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Abstract: In recent years, renewable types of distributed generation in the distribution system
have been much appreciated due to their enormous technical and environmental advantages.
This paper proposes a methodology for optimal placement and sizing of renewable distributed
generation(s) (i.e., wind, solar and biomass) and capacitor banks into a radial distribution system.
The intermittency of wind speed and solar irradiance are handled with multi-state modeling using
suitable probability distribution functions. The three objective functions, i.e., power loss reduction,
voltage stability improvement, and voltage deviation minimization are optimized using advanced
Pareto-front non-dominated sorting multi-objective particle swarm optimization method. First a set
of non-dominated Pareto-front data are called from the algorithm. Later, a fuzzy decision technique
is applied to extract the trade-off solution set. The effectiveness of the proposed methodology is
tested on the standard IEEE 33 test system. The overall results reveal that combination of renewable
distributed generations and capacitor banks are dominant in power loss reduction, voltage stability
and voltage profile improvement.

Keywords: wind and solar modeling; distributed generation; power loss reduction; voltage stability
improvement; multi-objective particle swarm optimization

1. Introduction

Worldwide demand for electricity is increasing. This is due to population growth, urbanization
and extensive development of industrial zones. According to the annual energy outlook report [1], the
electricity demand in 2040 will reach to 4.93 trillion kWh, which is 28% higher compared to electrical
demand in 2011. On the other hand, power companies are facing major challenges in the generation of
electrical power and its delivery. The generation of electrical power is mostly through conventional
fuels which are detrimental to the environment and its delivery is through transmission lines which
are transmitting power at maximum capacity. Hence, the interest of power enterprises are towards
utilizing the alternative mean of power generation called renewable power generation or renewable
distributed generation (DG). The wind, solar and biomass are the prominent renewable DGs used
worldwide for power generation. Italy reports the highest worldwide grid-connected DG of 10 GW via
solar PV, and Northwest Ireland shows 307 MW connected via wind DG to its distribution system [2].

The DG in distribution system has many benefits as they are connected near to load centers.
It reduces the power flow, minimizes the system losses, increases the voltage profile and strengthens

Energies 2017, 10, 811; doi:10.3390/en10060811 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en10060811
http://www.mdpi.com/journal/energies


Energies 2017, 10, 811 2 of 25

the voltage stability etc. The integration of DG in the distribution system relieves the transmission
lines and extends network deferral. Moreover, the integration of DGs also helps in controlling voltage
regulation, spinning reserve and network reactive power. However, renewable-based distributed
generation i.e., wind and solar have an intermittent nature. The production of this intermittent power
generation and load variation introduces many obstacles in the distribution system. These obstacles
are voltage rise and dips, power oscillations, voltage stability issues and increase in power losses, so,
optimal placement and sizing of renewable DGs and capacitor banks have an overall positive impact.

In last few years, optimal placement and sizing of DG in distribution systems remains a highly
researched topic in the power system [3,4]. Most of the authors have proposed methodologies to
reduce stressed problems with the assumption that DG modules are dispatchable. In [5–12] the
authors used the dispatchable DG type for power loss minimization and voltage profile improvement
as a multi-objective problem. The power loss minimization and voltage stability improvement
as multi-objective optimization are researched by [13,14], whereas references [15–19] consider the
power loss minimization, voltage profile improvement and voltage stability improvement as a
multi-objective optimization problem. Different optimization techniques such as the dynamic search
algorithm [13], weighted multi-objective index [5], SA [8,12], BAT algorithm [6], adaptive GA [7],
CSA [10], PSO [16], MOPSO [9,11,14], QOTLBO [15], improved MOSH [18] and BFA [19] have been
considered. References [5,6,20–28] used the active and reactive power DG for a multi-objective
problem with different optimization algorithms i.e., analytical methods [22,25,28], improved ICA [20],
GWO [21], weighted MO [5], COA [23], PSO [24,27], ABC [26] and Bat algorithm [6]. The penetration
of renewable power in the distribution system is increasing linearly and the fact is that none of the
above authors introduced renewable DG as input. In [29–32] wind, solar, biomass, fuel cell and
micro-turbine type of DGs were used for multi-objective DG placement and sizing problems. However,
the output power of wind energy and solar PVs are intermittent in nature, so assuming their output
power as dispatchable DG will have an adverse effect on system performance. The intermittency
of wind and solar power DG can be mitigated with the help of energy storage [33]. However, the
economic viability and recovery of energy storage in the distribution system creates new challenges.
Moreover, the probabilistic model with different probability distribution functions (PDFs) is often used
to calculate the effective power output as introduced from wind and solar DGs. In [34–37] the time
varying stochastic wind and solar PV module were used for the optimal placement and sizing problem
of DG. Among them, [37] considers the probabilistic optimal DG placement problem with the wind,
solar and capacitors. Considering the fact, power production from wind speed and solar irradiance
are inherently intermittent and smaller compared to distribution load demand.

Hence, this paper proposes a methodology for optimal placement and sizing of the intermittent
(i.e., wind turbine and solar PV), non-intermittent (i.e., biomass) renewable DG along with the
addition of reactive powers (i.e., capacitor banks) in radial distribution systems. The output of
intermittent renewable DGs (i.e., wind turbine and solar PVs) are calculated using multi-state
modeling with suitable probability functions. The biomass DG is kept as dispatchable DG, whereas the
capacitor banks are modeled in discrete size. An advanced-Pareto-front non-dominated sorting- based
multi-objective PSO optimization (advanced-MOPSO) algorithm is proposed for this multi-faceted
problem. The convergence speed performance of the proposed algorithm is also modified using
a mutation operator. Fast convergence is preferable in any algorithm, but it is feared that it may
result in false Pareto-solutions in the context of multi-objective optimization. Therefore, this operator
helps in maintaining the particles within the search space. Basically, the mutation operator increases
the explorative behaviour for all particles at the start of the algorithm and later its effect ceases
gradually. Moreover, the output results of proposed method is not in a single solution rather it gives a
Pareto-solution set. Hence, a fuzzy decision technique is implied to find the best trade-off solution
among them. The efficiency and performance of proposed method were validated against many single
and multi-objective optimization techniques, which were reported in our previous work [38].
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The remainder of this paper is organized as follows: Section 2 presents the formulation of
generation-load model. Section 3 presents the problem formulation for objective functions and load
flow analysis. Section 4 presents the optimization technique i.e., MOPSO, Section 5 analyzes the
generation and load model. Section 6 presents the simulation results and discussion. Section 7 presents
the performance evaluation of the MOPSO method and Section 8 concludes with a summary of the
problem findings.

