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Abstract: The existing literature predominantly concentrates on the utilization of the gradient
descent algorithm for control systems’ design in power systems for stability enhancement. In this
paper, various flavors of the Conjugate Gradient (CG) algorithm have been employed to design the
online neuro-fuzzy linearization-based adaptive control strategy for Line Commutated Converters’
(LCC) High Voltage Direct Current (HVDC) links embedded in a multi-machine test power system.
The conjugate gradient algorithms are evaluated based on the damping of electro-mechanical
oscillatory modes using MATLAB/Simulink. The results validate that all of the conjugate gradient
algorithms have outperformed the gradient descent optimization scheme and other conventional and
non-conventional control schemes.

Keywords: low-frequency oscillations; HVDC system; adaptive feedback linearization control;
adaptive neuro-fuzzy inference system; conjugate gradient algorithms

1. Introduction

In recent years, the rapid growth in energy consumption and the implementation of the
deregulated environment have resulted in the highly interconnected and stressed infrastructure
of the power system. A change in the operating condition at any one location can have a magnified
impact over a wide area as it propagates through the electrical network. Under the stressed operating
conditions, even a small disturbance can threaten the stability of the power system and generate power
system oscillations. Among these, Low-Frequency Oscillations (LFOs) would limit the power transfer
capabilities between different interconnected areas and have a great impact on the most secure and
economical operation of the power systems [1].

Rapid and effective damping of LFOs is an important issue as the sustained LFOs may result
in almost instantaneous large-scale cascading failures. To avoid the economic loss and daily life
interruption, it is highly necessary to dampen LFOs to continue the secure operation of the power
system [2,3]. To improve the stability of the power system, a solution might be to utilize controllable
power components within the system. One such component is the HVDC link [4].

Over the last few decades, rapid growth has been observed in the application of the HVDC
technology in electric power transmission systems due to its economical and technical advantages.
Mainly, HVDC transmission systems are employed to transmit electric bulk power over long distances
and interconnect asynchronous AC systems having different frequencies [5]. Available technology
options for HVDC transmission system includes Line Commuted Converters (LCC) and forced
commutated converters. The LCC-HVDC systems have evolved as a much more mature and reliable
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technology [6]. The simply structured classic LCC-HVDC systems are available in high power ratings
with lower power losses [7]. As HVDC system operation involves no inertia, it is possible to rapidly
control the power flow through the HVDC link. The instant variation in power flow can be used to
improve system operating flexibility, as well as maintain the stability of the power system during
perturbed operating conditions. The provision of appropriate supplementary damping control of the
classical HVDC system provides modulation of power flow through the HVDC link and effectively
mitigates inter-area oscillations of interconnected power systems [8]. Recently, extensive research
has been carried out to propose Power Oscillation Damping (POD) controllers applying classical
control theory, optimal control schemes, robust control methods and the feedback linearization
technique [9–16]. Classical control theory-based POD controllers are designed with a first-order
approximation of the system dynamics at a certain operating condition. This method provides
adequate damping for a system operating in the vicinity of equilibrium. However, their performance
may decline due to the wide-ranging and rapidly varying operating conditions of the highly nonlinear
and stochastic nature of the power system [17]. The linear optimal control schemes are based on the
system model, which is linearized at a specific operating point and suffers the same drawbacks and
limitations as classical control [18]. Robust control improves the performance of classical POD control.
However, it requires an upper bound on uncertainties and is deficient in learning. Its performance
deteriorates in a highly nonlinear power system with increased uncertainties [19].

For highly nonlinear systems, differential geometry-based Feedback Linearization Control (FBLC)
is a better option to model a nonlinear control scheme [20]. However, it requires having exact
knowledge of the system nonlinearities. Model uncertainty can result in degraded performance and
hence limited applications in the power system [21]. The POD controller realization based on an
adaptive feedback linearization becomes more suitable for applications in the highly nonlinear power
systems with unknown or uncertain parameters [22]. Although model-based methods for identification
and control of plants dynamics are well established and widely used, they may not provide satisfactory
performance in today’s power system. Artificial intelligence-based control techniques have been
applied for systems with both un-modeled dynamics and uncertainty in the parameter [23].

In [24], Artificial Neural Network (ANN)-based FBLC is employed to improve power system
stability by mitigating LFOs. The opaque nature of ANNs includes learning capability, and they are
capable of parallel processing. ANNs entail an ample amount of problem data for their training and
are prone to overfitting [25]. ANNs’ drawbacks are tackled by the integration of their merits and the
Fuzzy Logic System (FLS) that results in a more intelligent Adaptive Neuro-Fuzzy Inference System
(ANFIS). The combination of FLS and ANNs acquires the capabilities of robustness, parallel processing
and learning capability from ANNs and the imprecise knowledge-based modeling capability of the
simple and natural structure FLS. ANFIS is dynamic and capable of learning from experience with
sample data to estimate a function without any mathematical model. The online optimization of
the parameters of ANFIS enhances its fast and accurate learning capabilities to achieve the desired
output [26,27].

