hypothetical plants, as in [28–32], and others. However, challenges with
this approach include the following: data gaps [33], limited global coverage [34], data quality control
issues [35], limited collection durations [35], data inconsistencies [35], and susceptibility to the local
topography [36,37]. Moreover, surface observations are often relatively unavailable [36].

Reanalysis datasets aggregate weather observations from satellite and surface stations, aircraft,
and balloons through numerical weather prediction (NWP) modelling [36]. Such datasets offer key
advantages when creating VRE resource estimates, namely their global coverage and long data
collection periods [38], and consistent extrapolation methodology [36,39]. While reanalysis data cannot
represent site-specific resource characteristics at a sub-grid scale, they represent a region of interest
well [35].

GRETA uses the Modern-Era Retrospective Analysis for Research and Applications (MERRA)
reanalysis dataset developed by NASA (National Aeronautics and Space Administration) [40,41].
This dataset provides the variables required to compute wind and solar generation potential on
a global 1/2 by 2/3 latitude–longitude grid with hourly resolution, from early 1979 to the within
2 months of the present. Thus, the proposed GRETA platform is primarily of interest for preliminary
VRE assessments and exploration of long-term planning options at a large spatial (utility) scale; ground
measurements would be required for site-specific resource data, for example, at the distribution scale.
Several studies have validated the MERRA wind data against other datasets, including the National
Renewable Energy Laboratory [39], National Climatic Data Centre and the University of Massachusetts
wind stations [42], historic met mast and wind generation data [35,43,44]; while others have compared
the derived power output from wind farms [45]. The MERRA solar data have been compared to
solar production data from five North American sites [46], the Helio-Clim-1 dataset and in situ
irradiance measurements [47], the ERA-Interim re-dataset and ground measurements [48], and the
Meteosat-based CM-SAF SARAH satellite dataset [49]. Many of these studies have concluded that
MERRA provides an accurate representation of wind speed and solar irradiance at the hourly time
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scale, for electricity generation modelling applications and characterization analyses. However, other
studies have developed site or country specific correction factors to compensate for spatial bias [45],
and such analyses could be expanded to more areas in future research endeavors.

Several studies have employed the MERRA dataset for VRE analyses, including assessing the
practical global wind power availability [50,51], inter-annual wind power production variability [42],
and wind variability [35]. In addition, Gunturu (with others) used MERRA data to investigate wind
characteristics in the USA [39], Europe [52], southern Africa [53] and Australia [54]. Juruš et al. [47]
simulate the variability of 33 years of hourly PV production in the Czech Republic. Finally, studies
have examined wind and solar covariation to model large-scale production in South Africa [55],
Australia [56] and in Europe [57]. The MERRA data has also been used to develop a model to
synthetically simulate hourly wind values in the South West region of Western Australia [58].

3. Methodology for Calculating Solar PV Generation

The MERRA dataset provides the global horizontal irradiance (GHI) on a horizontal plane on
the Earth’s surface, including both the direct and diffuse irradiance components (tavg1_2d_rad_Nx
data product). The GHI is separated into its direct and diffuse components (Section 3.1), so that the
irradiance on an inclined surface can be calculated using trigonometry for the direct component, and
the approach in Section 3.2 for the diffuse component. Finally, the power production data are calculated
for a given technology’s power curve in Section 3.3. Unless indicated otherwise, all variables have
hourly temporal resolution.

3.1. Calculating the Direct and Diffuse Fractions from GHI

Calculation of the direct and diffuse components from the global irradiation relies on the clearness
index, (kt), defined in [59] as:

kt =
Iglobal

H0
(1)

where Iglobal is the surface incident shortwave flux received on a horizontal plane at the Earth’s surface,
and H0 is the top of atmosphere incident shortwave flux prior to any attenuation, both of which are
provided by MERRA. The fraction d of total radiation

(
Iglobal

)
received on a horizontal plane as diffuse

radiation (Idiffuse) (integrated over the hour) is defined as [59]:

d =
Idiffuse
Iglobal

(2)