2. Distributed Generation (DG) Modeling

2.1. Biomass DG Modeling

Biomass DGs is considered as firm supply or constant output power DGs. In other words, fuel
inputs to these DGs are constant. Hence, this DG provides rated output power with no uncertainty.
Power delivery from this generator can be dispatched according to load curve at a specific time by the
distribution network operator.

2.2. Capacitor Bank Modeling

Capacitor banks are devices which produce reactive power [39]. The amount of reactive power
produced depends on the size of the capacitors. They are currently available on the market as
constant (discrete) type. However, in literature, many authors have supposed them as a continuous
variable [40–42]. Assuming that a discrete capacitor size with continuous variable may not guarantee
a feasible solution, hence, this study considers the discrete size of capacitors for optimal planning of
renewable-based DGs in the distribution system. The capacitors available on the market are smaller
units (150 KVAr), which are further integer multiples of factor U. Hence, the required amount of
capacitor size can be determined using Equation (1) as reported in [43]:

Qmax = U ×Qo (1)

where U is an integer. Therefore, the required amount of KVAr can be assessed such as
[Qo, 2Qo, 3Qo, . . . , UQo].

2.3. Renewable DG Modeling

Different types of renewable DGs are used in the distribution system. Among them, wind
speed- and solar irradiance-based renewable DGs are the most dominant and widely interconnected
into the radial distribution system. Hence, this paper considers these two renewable DGs, i.e., wind
speed- and solar irradiance-based power generation. Accurate wind speed and solar irradiance
modeling is quiet challenging. Most of the literature assumes a yearly mean for wind and solar
irradiance modeling which generates non-feasible results. Hence, this paper utilizes an hourly
multi-state modeling, in a sense that different states of each hour are processed through suitable
probability density functions, which guarantee the best output results and perfect stochastic modeling
for the wind and solar irradiances. The historical wind speed and solar irradiance data are used to
model the wind and solar farms as explained in the following sections.

2.3.1. Wind Speed Modeling

The technology used for converting the kinetic energy of wind to electricity is a wind turbine.
Recently, a new development observed in this field has been to increase the output of power generation.
In order to extract maximum energy from these wind turbines, peak wind speed areas such as high
altitude and sea-side areas are more preferable. In recent years, more and more power generation
through wind turbines is being integrated into distribution systems due to its inexhaustible and
nonpolluting characteristics. Power generation from wind turbines is fuel free and requires less
operational and maintenance cost compared to power generation through conventional means.
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However, the main drawback of this technology is the intermittency of its output. Wind speed
is not constant throughout the day. This results in variations in its power output, which ultimately
deteriorates the power quality i.e., increases the rise and dips of voltage profile, power losses and
decreases the voltage stability of the power system. Moreover, the stochastic characteristics of wind
speed can be modeled in particular time framework using Weibull probability density function as
reported in [36,37,44]. The following Equation (2) represents the Weibull distribution for particular
wind speed at tth time hour, given as follows:

f t(v) =
(

kt

ct

)(
vt

ct

)kt−1

× exp

[
−
(

vt

ct

)kt]
(2)

where f t(v) is the probability of wind speed at tth time hour. kt and ct are the shape and scale parameter
respectively. The kt and ct of the wind speed can be measured by following Equations (3) and (4):

kt =

(
σt

µt

)−1.086

(3)

ct =
µt

Γ
(

1 + 1
kt

) (4)

where µt and σt shows the mean and standard deviation of the wind speed at tth time hour.
The probability of wind speed at any specific hour for p states can be calculated by integrating
the probabilities of each state during that hour as given in Equation (5):

P
(

vt
p

)
=



(vt
p+ vt

p+1)

2∫
0

f t(v) . dv,f or p = 1

(vt
p+ vt

p+1)

2∫
(vt

p−1+ vt
p)

2

f t(v) . dv,f or p = 2 . . . (nbv, s− 1)

∞∫
(vt

p−1+ vt
p)

2

f t(v) . dv,f or p = nbv, s

(5)

2.3.2. Power Generation from Wind Turbines

The power output from wind turbines depends upon the wind velocity available at the site and
power curve given from the manufacturer of the wind turbine. Hence, mathematically output power
of wind turbine during tth time hour at each state p can be calculated by the following Equation (6):

Pt
wind =

nbv,s

∑
p=1

PDGwind,p × P
(

vt
p

)
(6)

where Pt
wind is the output power of wind turbine at time t hour, PDGwind,p is the power output of wind

turbine given from the manufacturer at state p can be calculated by Equations (7)–(9) as given below:
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PDGwind,p =


0,0 ≤ vavg,p ≤ vci

α × v3
avg,p + β × Prated,vci ≤ vavg,p ≤ vr

Prated,vr ≤ vavg,p ≤ vco

0,vavg,p ≥ vco

(7)

α =

(
Prated

v3
r − v3

ci

)
(8)

β =

(
v3

ci
v3

r − v3
ci

)
(9)

where PDGwind,p is the characteristics of power generation taken from the power performance curve
provided by the manufacturer at each of pth state. Prated is the rated output power from the wind
turbine, vaw is the average wind speed, vci is the cut-in speed, vr is the rated speed and vco is the
cut-out speed.