The gradient-based back-propagation algorithm has been widely used as a learning algorithm
for ANFIS [28]. The Steepest Descent (SD) algorithm follows the negative of the gradient to approach
the desired local minimum in a zigzag path. Newton methods have faster convergence than the SD
method, but require computation of the Hessian and its inverse. A prominent iterative Conjugate
Gradient (CG) method computes new search directions by using only one previous search vector
at each time step and does not follow a pre-specified direction of the negative of the gradient. The
speed of convergence is better than the SD method as the CG algorithm moves in the non-interfering
directions. Computation of the Hessian is not a prerequisite in CG algorithms. It requires less
memory to operate and less computation as compared to Hessian-based methods [29]. With simple
implementation and fast convergence, CG methods become numerically competitive for applications
in a highly nonlinear power system [30,31]. Furthermore, a real-time adaptation of ANFIS parameters
has a swift response in comparison with batch mode adaptation and rapidly optimizes the parameters
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of ANFIS [32]. The performance of FBLC is further improved through on-line tuning of its coefficients.
Optimized coefficients keep the control magnitude bounded and effective over a wide range of
operating conditions [33]. Simple implementation of the Least Mean Square (LMS) algorithm makes
it the most prevalent adaptive algorithm. Anyhow, the LMS algorithm is sensitive to the scaling of
its input and exhibits data-dependent slow convergence behavior. Its variant, normalized Least Mean
Square (nLMS) algorithm, is as simple as LMS and more robust. The nLMS algorithm is more stable on
average than LMS and shows an improved balance between simplicity and performance in real-time
applications [34].

A MIMO Adaptive Neuro-Fuzzy Feedback Linearization Control (ANFFBLC) for multiple HVDC
links has been proposed in [35]. The ANFIS architecture is employed for real-time identification
of unknown nonlinear dynamics of the power system. ANFIS parameters are optimized through a
nonlinear CG algorithm proposed by Hager and Zhang. FBLC coefficients are on-line tuned to track the
power system output for an extensive operating conditions. On-line self-tuning of FBLC coefficients
and real-time adaptive neuro-fuzzy identification aspects of ANFFBLC make it an appropriate POD
control for HVDC systems. The main contributions of this research include:

• Implementation of the SD algorithm and six CG methods for online optimization of
ANFFBLC parameters.

• Evaluation and comparison of damping performance of the SD algorithm and six CG methods
along with conventional and non-conventional control schemes.

Different case studies are performed in a multi-area AC/DC test power system to validate the
damping performance of ANFFBLC with different CG algorithms. Results show a promising response
with ANFFBLC and improved stability of the power system as compared with conventional and
non-conventional control schemes.

The rest of the paper is organized as follows. Section 2 describes the modeling and control of
the AC/DC power system. The proposed closed-loop control system design is explained in Section 3.
Results are presented and discussed in Section 4. Section 5 concludes the findings of this research work.

2. AC/DC Power System Model Description

The major components of test AC/DC power system comprise the synchronous generators with
control, LCC-HVDC links, transmission lines and transformers. Synchronous machines and control
dynamics are expressed by differential equations, while algebraic equations describe the load flow and
network model.

2.1. Power System Components Modeling

The synchronous machines with their associated control constitutethe major components of the
modern power system. This research work implements a sixth order synchronous machine, while
considering the dynamics of the stator, field and damper windings. The sixth order model of the i-th
synchronous machine is given by the following differential equations [36].
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T′do
d
dt

E′q = E f d − E′q − (xd − x′d)
{

Id −
x′d − x′′d

(x′d − xls)2 (ψ1d + (x′d − xls)Id − E′q)
}

(1)

T′′do
d
dt

ψ1d = −ψ1d + E′q + (x′d − xls)Id (2)

T′qo
d
dt

E′d = −E′d + (xq − x′q)

{
Iq −

x′q − x′′q
(x′q − xls)2 (ψ2q + (x′q − xls)Iq + E′d)

}
(3)

T′′qo
d
dt

ψ2q = −ψ2q − E′d + (x′q − xls)Iq (4)

d
dt

δ = ωr −ωs (5)

d
dt

ωr =
1

2H
(Pm − Pe − D∆ωr) (6)

where:

• E f d is the field voltage.

• E′d/q is the transient voltage in the d/q-axis.

• Id/q is the armature current in the d/q-axis.

• xd/q, x′d/q, x′′d/q are synchronous, transient and sub-transient reactances in the
d/q-axis, respectively.

• xls is the armature leakage reactance.
• T′do/qo is the transient time constants of the d/q-axis.

• T′′do/qo is the sub-transient time constants of the d/q-axis.

• ψ1d is the d-axis flux linkage of the damper winding.
• ψ2q is the q-axis flux linkage of the damper winding.
• H is the inertia constant.
• Pe is the generator electrical power.
• Pm is the generator mechanical power.
• δ is the generator rotor angle.
• ωr is the generator rotor speed.

The dynamics in the d-axis are narrated by Equations (1) and (2), while Equations (3) and (4)
define the dynamics in the q-axis. The swing equation of the synchronous machine is represented by
Equations (5) and (6). With negligible stator’s resistance, the stator voltage and machine’s real power
are given as:

Ed =
x′′q − xls

x′q − xls
E′d −

x′q − x′′q
x′q − xls

ψ2q + x′′q Iq (7)

Eq =
x′′d − xls

x′d − xls
E′q +

x′d − x′′d
x′d − xls

ψ1d + x′′d Id (8)

Et =
√

E2
d + E2

q (9)

Pe = Ed Id + Eq Iq (10)

where Et is the generator terminal voltage. The complete generator model includes a detailed nonlinear
hydraulic turbine with a governor system. The excitation system is implemented with the IEEE Type 1
voltage regulator combined with an exciter. The long transmission line is modeled with the distributed
parameter, and distribution lines are modeled with lumped parameters and π-representation. All
transmission lines, transformers and loads are combined to model the power system network, and the
nodal equations describe the relationships between the system voltages and currents.
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2.2. HVDC Dynamics

LCC-HVDC is comprised of the commutation transformer, thyristor bridges, the AC filter system
to limit the harmonic content in the AC current, the DC smoothing reactor, the mono-polar DC
transmission line and the control system.