Several models calculate the direct and diffuse components of global irradiation, whether
polynomial correlations, logistic functions, or process dynamics models are used [60]. The polynomial
models that relate the clearness index to the diffuse fraction of radiation can further be divided into first
order [61,62], second order [63], third order [64–66], and fourth order models [67,68]. Logistic functions
incorporate physical principles by relating the clearness index to variables such as cloud cover, air mass,
water vapor, turbidity, and albedo [69]. Logistic models include the direct insolation simulation code
(DISC) [59,69,70], Skartveit–Olseth model [71,72], DirInt model [73], Muneer-Munawwar model [74],
and Boland–Ridley–Laurent (BRL) model [75]. Finally, process dynamic models include multiple
predictors, such as the clearness index [76], stratospheric sulfate aerosol loading [77], and atmospheric
turbidity [78].

The current application necessitates a universal model, applicable in both Northern and Southern
Hemispheres. Logistic functions are intrinsically more generic, while piecewise functions would tend
to be site-specific [75]. In particular, the BRL model was found to perform marginally better in the
Northern Hemisphere, and substantially better in the Southern Hemisphere, than previous models,
and therefore is provisionally recommend as a universal model [75].
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The BRL Model

The BRL model begins with the clearness index (kt), to predict the diffuse fraction (d) as [75]:

d =
1

1 + exp(−5.0033 + 8.6025 kt)
(3)

where the optimal constant values have been established by minimizing the squared error difference
between the model and the back-transformed data [75]. To describe the spread of the diffuse term,
more predictors were added including: persistence indicator, the daily clearness index, apparent solar
time, and solar angle. The persistence indicator accounts for atmospheric inertia, calculated as the
average of the previous and successive hour’s clearness index, for hours between sunrise and sunset:

ψ = kt−1 + kt+1 (4)

where ψ is the persistence indicator, kt−1 is from the previous hour, and kt+1 is the successive hour’s
clearness index. At sunrise, ψ is equal to the successive hour’s index, while at sunset ψ is equal to the
previous hour’s index. The daily clearness index (Kt) is the sum of hourly clearness indexes:

Kt =
∑24

j=1 Iglobal j

∑24
j=1 H0 j

(5)

where Iglobal j is the global radiation at hour j, and H0 j is the extraterrestrial radiation at hour j. Finally,
the combined equation to calculate the diffuse fraction of global irradiation on a horizontal surface,
including the five predictors, is as follows:

d =
1

1 + exp(β0 + β1kt + β2 AST − β3α + β4Kt + β5ψ)
(6)

The apparent solar time (AST) and solar angle (α, in degrees) have their usual meaning.
Ridley et al. [75] used least squares minimization on data from seven locations worldwide to determine
the coefficient (β) values in each location; the authors concluded that these coefficient values were
similar enough to create a generic model. After amalgamating the data from all of the locations and
minimizing the residual sum of least squares, Ridley et al. [75] propose the following generic multiple
predictor logistical model, known as the Boland–Ridley–Laurent (BRL) model:

d =
1

1 + exp(−5.38 + 6.63kt + 0.006AST − 0.007α + 1.75Kt + 1.31ψ)
(7)

3.2. Calculating Irradiance on a Tilted Plane

The BRL model estimates the diffuse and direct fraction of global irradiation on a horizontal plane;
however, practical solar PV applications often incline modules to maximize electricity generation. Of
the three components of solar radiation, direct, reflected, and diffuse, calculating the former two on an
inclined surface is a trigonometric calculation [79]:

Ib,T = Ib,h
cos(θ)

cos(θZ)
(8)

where Ib, T is the incident radidation on a tilted surface, Ib, h is the incident direct radiation on a
horizontal surface, θ is the angle of incident radiation, and θZ is the angle of horizontal radiation to
normal radiation.

Ig,T = Iρg
1 − cos(β)

2
(9)
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where Ig, T is the ground reflected radiation on a tilted module, I is the global radiation on a horizontal
surface, ρg is the albedo, and β is the angle of the module relative to the horizontal.