2.3.3. Solar Irradiance Modeling

The stochastic characteristics of solar irradiance can be modeled in a particular time framework
using Beta probability density function as reported in [45]. The applicability of this model has been
employed in a number of solar studies such as [36,37,44]. The following Equations (10)–(12) represent
the Beta distribution for particular solar irradiance at tth time as:

f t(s) =


Γ
(
αt + βt)

Γ(αt) × Γ(βt)
× (st)

αt−1 × (1− st)
βt−1,0 ≤ s ≤ 1; α, β ≥ 0

0,otherwise
(10)

where f t(s) is the Beta distribution function of solar irradiance s at tth time hour, s is the solar irradiance
measured in (kW/m2), α and β are the statistical parameter of f t(s) and can be calculated by the mean
(µ) and standard deviation (σ) of the random variable s as follows:

αt =
µt × βt

(1− µt)
(11)

βt = (1− µt) ×
(

µt(1 + µt)

(st)2 − 1

)
(12)

The probability of solar irradiance at any specific hour for many states can be calculated by
integrating the probabilities of each state during that hour as given in Equation (13):

P
(

st
p

)
=



(st
p+ st

p+1)

2∫
0

f t(s) . ds,f or p = 1

(st
p+ st

p+1)

2∫
(st

p−1+ st
p)

2

f t(s) . ds,f or p = 2 . . . (nbs, s− 1)

∞∫
(st

p−1+ st
p)

2

f t(s) . ds,f or p = nbs, s

(13)
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2.3.4. Power Generation from Solar PV

The power output from solar PV modules depends upon the solar irradiance available at the
site and PV module characteristics given from the manufacturer. Hence, mathematically output
power from solar PV module during tth time hour at each state p can be calculated from the following
Equation (14):

Pt
solar =

nbs,s

∑
p=1

PDGsolar,p × P
(

st
p

)
(14)

where Pt
solar is the output power of solar PV module at time t hour, PDGsolar,p is the power output

of solar PV module given from manufacturer at state p can be calculated by Equations (15)–(19) as
given below:

TCP = TA + Sap

(
NOT − 20

0.8

)
(15)

Ip = Sap[Isc + Ki(Tc − 25] (16)

Vp = Voc − KvTCP (17)

FF =

(
VMMP × IMMP

Voc × Isc

)
(18)

PDGsolar,p = N × FF × Ip × Vp (19)

where TCP and TA are the cell temperature and ambient cell temperature during state p, both are
measured in (◦C). Sap is the mean irradiance of state p. NOT is the nominal operating temperature
measured in (◦C). Ip and Vp are the total current and voltage of state p, whereas Isc and Voc are the
short circuit current measured in (amps) and open circuit voltage measured in (volts). Ki and Kv are
the current and voltage temperature coefficient measured in (amps/◦C) and (volts/◦C) respectively.
IMMP and VMMP are the current and voltage at maximum power point, measured in amps and in volts
respectively. N is the total number of PV modules and FF is the fill factor.

2.4. Load Modeling

The proposed test system is assumed to follow the IEEE-RTS load pattern. The time varying load
profile values for each hour at typical season is taken from [36].

3. Problem Formulation

The proposed model is designed to integrate intermittent and non-intermittent renewable energy
with capacitor banks in a radial distribution system to optimize three objective functions, i.e., power
loss reduction, voltage stability improvement and voltage deviation minimization. The distribution
system has high resistance to reactance ratio, so the conventional load flow used in transmission line
have convergence problem when using it in the distribution system [46,47]. Therefore, this study
considers the backward-forward load flow analysis for power flow analysis.

3.1. Power Loss Reduction

It is stated that about 13% of total power generation is wasted as (I2× R) losses in the distribution
system [17,19]. Therefore, the first objective of this paper is set to minimize power losses in the radial
distribution system. Figure 1 represents the one-line diagram of two buses m1 and m2 connected
through branch i.
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Power loss for the referred distribution system at branch i can be computed by the following set
of recursive Equations (20)–(22):

Pi = Pm2 + Pi loss (20)

Qi = Qm2 + Qi loss (21)

Vm2 = Vm1 − Ii(Ri + jXi) (22)

where Pi and Qi, are the real and reactive powers of the branch i. interconnecting bus m1 with m2,
Pm2 and Qm2 are the real and reactive loads at bus m2. Vm1 and Vm2 are the voltage magnitudes of the
buses m1 and m2 respectively. Ri, and Xi are the resistance and reactance of the branch i. Ii is the
current flowing from m1 to m2. The power losses across each branch and of the whole system can be
computed using Equations (23)–(25):

Pi loss = Ri ×
(P2

m2 + Q2
m2)∣∣V2

m2

∣∣ (23)

Qi loss = Xi ×
(P2

m2 + Q2
m2)∣∣V2

m2

∣∣ (24)

Tloss =
i=nb−1

∑
i=1

Pi loss + j
i=nb−1

∑
i=1

Qi loss (25)

where Pi loss and Qi loss are the real and reactive power losses for the branch i respectively, while Tloss is
the total network loss. This paper considers the active power loss reduction of the network as objective
function, which mathematically can be expressed as:

f1 = min
(
∑Nse

se=1 ∑Nt
t=1 ∑i=Nb−1

i=1 Pt
i loss

)
(26)

3.2. Voltage Stability Index

Voltage stability index (VSI) is an indicator which shows the stability of distribution
system [16,34,35]. This paper is intended to observe the voltage stability of the system with the
installation of different types of DGs. Equations (27)–(29) represent the mathematical expression for
the voltage stability index as a second objective function. In order to maintain the security and stability
of distribution system, the VSI. value should be greater than zero; otherwise the distribution system is
under critical instability conditions:

VSIm2 = |Vm1|4 − 4.0{Pm2 × Xi −Qm2 × Ri}2 − 4.0{Pm2 × Ri + Qm2 × Xi}|Vm1|2 (27)

f ′2 = max
(
∑Nse

se=1 ∑Nt
t=1 ∑Nb

mi=2 VSIt
mi

)
(28)
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where VSIm2 is the VSI for bus m2 and VSImi is the VSI for whole system (mi = 2, 3, 4 . . . Nb); Nb is
the total number of buses. In order to improve the voltage stability index, the second objective function
can be presented as below:

f2 =

(
1

f ′ 2

)
(29)

3.3. Voltage Deviation

The radial nature of distribution system causes voltage dips in heavy load and remote areas. Hence
the third objective function for this study is set to minimize the voltage deviation. The mathematical
index can be formulated as in the following Equation (30):

f3 = min
(
∑Nse

se=1 ∑Nt
t=1 ∑Nb

mi=1

∣∣∣(1− real(Vmi)
t
∣∣∣) (30)

3.4. Network Constraints

The Equations (31)–(37) represent the equality and non-equality constraints of the proposed model.

3.4.1. Power Balance

Pt
substation + ∑ Pt

DG= = ∑ Pt
loss= + ∑ Pt

load (31)

Qt
substation + ∑ Qt

DG= = ∑ Qt
loss= + ∑ Qt

load (32)

where Psubstation and Qsubstation are the total real and reactive power injection by sub-station into the
network ΣPDG and ΣQDG are the total real and reactive power, injected by DG. ΣPloss and ΣQloss are
the total real and reactive power loss in the network. ΣPload and ΣQload are the total real and reactive
power losses of the network, respectively.

3.4.2. Position of DG

Bus 1 is the substation or slack bus, so the position of the DG should not be used at bus 1:

2 ≤ DGposition ≤ nbuses (33)

3.4.3. Voltage Magnitudes

In order to maintain the quality of power supplies, the voltage magnitudes of every bus in the
network should satisfy the following constraint:

Vt
min ≤ Vi ≤ Vmax (34)

3.4.4. Boundary Condition of DGs

The boundary condition of the renewable DGs and capacitors are also restricted, which is given
as in Equations (35) and (36):

Pt
DG,min ≤ Pt

DG ≤ Pt
DG,max (35)

Qt
cap,min ≤ Qt

cap ≤ Qt
cap,max (36)

3.4.5. Line Capacity Constraints

The line capacity constraints of line i is limited by its maximum thermal rating limit as:

St
li ≤ Sli,rated (37)
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4. Multi-Objective Optimization (MOO)

Many science and engineering applications are being optimized with meta-heuristic optimization
algorithms. In real practice, most of the problems have numerous contradictory objectives which
need to optimize simultaneously. Thus, the output of MOO is not in single value but rather forms
a pareto optimal set, comprising of several optimal solutions. The non-dominated sorting—based
strategy is mostly implied to trade-off the optimal solution set. In general the MOO problem can be
formulated as:

minF(u) = [ f1(u), f2(u), . . . , fMobj(u)], u ∈ U

subject to : gi(u) ≤ 0, i = 1, 2, . . . , m (38)

hi(u) = 0, i = 1, 2, . . . , l

where F(u) is the function of u and Mobj is the total number of objective functions. The u and U are
the decision variable and its space respectively gi(u) and hi(u) are the constraint functions of the
problem, respectively.

4.1. Multi-Objective Particle Swarm Optimization (MOPSO)

The Particle Swarm Optimization (PSO) algorithm was given by Kennedy and Eberhart in
2001. The algorithm is inspired by the natural behavior of birds in flock and fish schooling, which
develops their atmosphere to search for food [36]. The conventional or original PSO is simple and
computationally efficient but lacks the multi-objective problem handling. Hence, MOPSO is proposed
for this study. The MOPSO is an extension of original PSO, given by [48], that is capable of handling
many objective functions in one run. The algorithm basically runs in a sense that at every iteration a set
of non-dominated solution is recovered, and stored in temporary external repository (REP) file (other
than swarm). The REP consists of two main parts, called archive controller and the grid. The function
of the former is to decide whether a particular solution should enter into REP or not. Whereas the
function of the latter is to produce well-distributed Pareto fronts. Among the REP members, one
leader is selected to update the velocity and position of particle i. After updating the velocity and
position of particles, a new parameter is introduced in the main algorithm, called mutation factor.
The mutation factor actually increases the explorative behavior among the particles at the beginning
and later it ceases, as number of iteration increases. The pseudocode of the mutation operator is
presented in Algorithm 1, below. Moreover, this algorithm gives a set of non-dominated solution
set where none of objective function got the superiority in search space or the results are the best
compromise pareto-fronts among the whole solution set. Here, fuzzy decision technique is applied
to trade-off the solution set. The mathematical formulas for fuzzy decision model are presented in
Equations (39) and (40).