2.2.1. LCC-HVDC Converter Modeling

The LCC-HVDC system represented by an average model is shown in Figure 1. The variables
are shown with appropriate subscripts I and R for the inverter and rectifier poles, respectively.
The rectifier and inverter poles are average models of 12-pulse converters with equivalent DC voltage
and AC current sources. The voltage source generates converter voltage at the DC side, and the
current source injects the fundamental component of the current into the AC network. The linear
model of the commutation transformer is also included in the average model representation. The
model does not represent high-frequency switching harmonics, which are unnecessary for dynamic
analysis and control dynamics. However, dynamics resulting from the control system and the power
system interaction are preserved [37]. The rectifier and the inverter are interconnected through a DC
transmission line with smoothing reactors for each pole.����������	�
����������������� ��� ��∑�� ������� ��	�
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Figure 1. The Line Commutated Converter (LCC)-HVDC system average model implementation
and control.

The average DC voltage with firing delay angle, α is defined as:

Vdc =
6
π

∫ π/6+α

−π/6+α

√
2aVt cos (ωt)d(ωt) =

6
√

2
π

aVt cos α (11)

where Vt is the converter AC bus voltage, a is the transformer’s off-nominal tap ratio and 6
√

2
π aVt = Vdco

is the ideal no-load DC voltage; where:

6
√

2
π

aVt = Vdco (12)

The voltage source in the average model is powered by Equation (11). The figure also models the
thyristor on-state voltage drop and losses in the converter and transformer. The diode represents the
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unidirectional current flow without any losses associated with it. The DC voltage at the rectifier and
inverter, with the effect of commutation overlap, is given as:

VdcR = Vdco cos α− 2
3Xc

π
IdcR (13)

VdcI = Vdco cos γ− 2
3Xc

π
IdcI (14)

In the above equations, Idc is the converter direct current, Xc is the commutation reactance and
γ = π − α − µ is defined as the extinction advance angle. Here, µ is the commutation interval.
The fundamental primary phase current injected into the AC line is computed in the dq-axis frame as:

Id =
Vdco(cos 2α− cos(2α + 2µ))

4
√

6aXc
(15)

Iq = −Vdco(2µ + sin 2α− sin(2α + 2µ))

4
√

6aXc
(16)

µ = cos−1
(

cos α− 2Xc Id
Vdco

)
− α (17)

The active and reactive power exchanged with the AC system is calculated as:

Pac = 2
π

6
aVdco Id (18)

Qac = 2
π

6
aVdco Iq (19)

2.2.2. DC Transmission System

The DC transmission system model includes a DC line with smoothing reactors at both pole
terminals. The T-model for the DC line dynamics of the LCC-HVDC system is described by two reactor
currents and a capacitor voltage. With DC voltages, VdcR and VdcI , available at the terminals of DC
system, the dynamics of DC transmission line are given as [16]:

Ld ˙IdcR = VdcR −VC − IdcR
Rd
2

(20)

Ld ˙IdcI = VC −VdI − IdcI
Rd
2

(21)

CdV̇c = (IdcR − IdcI) (22)

where Rd, Cd and Vc are resistance, capacitance and voltage across the capacitance of the DC
line, respectively.

2.2.3. LCC-HVDC Control

The control architecture of an LCC-HVDC system is implemented with internal control and
external POD control. The rapid control of the desired power flow through HVDC link is realized
through swift valve gate control. In the internal control, master control determines the appropriate
current order Ire f and transmits the same to the rectifier and inverter controls. The current order is
calculated as:

Ire f =
Pre f

VdcR
+ Idamp (23)

where Pre f is the desired HVDC power and the damping signal Idamp is derived through ANFFBLC.
During normal operation, the power order determines the current order, and Idamp is zero.
Under disturbed operating conditions, the ANFFBLC generates the appropriate damping signal
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that adjusts the Ire f and, hence, modulates HVDC power. The conventional Proportional-Integral
(PI)-based pole control generates the respective ignition delay angle α subject to current reference and
the Voltage-Dependent Current Order Limiter (VDCOL). In the case of low commutating voltage, the
VDCOL redefines the reduced current reference according to reduced DC voltage once it becomes less
than the predefined threshold [38].

In the normal operation, the rectifier maintains a constant current through the DC transmission
system. The control mode is shifted to constant ignition angle with minimum delay angle αmin during
disturbed operating conditions. The rectifier current control is defined as:

α̇R = KP İdcR + KI IeR (24)

where the current error is IeR = IdcR − Ire f and αR_min ≤ αR ≤ αR_max. The inverter is operated in a
constant extinction angle control mode that maintains the DC system voltage at the inverter. For the
reduced commutation voltage in distressed operating conditions, the inverter control switches to
constant current control mode. The dynamics of the inverter current control, voltage control and
gamma control are described respectively as:

α̇I
I = KP İdcI + KI IeI (25)

α̇V
I = KPV̇dcI + KIVeI (26)

α̇
γ
I = KPγ̇ + KIγeI (27)

αI |
αI_max
αI_min = min{αI

I , αV
I , α

γ
I } (28)

where current, voltage and γ error, respectively, are IeI = IdcI − Ire f + Im, VeI = VdcI − Vdcre f −(
Vdcm

Ire f−IdcI
Im

)
, γeI = γ− γre f −

(
γm

Ire f−IdcI
Im

)
. The inverter control also provides current support for

the situation when the DC current drops below a threshold equal to Ire f − Im. Furthermore, α for the
inverter is maintained to ensure γ ≥ γmin [39]. Im, Vm and γm are current, voltage and extinction
advance angle margins at the inverter pole, respectively.