Calculating diffuse irradiance on an inclined plane requires a second type of model, falling into
one of three categories [80]. First generation models include isotropic models, that assume that diffuse
radiation comes equally from all parts of the sky [81], and circumsolar models, that assume that diffuse
radiation emanates from the direction of the solar disk. Second generation models differentiate the
diffuse radiation from clear versus overcast sky, by introducing a horizontal brightening component
and circumsolar diffuse component [82], developing a modifier for overcast [82] and clear sky
conditions [83], incorporating weighted diffuse components for both circumsolar and uniform isotropic
skies [84], and developing a correction factor for horizontal brightening [85]. Third generation models
employ two or three diffuse components (isotropic, circumsolar, and horizontal brightening), and
include the Gueymard model [86], the Muneer model [80,87,88], and the Perez model [89].

The Perez model has been cited frequently, due to its accuracy in locations such as Spain [90],
Italy [91], Switzerland [92], Iran [93], and 27 other worldwide sites [94]. The Perez model has been
outperformed when compared to site-specific models in Athens, Greece [95], and Valladolid, Spain [96].
While site-specific coefficients can improve the Perez model accuracy [97], the generic coefficients
developed by Perez are suitable where site-specific coefficients are not available.

The Perez Model

The Perez model computes three sky components: an isotropic dome, a circumsolar component,
and a horizontal brightening component [98] (original), and [99] (updated). The Perez model consists
of two parts: a geometric description of the sky hemisphere, superimposing a circumsolar disk
to account for forward scattering by aerosols, and a horizontal band on an isotropic background
to account for multiple Rayleigh scattering and re-scattering near the horizon. Perez defines two
parameters to describe these diffuse irradiance components: the circumsolar region radiance, which is
equal to F1 times the background, and the horizontal region radiance, which is equal to F2 times the
background [99]. These two brightness coefficients are then established empirically as a function of
insolation conditions. Perez proposes the following simplified version of the model:

DC = Dh

[
0.5(1 + cos(s))

(
1− F′1

)
+ F′1

( a
c

)
+ F′2 sin(s)

]
(10)

where Dc is the diffuse irradiance on a tilted surface, Dh is the diffuse irradiance on a horizontal surface,
s is the module tilt angle, F′1 is the circumsolar brightness coefficient, F′2 is the horizontal brightness
coefficient, a is the circumsolar solid angle weighted by its average incidence on the slope, and c is the
circumsolar solid angle, weighted by its average incidence on the horizontal. The parameters F′1, F′2,
a, and c are defined in detail in the Perez paper [99]. The solid angle values a and c were modified
slightly in an updated revision, to correct for numerical errors that occurred during dawn and dusk
hours, where the solar elevation angles approached zero [100]. In addition, lower bounds were
placed on the zenith/elevation angles at dawn and dusk. These insolation conditions (F′1 and F′2) are
described by relatively simple analytic functions of the position of the sun (Z, the solar zenith angle),
the brightness of the sky dome (∆, the horizontal diffuse irradiance normalized to extraterrestrial
global as defined below), and the clearness (sum of diffuse and direct normal irradiance divided by
the diffuse irradiance, ε).

∆ =
Dhm

I0
(11)

where m is the relative air mass, and I0 is the normal incidence extraterrestrial radiation. Perez notes
that this generic set of coefficients, which is intended to satisfy a broad climatic spectrum, could be
developed for a local environment to minimize error.
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3.3. Solar PV Generation Calculation

The irradiance on a tilted surface can be used to calculate solar PV electricity generation, given
a module power curve. GRETA includes a range of power curves for currently available solar PV
module technologies, as well as a user interface, to enter another power curve of choice. The solar PV
module efficiency is often dependent on module temperature (Tm); the following formula proposed by
Sandia National Laboratories [101] is used for this adjustment:

Tm = EPOA × (ea + b × WS) + Ta (12)

where Tm is the estimated module temperature, EPOA is the solar irradiance incident on the module,
WS is the wind speed, Ta is the ambient temperature in, and a and b are parameters that depend on
the module construction and mount configuration. The Sandia Module Temperature Model specifies a
and b parameter values for glass/cell/glass, glass/cell/polymer, polymer/thin-film/steel, and linear
concentrator module constructions, as well as open rack, roof mount, insulated back, and tracker
mounting configurations [101].