αi
k =


1 if fi ≤ fi

min

fi
max− fi

k

fi
max− fi

min if fi
min < f < fi

max

0 if fi ≥ fi
max

(39)

where f min
i and f max

i are the minimum and maximum values of the ith objective function in all
non-dominated solutions respectively. The degree of preference of each non-dominated solution k can
be found using normalized membership value αk as follows:

αk =

Nobj

∑
i=1

αk
i

Mnd
∑

k=1

Nobj

∑
i=1

αk
i

(40)
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Algorithm 1. Pseudocode for the mutation operator

% mu = mutation rate % rr = reducing rate % iter = current iteration % maxiter = maximum iteration % varmax
= particle’s upper boundary % varmin = particle’s lower boundary
1: initialize reducing rate (rr)
rr = (1-(iter-1)/(maxiter-1))ˆ(1/mu)
2: if rand < rr
3: function mutation_factor (particle, rr, varmax, varmin)
4: Calculate mutation range (m_range)
m_range = (varmax-varmin) x rr
5: Assign particle’s upper and lower bounds
ub = particle+ m_range
lb = particle-m_range
6: Verify particle’s upper and lower bounds
if ub > varmax then ub = varmaxif
lb < varmin then lb = varmin
7: Assign new values to particle within upper and lower bounds
particle = unifrnd (lb,ub)
8: end function

4.2. Algorithm Implementation

First, initialize the random population for optimal placement size (for biomass DG) and type of
DGs (wind, solar and biomass) and capacitor banks. Then, find the fitness function; update the position
and velocity of particles at each iteration and find optimal compromise non-dominated pareto-solution
set. The main input parameters for the advanced-MOPSO need to be pre-defined, such as shown in
Table 1. The complete algorithm is presented in flow chart given in Figure 2 and in following steps:

1. Initialization: initialize the population.
2. For i = 1 to NOP.
3. Initialize POP(i). Position.
4. Initialize the velocity of each particle.
5. Run the load flow and find the fitness function of each hours in all seasons.
6. Determine domination among the particles and save the non-dominated particles in repository

archive (REP). The new generated solutions are added to repository and the dominated solutions
are removed from repository.

7. Update the personal best Pbest.
8. For i = 1 to Maxiter.
9. Find the leader (global best) from REP.
10. In order to select the leader from members of the repository front, firstly the member of repository

front is gridded. Then, the roulette wheel technique is used so that cells with lower congestion
have more chance to be selected. Finally, one of the selected grid’s members is chosen randomly.

11. Uate the speed of each particle using Equation (22).
12. Update the new position of each particle (personal best) using Equations (23)–(25).
13. Run the load flow and find the fitness function of each hours in all seasons.
14. Apply mutation factor.
15. Run the load flow and find the fitness function of each hours in all seasons.
16. Add non-dominated solution set of the recent population in the repository.
17. Determine the domination among the particles and save the non-dominated particles in repository

archive REP.
18. Check the size of the repository. If the repository exceeds the predefined limit, remove the

extra members.
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19. The rest of the members in the repository will be taken for the final solution.
20. The optimal compromise solution will be chosen.

Table 1. Input parameters of MOPSO.

Parameters Values Parameters Values

Maximum number of iteration Maxiter = 200 personal and global learning coefficient C1 = 2
C2 = 2

Population size NPOP = 500 number of grids per dimension NGrid = 7
Repository size NREP = 100 inflation rate alpha = 0.1

Weight of inertia w = 0.5 leader selection parameter beta = 2
Inertia weight damping rate wdamp = 0.99 deletion selection parameter gama = 2

- - mutation rate µ = 0.1
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5. Wind, Solar and Load Data Analysis

The system inputs include DGs and load. The DGs used in this paper are intermittent (i.e., wind
and solar), non-intermittent (i.e., biomass) and capacitor banks. Among them, the wind and solar DGs
are dependent on its primary input, wind speed, and solar irradiance. Five years of wind speed and
15 years of solar irradiance data are gathered from the site under survey as 24◦35′48′′ N 67◦26′39′′ E
for wind speed and 29◦19′8′′ N 71◦49′25′′ E for solar irradiance, the probabilistic nature of wind
speed and solar irradiance are modeled using Weibull and Beta distribution functions as mentioned
above and are further processed with an appropriate time varying model. The time varying model is
divided in a sense that 3 months represent a season (i.e., summer, autumn, winter and spring) and
each season is set as a day of 24 h. The hourly wind speed and solar irradiance data points have been
obtained. Furthermore, in order to extend the robustness in a probabilistic model, the hourly wind
speed and solar irradiance are processed through multi-state modeling. For every hour of wind speed
and solar irradiance there exist 15 and 20 states, respectively. The probability of every state has been
found and from power performance curve of the wind turbine and solar panel, the output power has
been measured.

The load demand is also following the hourly time-varying probabilistic model. A day represents
the 24 h of one season as mention in Figure 3. The mean and standard deviation of wind speed and
solar irradiance of each season are mentioned in Tables 2 and 3. The multi-state PDF of the wind and
solar irradiance for one hour is depicted in Figures 4 and 5. Power output from the wind and solar PV
depends upon the characteristics curve of the wind turbine and solar PV.
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Figure 4. Probabilities of wind speed at each state during tth time hour.

Table 2. Mean and standard deviation of wind speed in (m/s).

Hour
Summer Autumn Winter Spring

¯wind ffiwind ¯wind ffiwind ¯wind ffiwind ¯wind ffiwind

1 6.6494 2.8430 4.7376 2.7430 2.8943 2.0355 4.2715 2.1994
2 6.5817 2.9234 4.7868 2.8272 2.9848 2.0953 4.2765 2.2359
3 6.4608 2.9960 4.8015 2.792 3.0830 2.1464 4.1570 2.3074
4 6.4045 2.9751 4.8294 2.7389 3.0555 2.1652 4.1213 2.2507
5 6.2999 3.0546 4.7676 2.8104 3.0863 2.2146 3.9612 2.2083
6 6.1567 3.0478 4.5511 2.8806 3.1663 2.2676 3.7516 2.2167
7 6.1769 3.1336 4.3885 2.9969 3.2307 2.2567 3.6082 2.2203
8 6.8149 3.3058 4.6001 3.2321 3.2307 2.2182 3.5236 2.4315
9 7.4118 3.5091 5.1490 3.4546 3.0519 2.3307 3.7081 2.8367