3. Closed-Loop Control System Design

The proposed ANFFBLC scheme is a model-free indirect control strategy and requires minimal
knowledge of the power system. As shown in Figure 2, the dynamics of the AC/DC power system are
identified through an Adaptive Neuro-Fuzzy Identifier (ANFI) using the Wide-Area Measurement
System (WAMS)-based measured speed signals of generators. The CG algorithm on-line optimizes
the ANFI parameters to minimize the identification error. The coefficients of the FBLC are also tuned
through the nLMS algorithm to maintain its performance over a wide range of operating conditions.
Based on the identified power system model, the ANFFBLC generates the appropriate damping signal
for each HVDC link. The following section explains the implementation and function of the ANFFBLC
to improve the damping of the power system oscillations.
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Figure 2. AC/DC power system with the closed-loop control system.

3.1. Feedback Linearization Control

Feedback linearization is a well-known technique used to transform a nonlinear system into
a linear one by a state transformation and nonlinear feedback. A well developed linear control
design now can be applied to a linearized system [40]. Consider an-th-order multi-variable nonlinear
system [41]:

yn
1 = f1(x) + g11(x)u1 + · · ·+ g1m(x)um

...

yn
m = fm(x) + gm1(x)u1 + · · ·+ gmm(x)um

(29)

where x = [x1, . . . , xn−1
1 , . . . , xm, xn−1

1 ]T ∈ <mn is the state variable available for measurement,
u = [u1, u2, . . . , um]T ∈ <m represents the control input and y = [y1, y2, . . . , ym]T ∈ <m is the output of
MIMO nonlinear system. fτ(x) ∈ <m and gτh(x) ∈ <m×m represent unknown smooth nonlinearities
of the dynamic system with τ, h = 1, 2, . . . , m. The system in Equation (29) can also be expressed in
companion form as:

y = f(x) + G(x)u (30)

where yn =
[
yn

1 , yn
2 , . . . , yn

m
]T ∈ <m, f(x) = [ f1(x), f2(x), . . . , fm(x)]T ∈ <m and

G(x) =

 g11 . . . g1m
...

. . .
...

gm1 . . . gmm

 ∈ <m×m.

The control objective is to derive control law u = [u1, u2, . . . , um]T that forces the output y(t) =
[y1(t), y2(t), . . . , ym(t)]T to follow the a desired trajectory yd(t) = [y1d(t), y2d(t), . . . , ymd(t)]T . The
error matrix e is defined as:
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e =


y1 − y1d y2 − y2d · · · ym − ymd
ẏ1 − ẏ1d ẏ2 − ẏ2d · · · ẏm − ẏmd

...
...

...
...

y(n−1)
1 − y(n−1)

1d y(n−1)
2 − y(n−1)

2d · · · y(n−1)
m − y(n−1)

md

 (31)

The filter tracking error Υ is defined as:

ΥT =
[
θ1 θ2 · · · θn−1 1

]T
e =

[
ΘT 1

]
e (32)

where Θ =
[
θ1 θ2 · · · θn−1

]
is a vector of FBLC coefficients, and its appropriate choice ensures

that zn−1 + θn−1zn−1 + · · ·+ θ1 is asymptotically stable, i.e., e(k)→ 0 as Υ(k)→ 0. The constant value
of Θ does not provide desired performance over a wide range of operating conditions. In this research
work, Θ is updated at each time step using the nLMS-based self-tuning scheme. The derivative of
Equation (32) results in:

Υ̇T =
[
θ1 θ2 · · · θn−1 1

]T


ẏ1 − ẏ1d ẏ2 − ẏ2d · · · ẏm − ẏmd
ÿ1 − ÿ1d ÿ2 − ÿ2d · · · ÿm − ÿmd

...
...

...
...

yn
1 − yn

1d yn
2 − yn

2d · · · yn
m − yn

md

 (33)

Υ̇T =


yn

1
yn

2
...

yn
m


T

+


−yn

1d
−yn

2d
...

−yn
md


T

+
[
0 ΘT

]
e =


yn

1
yn

2
...

yn
m

+ yT
D ∈ <1×m (34)

Using Equations (30) and (34), we have:

Υ̇ = yn + YD = f(x) + G(x)u + yD (35)

Using Υ = exp(−KΓt) ⇒ Υ̇ = −KΓΥ and KΓ > 0 ensures that e → 0 as Υ → 0. Therefore, the
above equation can be written as:

−KΓΥ = f(x) + G(x)u + yD (36)

For the known nonlinear functions f(x) and G(x), the following control law is designed according
to the feedback linearization method, which would cancel the nonlinearities of the system and would
bring Υ to zero:

u = G−1(x)[−f(x)− KΓΥ− yD] (37)

However, it is impractical to implement the control law if the nonlinear functions f and G are
uncertain or unknown. Therefore, this study proposes to identify the nonlinear functions f̂ and Ĝ at
each time-step through an Adaptive Neuro-Fuzzy Identifier (ANFI) and to online optimize the design
parameter Θ. The control law is now given as:

u = Ĝ−1
(x)[−f̂(x)− Γ] (38)

where Γ = −KΓΥ− yD.
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Assumption 1. As the nonlinear MIMO system is controllable, G(x) ∈ <m×m is invertible for all
x ∈ Uc ⊂ <mn.

The following section explains the identification of nonlinear functions and online estimation of
the design parameter.

3.2. Adaptive Neuro-Fuzzy Identification

The five-layered ANFI architecture was implemented to identify the nonlinear dynamics of the
power system. The inputs to the ANFI are relative speed deviations of different machines w.r.t. the
swing machine, and the outputs are the identified nonlinear dynamics of the power system. In the
forward pass, the whole network works in a layer fashion, and in the backward pass, error signals are
propagated to update the antecedent and consequent parts’ parameters according to the chain rule.

Assumption 2. The system relative degree n is known, and y, ẏ, . . ., yn are bounded output and available
for measurement.