4. Calculating Wind Generation Potential

4.1. Calculation of Wind Speed at Hub Height

The MERRA atmospheric single-level diagnostics dataset contains the wind speed in the
northward and eastward directions at 2 and 10 m above displacement height, and 50 m above the
surface (tavg1_2d_slv_Nx data product). The Archer and Jacobson Least Squares Fitting Approach
extrapolates the wind speed to hub height [102], using either:

V(z) = VR

(
z

zR

)α

(13)

where V(z) is the wind speed at elevation z, VR is the wind speed at reference elevation zR, and α is a
friction coefficient (typically 1/7), or:

V(z) = VR

(
ln ( z

z0
)

ln ( zR
z0
)

)
(14)

where z0 is the roughness length (typically 0.01 m). However, since both formulas assume VR as a
multiplying factor, they incorrectly assign a value of zero to all wind speed values at elevation z when
VR = 0. As such, Archer and Jacobson derive the following additional formula [102]:

Vi =
∑N

i=1 Vi − B ∑N
i=1 ln(zi)

N
+

N ∑N
i=1[Vi ln(zi)]−∑N

i=1 Vi ∑N
i=1 ln(zi)

N ∑N
i=1 [ln(zi)

2]−
(

∑N
i=1 ln (zi)

)2 × ln(zi) (15)

where Vi is the wind speed observed at vertical height i, and N is the selected number of free input data
points. Equations (13)–(15) assume that wind speed increases with increasing height, and therefore
assume the wrong concavity if the wind speed decreases with height; in these cases, Archer and
Jacobson (2003) derive the solution of extrapolating to hub height using linear regression:

Vi = VR +
N ∑N

i=1(Vizi)−∑N
i=1 Vi ∑N

i=1 zi

N ∑N
i=1(zi)

2 −
(

∑N
i=1 zi

)2 × (zi − zR) (16)
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The employed method is then chosen by minimizing the wind speed residual squared error,
where residual R is defined as [102]:

R =
N

∑
i=1

[Vi −V(zi)]
2 (17)

where V(zi) is the wind speed calculated by each of the four equations. By setting the partial derivative
of R with respect to α from (13) and z0 from (14) to zero, and solving for αLS and ln

(
zLS

0
)
, the following

formulae apply [102]:

αLS =
∑N

i=1 ln
(

Vi
VR

)
ln
(

zi
zR

)
∑N

i=1 ln
(

zi
zR

)2 (18)

ln
(

zLS
0

)
=

VR{∑N
i=1[ln(zi)]

2 − ln(zR)∑N
i=1 ln(zi)} − ln(zR)∑N

i=1

(
Vi ln

(
zi
zR

))
{

VR ∑N
i=1 ln(zi)−∑N

i=1

[
Vi ln

(
zi
zR

)]
− NVR ln(zi)

} (19)

The four fitting parameters and their respective residuals are calculated for each hour. The best
fitting parameter, which minimizes the residual, then determines the wind speed at hub height
according to their respective equation [102].

4.2. Wind Generation Calculation

The wind speed at hub height can then be used to calculate a generation value using a given
turbine technology’s power curve. GRETA includes a range of currently available wind turbine
technologies, as well as a user interface for entering a power curve of choice. The wind power
production is dependent on the air density at hub height (ρ), which is calculated at surface height
directly using MERRA parameters and the equation of state formula. The change in air pressure from
the surface to hub height is then calculated iteratively using the vertical fluid pressure formula, and
applying the typical temperature variation of 6 K per kilometer of height.

5. Conclusions

To facilitate a wide variety of wind and solar PV assessments by researchers and practitioners
alike, we have developed GRETA, a web tool that can be used to calculate historical hourly wind
and solar generation time series data. GRETA, is currently freely available at the following URL:
energy.utoronto.ca/GRETA. The downloadable comma-separated values (CSV) format data files vary
in size depending on the job request, and require a CSV-reading software to access. The key equations
used to create these wind and solar PV generation time series datasets are herein summarized. GRETA
implements these formulations on publicly available data, while providing users with the ability to
create their own datasets with their own input parameters. Compared to existing wind and solar
resource datasets, the current approach has the advantages of being free, with hourly temporal
resolution, global spatial coverage, explicit modelling algorithms, with convenient visualization and
data download.
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