10 7.6581 3.5539 5.5899 3.5169 3.6931 2.7372 4.3216 2.9233
11 7.8596 3.5666 5.7571 3.6000 4.2409 2.7461 4.5328 2.9701
12 8.0860 3.5150 5.9031 3.7060 4.0925 2.7464 4.6886 3.0950
13 8.3195 3.4464 6.0495 3.6553 3.8416 2.7657 4.8413 3.1425
14 8.5527 3.3354 6.1878 3.6306 3.6964 2.6569 5.2796 3.2220
15 8.6803 3.2736 6.3495 3.4966 3.6850 2.5886 5.7432 3.0960
16 8.7671 3.1906 6.4399 3.3369 3.7655 2.5316 6.1633 2.9575
17 8.7959 2.9993 6.5287 3.1160 3.8253 2.4404 6.4551 2.7951
18 8.5820 2.9234 6.3463 2.9198 3.6193 2.2015 6.4498 2.4972
19 8.1864 2.8052 5.9137 2.7845 3.2939 1.7770 6.0105 2.2643
20 7.6770 2.7069 5.4159 2.6381 3.1292 1.6812 5.3979 2.1585
21 7.2063 2.6900 5.0096 2.6650 2.9819 1.7519 4.60 2.0991
22 6.9193 2.7132 4.7780 2.6857 2.9160 1.8184 4.5848 2.0543
23 6.7584 2.7077 4.7549 2.7152 2.8092 1.9225 4.4916 2.0990
24 6.6819 2.7594 4.6719 2.7343 2.8851 2.0060 4.3096 2.2017
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Table 3. Mean and standard deviation for solar irradiance in (kW/m2).

Hour
Summer Autumn Winter Spring

¯wind ffiwind ¯wind ffiwind ¯wind ffiwind ¯wind ffiwind

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0.0265 0.0165 0.0100 0.0106 0 0
9 0.0214 0.0321 0.1710 0.0396 0.1360 0.0261 0.0337 0.0352

10 0.1645 0.0772 0.3705 0.0579 0.3252 0.0491 0.1911 0.0700
11 0.3491 0.1110 0.5619 0.0739 0.5141 0.0710 0.3714 0.0855
12 0.5104 0.1413 0.7210 0.0929 0.6718 0.0905 0.5208 0.0962
13 0.6267 0.1660 0.8359 0.0911 0.7776 0.1079 0.6182 0.1039
14 0.6902 0.1700 0.8827 0.0976 0.8196 0.1168 0.6545 0.1030
15 0.6850 0.1636 0.8643 0.0929 0.7929 0.1278 0.6215 0.0998
16 0.6116 0.1538 0.7745 0.0944 0.7067 0.1319 0.5255 0.0894
17 0.4819 0.1301 0.6327 0.0834 0.5692 0.1218 0.3784 0.0734
18 0.3062 0.1035 0.4509 0.0665 0.3979 0.0923 0.1940 0.0580
19 0.1119 0.0694 0.2494 0.0463 0.2079 0.0668 0.0226 0.0299
20 0.0038 0.0073 0.0675 0.0278 0.04921 0.0366 0 0
21 0 0 0.0001 0.0004 0.0001 0.0003 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0

Tables 4 and 5 show the characteristics curve of the wind and solar PV and Figures 6 and 7 shows
the power output.

Table 4. Wind turbine characteristics.

Parameters Size

Cut-in speed 3 m per second
Rated speed 12 m per second

Cut-out speed 25 m per second
Rated output power 250 kW

Table 5. Solar PV characteristics.

Parameters Size

Nominal operating temperature 44 ◦C
Maximum power point current 8.28 amperes
Maximum power point voltage 30.2 volts

Short circuit current 8.7 amperes
Open circuit voltage 37.6 volts

Current temperature coefficient 0.0045 (amps/◦C)
Voltage temperature coefficient 0.1241 (volts/◦C)
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6. Simulation Results and Discussion

This section provides the optimal placement and sizing of intermittent and non-intermittent
renewable energy with capacitor banks for power loss reduction, voltage stability improvement,
and voltage deviation minimization. The proposed model is executed using advanced-MOPSO
optimization algorithm. The fuzzy decision making method is used to trade-off the solution set.
The proposed model is tested on standard 1 MVA, 12.66 KV IEEE 33 radial distribution system.
Figure 8 shows the one-line diagram, and its input parameters can be found in Table A1 in the
Appendix A. The peak active and reactive power load of this test system is 3715 KW and 4300 KVAr
respectively. This test system is processed through different seasonal loads which follows the load
curve as mentioned in Figure 3. It is a fact that the distribution system is not advanced enough to
integrate any amount of DG power. On the other hand, the distribution system is mostly operated in
public places. Therefore, this paper suggests four solar farms of 250 kW each having 1000 solar plates,
four wind farms each of 250 kW, eight capacitor banks of 125 KVar. The rest of the energy is balanced
by 0–2 MW biomass DG. Moreover, the proposed algorithm can integrate any number of renewable
DGs and capacitor banks into the distribution system without constraints violation. The 0.95–1.05 p.u
voltage magnitude is set to follow as the constraints at each hour. The proposed model is performed
on Intel core I5, 4096 MB RAM using MAT-LAB 2015a software package.
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Figure 8. IEEE 33 radial distribution system.

After the simulation run, a set of non-dominated solution is recovered from MOPSO algorithm,
as presented in Table A2 in the Appendix A. It can be observed from the non-dominated solution set
results that none of the solutions are unique. Hence, a fuzzy decision model is utilized to select the best
trade-off solution. Table 6, presents the optimization results of three objective functions at the base case
and after installation of renewable DGs and capacitor banks correspond to obtained non-dominated
solution. Table 7, shows the optimal placement and sizing of renewable DG units and capacitor banks
in the distribution system. The results for average power losses reduction, minimum average voltage
stability index improvement and minimum average voltage deviation before and after installation of
renewable DGs and capacitor banks are highlighted in the following sections.