The ANFI architecture of Figure 3 is implemented with m2 + m neuro-fuzzy subsystem blocks
that realizes a fuzzy IF-THEN rule in the following form:

Rule j f : If x1 is Fj
τ1 and x2 is Fj

τ2 and · · · and xm is Fj
τm, Then f̂τ is wj

fτ

Rule jg: If x1 is Gj
τh1 and x2 is Gj

τh2 and · · · and xm is Gj
τkm, Then ˆgτh is wj

gτh

where Fj
τi and Gj

τhi represent fuzzy sets of the antecedent part for the i-th input, i = 1, 2, · · · , m, and the

j-th rule, j = 1, 2, · · · , p, and wj
fτ

and wj
gτh , τ, h = 1, 2, · · · , m, are the consequent weights. The network

is implemented with Gaussian membership functions in the antecedent part, a product inference
engine and singleton variables in the consequent part.∏∏ ∑∑ �∏∏ ∑∑ �
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Figure 3. MIMO neuro-fuzzy identification architecture.

The function of the nodes in each layer is defined as:
Layer 1: Each node in this layer only transmits input values to the next layer.
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Layer 2: The adaptive nodes represent the input fuzzy sets described by the Gaussian membership
function. The output of each node is calculated as:

Aj
i = exp

−1
2

(
xi − cj

i

σ
j
i

)2 (39)

where cj
i and σ

j
i , receptively, are the mean and standard deviation of the Gaussian membership function

for the j-th term of the i-th input variable xi.
Layer 3: Rule nodes constitute the antecedent of the fuzzy rule base. The firing strength of each

rule is calculated using the product T-norm. The output of this layer for the j-th rule is defined as:

Aj =
n

∏
i=1

Aj
i(xi) (40)

Layer 4: Nodes in Layer 4 are called consequent nodes and represent the possible THEN-part of
the fuzzy rules. The weights of the adaptive links in this layer represent the singleton wj

fτ
and wj

gτh .
The nodes in this layer compute the weighted firing strengths of each rule from the previous layer.

Layer 5: Nodes in this layer calculate the normalized sum of weighted firing strengths over the
sum of firing strengths. The computed defuzzified crisp outputs are identified f̂τ(x) and ĝτh(x) and
given as:

f̂τ =
∑

p
j=1 wj

fτ
Aj

∑
p
j=1 Aj

=
p

∑
j=1

ξ jwj
fτ

(41)

ĝτh =
∑

p
j=1 wj

gτh Aj

∑
p
j=1 Aj

=
p

∑
j=1

ξ jwj
gτh (42)

where ξ j = Aj

∑
p
j=1 Aj is the j-th fuzzy basis function. The MIMO nonlinear system is identified as:

ŷ = f̂(x) + Ĝ(x)u (43)

where f̂(x) = [ f̂1(x) f̂2(x) ··· f̂m(x) ]T and Ĝ(x) =

 ĝ11(x) ··· ĝ1m(x)
...

. . .
...

ĝm1(x) ··· ĝmm(x)

.

The identification error, eI , is defined as the error between identified and real dynamics and given as:

eI(k) =
1
2

εTε =
1
2
[ŷ(k)− y(k)]2 (44)

The objective is to accurately identify the dynamics of the power system by minimizing the
identification error eI(k). The conjugate gradient-based parameter learning algorithm is developed to
minimize the error through optimization of the parameters of the membership functions and the link
weights in the consequent part. The following section explains the CG-based optimization algorithm
for the adaptive parameters of ANFI.

Conjugate Gradient Algorithm for Parameter Optimization

CG algorithms comprise a class of optimization algorithms that have strong local and global
convergence properties. The nonlinear CG methods are relatively robust in numerical computation
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and provide sufficient descent independence of line search [42]. Our problem is to minimize the
identification error by adapting the parameters of the ANFFBLC.

ρ = {cj
i fτ

, σ
j
i fτ

, cj
igτh

, σ
j
igτh

, wj
fτ

, wj
gτh}

where ρ represents the adaptation parameters of the ANFIS. A nonlinear CG algorithm computes a
sequence ρk, k ≥ 1 with initial guess ρ0, using the recurrence as:

ρ(k+1) = ρ(k) + χid
(k) (45)

where the χ > 0 is a design parameter and d(k) is the conjugate search direction, computed as:

d(k) =

{
−g(k), k = 0
−g(k) + βkd(k−1), k ≥ 1

(46)

Here, g(k) = ∇eI(ρ) is the gradient of the error function at the k-th instant, and βk is the CG
coefficient, chosen in such a way that the new search direction is orthogonal to the subspace generated
by previous search directions. In this research work, the following different CG algorithms are opted
to corresponding different choices for the computation of βk.

A. Fletcher and Reeves (FR) presented the first nonlinear CG algorithm with update choice for the
CG coefficient, βFR

k , given as [43]:

βFR
k =

∥∥∥g(k+1)
∥∥∥2

∥∥g(k)
∥∥2 (47)

B. Polak-Ribière and Polayk (PRP) proposed a CG method that updated the CG coefficient, βPRP
k ,

using the following formula [44].

βPRP
k =

[
g(k+1)

]T[
g(k+1) − g(k)

]
[g(k)]Tg(k)

(48)

C. The CG algorithm suggested by Fletcher (CD) has a strong convergence property, and the
coefficient, βCD

k , is updated using [45]:

βCD
k =

∥∥∥g(k+1)
∥∥∥2

−
[
d(k)

]T
g(k)

(49)

D. The effect of inexact linear search was considered by Liu and Storey (LS) to develop a generalized
CG scheme with coefficient βLS

k updated as [46]:

βLS
k =

[
g(k+1)

]T [
g(k+1) − g(k)

]
−
[
d(k)

]T
g(k)

(50)
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E. In [47], a CG algorithm was presented by Dai and Yuan (DY) with a sufficient descent property.
The CG coefficient, βDY

k , is updated as:

βDY
k =

∥∥∥g(k+1)
∥∥∥2

[
d(k)