Table 6. Optimization results at the base case and after installation of renewable DGs and capacitor
banks in the distribution system.

Ploss (MW) VSI VD

Before After Before After Before After

7.7641 2.3535 2629.57 2922.35 102.41 23.51
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Table 7. The optimal placement and sizing of renewable DG units and capacitor banks in the
distribution system.

Renewable DG Units
and Capacitor Banks Placement No. of Units Total Sizing at Location

Wind turbines 33 4 1000 (kW)
Solar PV 33 4 1000 (kW)
Biomass 10 1 0.812 (MW)

Capacitor bank(s) 30 8 1000 (KVar)

6.1. Power Loss Reduction

A significant amount of power loss reduction has been observed with the integration of renewable
DGs with capacitor banks. In summer, the total average power loss before installation of DGs was
observed as 148.2 kW, which was reduced to 36 kW (i.e., 75.71%) after installation of DGs. In autumn,
the total average power loss was observed as 48.4 kW, which was reduced to 20.5 kW that is 57.64%
power loss reduction as compared to total average power loss. In winter, the total average power loss
improved to 31.7 kW from 71.4 kW, which represents a 69.61% power loss reduction. Lastly, in spring,
the total average power loss was 55.5 kW, which was reduced to 19.9 kW and remained at 64.14%.
The power losses of all seasons (i.e., summer, autumn, winter and spring) at each hour, before and
after installation of DGs are depicted in Figure 9.
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6.2. Voltage Stability Improvement

The integration of renewable DGs with capacitor banks increases the voltage stability index.
The index values near to 1.0, represents the good stability of the system. In summer, the minimum
average VSI values before installation of DGs was observed as 0.7214 p.u, which improves to 0.8891 p.u
(i.e., 23.25%) after installation of DGs. In autumn, the minimum average VSI values were observed as
0.8317 p.u, which improves to 0.9671 p.u, that is 16.28% VSI values as compared to total minimum
average VSI values.

In winter, total minimum average VSI values are improved 0.95 p.u from 0.7988 p.u, which
calculates to 20.56% VSI values improvement. Lastly in spring, the minimum average VSI values were
0.8207 p.u, which improves to 0.9617 p.u and remained at 17.18%. The VSI values of all seasons at each
hour before and after installation of DGs can be observed in Figure 10.
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6.3. Voltage Profile Improvement

The integration of renewable DGs with capacitor banks improves the overall voltage profile of
the system. In summer, the minimum average voltage profile values before installation of DGs was
observed as 0.9212 p.u, which improves to 0.9708 p.u (i.e., 5.38%) after installation of DGs. In autumn,
the total minimum average voltage profile values were observed as 0.9549 p.u, which improves to
0.9917 p.u, that is 3.85% voltage profile values as compared to total minimum average voltage profile
values. In winter, total minimum average voltage profile values are improved 0.9872 from 0.9452 p.u,
which calculates to 4.44% voltage profile values improvement. Lastly in spring, the total minimum
average voltage profile values were 0.9903 p.u, which improves to 0.9517 p.u and remained at 4.06%.
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The voltage profile values of all seasons at each hour before and after installation of DGs can be
observed in Figure 11.
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7. Performance Evaluation of the MOPSO Method

The efficiency and robustness of non-dominated sorting based multi-objective PSO are checked
with many test problems as given in [48]. However, to show the effectiveness of proposed method
for optimal integration of distributed generation into the radial distribution system, this paper
considers two objective functions i.e., power loss reduction and voltage stability improvement as
the test problems. The two i.e., spacing and generational distance metrics are adopted to measure
the performance of proposed MOPSO. The detail of spacing and generational distance metrics are
specified in [48]. The smaller value of spacing and generational distance witnesses better distribution
of solutions and pareto optimal set. In order to perform the simulations, this paper considers the
similar algorithm parameters as highlighted in [48] such as population (100 particles), repository size
(100 particles), mutation rate (0.5) and 30 adaptive grid division. The results of proposed test problem
for these two metrics are obtained and compared with other test problems as given in Tables 8 and 9.
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Table 8. The spacing results of MOPSO with proposed test problem and other test problem solved in [48].

Statistic Proposed Test Problem Test Function 1 [48] Test Function 2 [48]

Best 0.0427 0.043982 0.06187
Worst 0.0859 0.538102 0.118445

Average 0.0705 0.109452 0.09747
Median 0.0738 0.067480 0.10396
Std. Dev 0.0116 0.110051 0.01675

Table 9. The generational distance results of MOPSO with proposed test problem and other test
problem solved in [48].

Statistic Proposed Test Problem Test Function 1 [48] Test Function 2 [48]

Best 0.0085 0.002425 0.00745
Worst 0.0204 0.476815 0.00960

Average 0.0162 0.036535 0.00845
Median 0.0175 0.007853 0.00845
Std. Dev 0.0035 0.104589 0.0005

It can be observed from Tables 8 and 9 that the results obtained from spacing and generational
distance metric for two objective functions problem as suggested are very near to the compared test
problems. Hence, it shows that the proposed MOPSO method gives better convergence and Pareto
solution to the problem highlighted of this paper. Moreover, the computational time for proposed
technique with 200 numbers of iterations, 500 population size and 100 repository size takes 6488.24 s
for all seasons and hours. It is worth noting around 6324.42 s are required for load flow calculations,
which are performed three times at each hour. Hence, the proposed MOPSO algorithm takes only
164 s.