]T [
g(k+1) − g(k)

] (51)

F. A modified CG algorithm is proposed by Hager and Zhang (HZ) that has a more complicated
update formula [48]. The CG coefficient, βN

k , is updated as:

βN
k =

(g(k+1) − g(k))− 2d(k) ‖g(k+1) − g(k)‖2[
d(k)

]T [
g(k+1) − g(k)

]


T

g(k+1)[
d(k)

]T [
g(k+1) − g(k)

] (52)

All of these methods do not require the computation of the Hessian matrix that is usually
preferred over the methods requiring the Hessian in each iteration. The gradient of identification error
is computed in each iteration of the CG algorithm. Using the chain rule of differentiation, the gradient
of Equation (44) w.r.t. the respective consequent part parameter is given as:

∂eI

∂wj
fτ

=
∂eI
∂ŷ

∂ŷ
∂ f̂

∂ f̂τ

∂wj
fτ

= εξ
j
fτ

(53)

∂eI

∂wj
gτh

=
∂eI
∂ŷ

∂ŷ
∂ĝτh

∂ĝτh

∂wj
gτh

= εξ
j
gτh u (54)

where ∂eI
∂ŷ = ε, ∂ŷ

∂ f̂τ
= 1, ∂ŷ

∂ĝτh
= u, ∂ f̂τ

∂wj
fτ

= ξ
j
fτ

and ∂ĝτh

∂wj
gτh

= ξ
j
gτh . For the identification of f̂τ , the gradient

of the identification error w.r.t. the parameters of the Gaussian membership function is calculated as:

∂eI

∂cj
i fτ

=
∂eI
∂ŷ

∂ŷ
∂ f̂τ

∂ f̂τ

∂Aj
fτ

∂Aj
fτ

∂cj
i fτ

= ε

wj
fτ
− f̂τ

∑j Aj
fτ

 Aj
fτ

 xi − cj
i fτ

(σ
j
i fτ
)2

 (55)

∂eI

∂σ
j
i fτ

=
∂eI
∂ŷ

∂ŷ
∂ f̂τ

∂ f̂τ

∂Aj
fτ

∂Aj
fτ

∂σ
j
i fτ

= ε

wj
fτ
− f̂τ

∑j Aj
fτ

 Aj
fτ

 (xi − cj
i fτ
)2

(σ
j
i fτ
)3

 (56)

and similarly for the identification of ĝτh:

∂eI

∂cj
igτh

=
∂eI
∂ŷ

∂ŷ
∂ĝτh

∂ĝτh

∂Aj
gτh

∂Aj
gτh

∂cj
igτh

= ε

 aj
τh − ĝτh

∑j Aj
gτh

 Aj
gτh

 xi − cj
igτh

(σ
j
igτh

)2

 u (57)

∂eI

∂σ
j
igτh

=
∂eI
∂ŷ

∂ŷ
∂ĝτh

∂ĝτh

∂Aj
gτh

∂Aj
gτh

∂σ
j
igτh

= ε

 aj
τh − ĝτh

∑j Aj
gτh

 Aj
gτh

 (xi − cj
igτh

)2

(σ
j
igτh

)3

 u

(58)

The ANFIS parameters ρ = {cj
i fτ

, σ
j
i fτ

, cj
igτh

, σ
j
igτh

, wj
fτ

, wj
gτh} are updated through CG algorithms

using the respective gradients from Equations (53)–(58) and learning rates χi in Equations (45) and (46).
The optimized ANFI parameters enable the real-time identification of the power system dynamics to
design the control law of Equation (38) with the minimized identification error from Equation (44).
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3.3. nLMS-Based Self-Tuning of FBLC Coefficients

The objective of the ANFFBLC is to derive a control law u ∈ <m such that the system defined in
Equation (30) follows the desired trajectory yd ∈ <m with an acceptable accuracy and bounded states
and controls. The control law defined in Equation (38) is based on the identified system model and
input Γ = −KΓ−yD ∈ <m. In Equation (32), Θ is estimated at each time step using the nLMS algorithm
to ensure the appropriate performance of FBLC over a wide range of operating conditions [24].

Assumption 3. The desired trajectory yd(t) is continuous, bounded and available for online control computation.

Assumption 4. There are no zero dynamics.

Equation (32) can be re-written as:

Υ =
[
Θt 1

]


e
ė
...

e(n−1)

 =
[
Θt 1

] [φ

Φ

]
(59)

where φT =
[
e ė · · · e(n−2)

]
and Φ = e(n−1). If Θ̂ is the estimate of Θ, the nLMS-based update

law can be written as:

Θ̂(k) = Θ̂(k−1) + χs
ϕ(k)

ϕ(k)T ϕ(k) + χz

{
Υ(k) − ϕ(k)Θ̂(k−1) − $(k)

}
(60)

where 0 < χs < 2 is the step size and χz > 0 is a design parameter introduced to avoid the division by
zero. The online tuning of FBLC coefficients ensures the appropriate choice of Θ that results in the
desired damping performance of ANFFBLC over a wide range of operating conditions.

3.4. Computational Steps for Closed-Loop Control System

The following steps summarize the realization of the algorithm for damping LFOs by
ANFFBLC-based multiple HVDC links in the AC/DC power system.

1. The wide area measurement system transmits the actual speed of generators, ω1, ω2, · · · , ω7,
to HVDC control.

2. Speed deviations of the generators w.r.t. the swing machine are computed as plant output,
yT = [y1 y2], where y1 = ∑5

i=2(ωi −ω1) and y2 = ∑7
i=6(ωi −ω1).

3. ANFFBLC captures the nonlinear dynamics, f̂ and Ĝ, of the power system using y as explained
in Section 3.2. The parameters of ANFIS of ANFFBLC are instantaneously optimized through the
CG algorithm to minimize the identification error defined in Equation (44).