8. Conclusions

This paper proposes the time-varying, seasonal optimal placement and sizing of intermittent and
non-intermittent renewable energy with capacitor banks for optimal planning of radial distribution
systems. The multi-state, hourly probabilistic nature of wind speed and solar irradiance data are
handled with Weibull and Beta distribution functions. The seasonal output power of these intermittent
(wind and solar) DGs, non-intermittent (biomass) DG and capacitor banks are proposed in the seasonal
load curve. The three objective functions, i.e., power loss reduction, voltage stability improvement,
and voltage deviation minimization have been set to optimize in the distribution system. First, the
Pareto-front results were obtained from the advanced Pareto-front non-dominated sorting-based
multi-objective optimization algorithm, and then a fuzzy decision technique has been applied to
trade-off the solution set. The proposed model is tested on standard IEEE 33 radial distribution system.
The overall result reveals that installation of intermittent, non-intermittent and capacitor banks help
in reduction of power losses, strengthen voltage stability and improve voltage profile of the system.
Moreover, optimizing these parameters helps the distribution network as sustainable and encourage
the utility to provide safe and reliable power delivery to the customers.

The conventional PSO has very high convergence speed and it is feared that it may converge to a
false Pareto front, hence a mutation factor is introduced in the algorithm, which increases the search
capability of the algorithm. The performance of proposed MOPSO method is also compared with two
quantitative matrices, spacing and generational distance. These matrices show the convergence rate
and spread of the problem. Moreover, these matrices are also compared with other literature problem
as highlighted in Section 7.

The time-varying, seasonal optimal placement and sizing of renewable DGs and capacitor banks
takes longer computational time as compared to optimal placement and sizing of dispatchable DG
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on peak loads. However, it is worth noting that the integration of DG in the distribution system is an
offline application for that processing time is not of concern.

Furthermore, the proposed methodology can be extended for the uncertain market price for fuels
and electricity. The fluctuations in the primary source of renewable DGs in peak time, gives rise to the
concept of energy storage. Hence, the developed model can be extended further for renewable DGs
integration with energy storage as a combined model.
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Nomenclature

V Volt
kW/MW Kilo/mega watt
KVA/MVA Kilo-volt/mega-volt ampere
KVar/MVar Kilo-volt/mega-volt ampere reactive
m1, m2 m1 and m2 are buses name
i i is the branch name connected between bus m1 and m2
p.u Per unit
PDG Active power DG
Pmin

DG min. value of Active power DG
Pmax

DG max. value of Active power DG
QDG reactive power DG
Qmin

DG min. value of reactive power DG
Qmax

DG max. value of reactive power DG
VSI Voltage stability indicator
MOO Multi-objective optimization
MOPSO Multi-objective particle swarm optimization
PFDE Pareto-front differential evolution
CABC Chaotic artificial bee colony
MINLP Mix integer non-linear programming
GA Genetic algorithm
NSGA-II Non-sorting genetic algorithm-II
SA Simulated annealing
CSA Cuckoo search algorithm
Sh-BAT Shuffled bat algorithm
ICA Imperialistic competitive algorithm
BIBC Big bang big crunch algorithm
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Appendix A
Table A1. Bus and branch data for IEEE 33 radial distribution system.

No From To R X PL QL

1 1 2 0.000575 0.000293 0 0
2 2 3 0.003076 0.001567 0.1 0.06
3 3 4 0.002284 0.001163 0.09 0.04
4 4 5 0.002378 0.001211 0.12 0.08
5 5 6 0.00511 0.004411 0.06 0.03
6 6 7 0.001168 0.003861 0.06 0.02
7 7 8 0.010678 0.007706 0.2 0.1
8 8 9 0.006426 0.004617 0.2 0.1
9 9 10 0.006514 0.004617 0.06 0.02
10 10 11 0.001227 0.000406 0.06 0.02
11 11 12 0.002336 0.000772 0.045 0.03
12 12 13 0.009159 0.007206 0.06 0.035
13 13 14 0.003379 0.004448 0.06 0.035
14 14 15 0.003687 0.003282 0.12 0.08
15 15 16 0.004656 0.0034 0.06 0.01
16 16 17 0.008042 0.010738 0.06 0.02
17 17 18 0.004567 0.003581 0.06 0.02
18 2 19 0.001023 0.000976 0.09 0.04
19 19 20 0.009385 0.008457 0.09 0.04
20 20 21 0.002555 0.002985 0.09 0.04
21 21 22 0.004423 0.005848 0.09 0.04
22 3 23 0.002815 0.001924 0.09 0.04
23 23 24 0.005603 0.004424 0.09 0.05
24 24 25 0.00559 0.004374 0.42 0.2
25 6 26 0.001267 0.000645 0.42 0.2
26 26 27 0.001773 0.000903 0.06 0.025
27 27 28 0.006607 0.005826 0.06 0.025
28 28 29 0.005018 0.004371 0.06 0.02
29 29 30 0.003166 0.001613 0.12 0.07
30 30 31 0.00608 0.006008 0.2 0.6
31 31 32 0.001937 0.002258 0.15 0.07
32 32 33 0.002128 0.003308 0.21 0.1
33 0.06 0.04

Table A2. Non-dominated solution set of MOPSO obtained after installation of renewable DGs and
capacitor banks.

Non-Dominated
Solutions

Objective 1
(Power Loss Reduction in MW) Objective 2 (1/VSI) Objective 3

(Voltage Deviation)

1 4.111168816 0.000332 26.60291
2 4.545093567 0.000331 27.06633
3 3.137733472 0.000339 24.56503
4 2.345438037 0.000343 24.39785
5 5.813276214 0.000323 39.66976
6 5.928325444 0.000333 25.94413
7 3.725858652 0.000331 28.34752
8 4.321205742 0.000332 27.47171
9 2.866413264 0.000339 23.8066
10 4.432298933 0.000328 32.00503
11 2.353528338 0.000342 23.51431
12 3.152188767 0.000336 27.21782
13 2.296194281 0.000345 26.06447
14 3.458960144 0.000339 23.16269
15 3.763373866 0.000336 27.29964
16 2.37012456 0.000345 28.36763
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