4. At the same instant, the online estimation generates the appropriate input Γ. The coefficients, Θ,
are optimized through the nLMS algorithm to minimize the tracking error of Equation (31).

5. ANFFBLC generates the appropriate control law, uT = [u1 u2] that is based on identified
functions f̂ and Ĝ and optimized Γ as given in Equation (38).

6. The ANFFBLC output constitutes Idamp1 and Idamp2 for master controls of HVDC Link 1 and
Link 2, respectively. The Idamp modulates the current order for HVDC link using Equation (23).

7. At each pole control, the current order Iord generates the corresponding ignition delay angle,
α, that controls the power flow through the HVDC system

8. During normal operation, Idamp = 0, and power flow through the HVDC system is set to a
pre-specified value. During perturbed operating conditions, the generators oscillate against each
other at a speed different from the set value. The speed deviations are detected by ANFFBLC,
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and the appropriate damping signal is generated for each HVDC system. The precise power
flow control through the HVDC link improves the damping of power oscillations present in the
system and improves its stability.

4. Simulation Results and Discussion

The test power system comprises the simplified model of the highly interconnected Hydro-Québec
(HQ) power system with two HVDC links implemented in SIMULINK/SimPowerSystem [49].
Seven power plants and loads in different areas are connected through a huge 735-kV transmission
network. Major load buses are MTLand QUE with 15,500-MW and 6000-MW loads, respectively.
The load includes dynamic load, constant power PQ , constant impedance (Z) and induction motor
load. Two HVDC links, each 1000 MW at 500 kV, are installed in the transmission network connecting
buses LG27 to MTL and CHU to QUE for bulk power transmission. Sequential AC/DC load flow is
used to initialize the system with machine G1 taken as a swing bus.

The test power system is subjected to various contingencies with different operating conditions,
locations and duration. The system response is evaluated through the observation of the
following parameters.

1. Low-frequency oscillations: Observation of over-shoot and settling time for modes with
oscillations of generators G2 to G6 against the reference generator G1 i.e., ωi −ω1, i = 2, 3, · · · , 7.

2. Performance indexes: The two used indexes for quantitative measures are Integral of
Time-weighted Squared Error (ITSE) and Integral of Time-weighted Absolute Error (ITAE) [50].
For performance indexes, the error is calculated as ep = ∑7

i=2(ω1 −ωi).

In each scenario, for the comparison, to verify the effectiveness of damping performance,
simulations were carried out with conventional PID control, Adaptive PID (AdapPID) [51], Direct
Intelligent Neuro-Fuzzy Control (DirINF) [28], SD-based ANFFBLC and six CG methods.

4.1. Scenario # 1

At t = 1 s, a three-phase to ground fault occurs at HVDC1 inverter bus MTL. The fault is cleared
after 100 ms with a 1000-MW reduction in load at the MTL bus. Targeted oscillation modes are shown
in Figure 4. Well-tuned conventional and non-conventional control schemes have competitive damping
performance as compared to ANFFBLC with SD and different CG optimization techniques. During
the first cycle, the overshoot is reduced by 6–26% with ANFFBLC damping schemes as compared
to benchmark controls. For all modes, LFOs are damped completely with all machines settling to
steady-state speed. The damping performance of HVDC links with damping control is also assessed
through performance indexes. Two performance indexes ITSE and ITAE are shown in Figure 5.
The ITSE plot represents time-weighted speed deviation error during the transient-state. The best
improvement of 55% in the minimization of the transient-state error is achieved by ANFFBLC-HZ in
comparison with PID control, while the ITSE plot of ANFFBLC-FR shows 50% improvement over PID.
The ITAE plot represents time-weighted errors persisting for a long time and depicts the damping
efforts during the steady-state conditions. The ITAE index for ANFFBLC-HZ shows 36% improvement
in damping persistent oscillations as compared to the conventional control. ANFFBLC with SD and
CG optimization depicts damping performance in close competition; however, the ANFFBLC-HZ
index shows the most effective damping of LFOs. ANFFBLC shows 31–36%, 18–24% and 13–19%
improvement in steady-state stability as compared to PID, AdapPID and DirINF, respectively.
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Figure 4. Relative speed deviations for various machines with fault at bus MTL and a 1000-MW
load reduction.
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Figure 5. Performance indexes with fault at bus MTL and a 1000-MW load reduction.
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4.2. Scenario # 2

The CHM-JCA transmission line is exposed to a three-phase to ground fault at time t = 1 s. The
fault is cleared after 120 ms with the permanent outage of the transmission line. Oscillation modes,
shown in Figure 6, reveal the more severe nature of the disturbance as post-fault operating conditions
have changed. The plots show excessive overshoots with benchmark control schemes, while the
ANFFBLC has rapidly dampedthe oscillations, and system settleto steady-state. In some cases, the
competitive performance of conventional control is observed during steady-state; however, in the
transient-state, 8–16% reduced overshoots are observed with ANFFBLC.
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Figure 6. Relative speed deviations for various machines with the fault at line CHM-JCA and
line outage.

The ITSE and ITAE indexes shown in Figure 7 represent the damping performance comparison.
HVDC links with MIMO ANFFBLC have lesser ITSE index values at any time and more flat profiles
as compared to the ITSE plot of the benchmark control systems. As compared to conventional PID
control, the ITSE plot for ANFFBLC-HZ depicts 63% improvement in damping the transient-state
oscillations. The plots for the ANFFBLC schemes get flattened prior to the PID plot that shows
the rapid minimization of error by ANFFBLC in the transient-state. Time-weighted index ITAE for
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ANFFBLC-HZ shows 49% improvement in the steady-state stability of the power system as compared
to PID control. ITSE improvement of 46–58%, 38–52% and 30–46% is observed with ANFFBLC as
compared to the PID, AdapPID and DirINF control schemes, respectively. While in the steady-state,
improvement with ANFFBLC is 28–37%, 20–30% and 10–21%, as compared to the PID, AdapPID and
DirINF controllers schemes, respectively. The ANFFBLC-HZ scheme has well contained the LFOs in
the transient-state and steady-state conditions and maintains the best performance among different
CG methods.
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Figure 7. Performance indexes with fault at line CHM-JCA and line outage.

4.3. Scenario # 3

The test power system is subjected to a sequence of faults to investigate the effectiveness and
robust nature of the proposed control. A 100-ms three-phase to ground fault occurs at t = 1 s at
bus QUE. Another fault arises at bus SAG at time t = 5 s for a duration of 110 ms. Both faults
are self-cleared without any structural change in the power system. The response of the system is
observed through LFOs modes as shown in Figure 8. In terms of overshoot, the performances of
ANFFBLC and conventional control are competitive after the first fault. However, after the second
fault, the performance of the ANFFBLC is much more improved than benchmark controllers in terms
of overshoot and settling time. The oscillatory behavior of the power system with PID control is
observed for different oscillation modes. A better picture of damping performance is described by
the performance indexes shown in Figure 9. As perceived by the ITSE plots, transient-state errors
are minimized with ANFFBLC and benchmark controllers for both faults. However, ITSE indexes
for ANFFBLC schemes have a lesser value and rapidly maintain constant index values during the
steady-state condition after the second fault. The ITSE index for ANFFBLC schemes shows overall
39–61%, 34–57% and 15–45% improvement in the minimization of the speed deviation error during
transient-state conditions as compared to PID, AdapPID and DirINF controls, respectively. Similar
performance trends are observed in ITAE index with 23–35%, 21–34% and 12–26% improvement with
ANFFBLC schemes. In Scenario 3, ANFFBLC-HZ has repeated the best damping performance like
previous scenarios and shows the most improved transient-state and steady-state conditions.
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Figure 8. Relative speed deviations for various machines with a sequence of faults at buses QUE
and SAG.
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Figure 9. Performance indexes with a sequence of faults at buses QUE and SAG .
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4.4. Performance Comparison of CG Algorithms

In an application of different CG algorithms in the power system, all methods performed very
close to each other and better than conventional control and non-conventional controllers. The damping
performance of ANFFBLC with different CG schemes and benchmark controllers is summarized in
Table 1. It shows the performance improvement attained by ANFFBLC as compared to conventional
and non-conventional control in transient-state and steady-state conditions. The best performance
is observed with the ANFFBLC-HZ scheme, while the FR method only performed better than the
benchmark controls. The FR scheme suffers a jamming problem in some cases [52], and a modification
was proposed in the Polak-Ribière scheme that enables a restart feature to avoid jamming and more
rapid convergence as compared to the FR method. The proposed CD method with relaxed constraints
is closely related to the FR scheme, and the search directions satisfy the sufficient descent condition
under strong Wolfe line search. However, in some particular cases, the CD method may converge to a
point where gk 6= 0 [53]. The DY method always generates descent directions and converges globally
with the line search satisfying the standard Wolfe condition. The DY method is also susceptible to
jamming. The LS method exhibits similar performance as the PRP scheme with exact line search
and has an in-built restart feature to avoid the jamming problem. Computation performance of the
PRP and LS methods is better than the FR, PRP and DY methods. The HZ method modified the
linear CG method of Hestenes and Stiefel that provides sufficient descent with a relaxed accuracy
of the line search. In [48], the global convergence is proven to show that for any function and any
line search, the sufficient descent condition is satisfied, and the jamming is avoided. That made
the ANFFBLC-HZ scheme more robust in computation and provided better optimization of ANFIS
parameters to ensure minimized identification error and the best damping performance over the other
classical CG algorithms [54].

Table 1. Performance improvement of ANFFBLC as compared to conventional control.

Scenario Performance %Age Improvement AdapPID, DirINF and ANFFBLC w.r.t. PID

Index AdapPID DirINF SD FR CD DY PRP LS HZ

1 ITAE 16 21 31 33 33 35 35 35 36
ITSE 24 33 47 50 51 51 53 54 55

2 ITAE 9 20 28 28 30 31 32 33 37
ITSE 12 23 46 47 50 52 53 54 58

3 ITAE 2 13 23 26 31 32 32 33 35
ITSE 8 29 39 44 54 54 56 56 61

5. Conclusions

The article presented an MIMO POD controller for multiple HVDC transmission systems.
The ANFFBLC schemes effectively modulate the real power flow through the HVDC system to
enhance its damping assistance during perturbed conditions. Excited power oscillations under any
disturbance are apprehended by the ANFFBLC on the basis of the measured speed signal of generators.
SD and six CG algorithms are employed to optimize the parameters of ANFIS that minimize the
identification error and captured the updated plant dynamics without a priori knowledge of the
system model. The damping performance is investigated through the multi-machine AC/DC power
system exposed to the disturbances of different severity. Results obtained for a wide range of operating
conditions indicate the improved damping performance of different proposed CG-based ANFFBLC
schemes as compared to ANFFBLC-SD, conventional PID control, AdapPID and DirINF. Among
CG algorithms, the HZ method shows the best optimization capabilities with strong convergence to
optimal minima of the optimization function. Rapid identification of the plant model with the HZ
method enables ANFFBLC-HZ to derive the desired control output that effectively damped LFO in
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the power system. The future work includes the implementation of MIMO nonlinear POD control for
multiple HVDC links and FACTS controllers, as well as the investigation of the effect on damping the
low-frequency oscillations.
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