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Abstract: Deep underground mines are highly energy consuming due to the need to overcome the
growing airflow resistance. The multi-fan station ventilation system (MFSVS), formed by several
parallel fans at different locations in an underground mine generally, has greatly reduced energy
costs by using high-quantity and low-pressure energy-saving fans. However, experimental data
still indicates that 30–70% of the fan pressure is used to overcome the severe shock losses in a
parallel fan station (PFS), in spite of more than 80% operating efficiency, and the shock losses greatly
weaken the superiority and the service capacity of PFS. Based on the investigation and measured
data of several PFSs in a MFSVS in an underground mine, a three-dimensional PFS model was
developed by computational fluid dynamics (CFD) to demonstrate airflow performance and variation
characteristics of velocity, pressure and turbulence. First, the fan characteristic in the PFS was
discussed and compared with the fan operating performance under standard conditions; the shock
losses were then presented from both sides of the inlet shock losses and the outlet shock losses in the
PFS; meanwhile, the effects of blade angle variation and airflow mutual interference were conducted
to determine whether they exert a significant influence on the shock losses. The results show that
the shock losses are primarily generated in the range of 0 to 3.0 m from the fans’ exits, due to the
intensely change in air velocity in the PFS. The study also provides several directions and references
for recovering air pressure and reducing energy consumption in the parallel fans’ structure.
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1. Introduction

Given the growing concerns about global energy consumption and environmental pollution [1],
it is of great significance to achieve energy savings in mines. As a life supporting system, the ventilation
system is one of the highest energy-consuming systems in underground mines [2]. A ventilation system
consumes approximately 25–40% of the total energy costs of a mine operation [3], and depending on
the type of mine, up to 30–40% of the electricity used in underground mining [4,5]. As the depth and
production capacity of mining continue to grow, ventilation power consumption becomes increasingly
remarkable, and energy price variations in recent years have spurred mining companies to seek more
energy-efficient technologies [6,7]. Therefore, many studies have been carried out on the application
and new technology of the multi-fan station ventilation system (MFSVS) [8–10], and some research
has also noted the tough problem of shock losses in a parallel fan station (PFS) [11], in which fans are
connected in parallel.

PFS is a general arrangement in MFSVS in underground mines, and experimental data indicated
that 30–70% of the fan total pressure (TP) generated must be used to overcome the severe shock
losses [12]. It indicates that at least a third of the supplied power is consumed in MFSVS, which means
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about 10–30% of the mine productive electricity is wasted on useless work. Thus, it can be seen that the
issue of shock losses has been one of the largest obstacles to restrict MFSVS in becoming efficient and
energy saving, and it is of great importance to reduce the energy loss in PFS, especially the electricity
consumption, while maintaining the required airflow and pressure.

Shock losses are caused by abrupt changes on the velocity of air movement, the air condition,
the tunnel area, obstructions and regulator [13]. For the PFS shown in Figure 1, the shock losses
are airflow energy losses between 1-1 section and 2-2 section, resulting from sudden changes in
cross-section at fans’ entries or exits [14], split-flow at fans’ entries, airflow confluence and mutual
interference at fans’ exits, as well as airflow resistance. According to the position of fans, the shock
losses can be divided into two types: the inlet shock losses and the outlet shock losses [15]. The shock
losses cause the airflow effective pressure to be much lower than the fan offered. Therefore,
the efficiency of ventilation and PFS is still low even though the fans are working efficiently.
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difference at the positions of 10 m in front of and behind the fan. Cheng et al. [17] deduced the shock 
loss calculation formula under the condition of abrupt changes in tunnel cross-section. They tested 
nine types of fan arrangements in a multi-fan station and obtained the formula and the coefficient 
change rule of the shock losses, and they also pointed out that further study should focus on the 
velocity pressure (VP) in the return airway and air pressure recovery. Li et al. [18] indicated that the 
shock losses were mainly generated in the return airway based on experimental data in a small fan 
station model, and the data showed that the shock losses increased as the fan operation point moved 
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Figure 1. Description of parallel fan station (PFS).

There has been limited research on the shock losses in PFS, and most of them are based on
experimental data and empirical analysis. Don Z.M. [12] showed that the ratio of shock losses to fan
TP was relatively small in traditional main fans, because of the fans’ feature of high-pressure and
low-flow-rate. However, the ratio of shock losses became remarkable in the MFSVS, which generally
uses low-pressure, large-flow-rate fans. Pan Y.J. [16] suggested that the shock losses mainly occurred in
the 10 m area in front of and behind the fans, and the shock losses in the 10–20 m area can be ignored;
thus, he proposed that the effective pressure in a PFS can be measured by the pressure difference
at the positions of 10 m in front of and behind the fan. Cheng et al. [17] deduced the shock loss
calculation formula under the condition of abrupt changes in tunnel cross-section. They tested nine
types of fan arrangements in a multi-fan station and obtained the formula and the coefficient change
rule of the shock losses, and they also pointed out that further study should focus on the velocity
pressure (VP) in the return airway and air pressure recovery. Li et al. [18] indicated that the shock
losses were mainly generated in the return airway based on experimental data in a small fan station
model, and the data showed that the shock losses increased as the fan operation point moved left along
the characteristic curve [19]. However, these studies analyzed the shock losses in a PFS roughly in the
macroscopic perspective, not from the microscopic and theory aspects; and they rarely referred to the
causes, evolution laws and influence factors of the shock losses. Overall, many results are achieved just
from the measured data without understanding the real flow phenomenon, and the subject research is
still in the stage of cognition on the shock losses in a PFS.

It is well known that airflow performance and shock losses are interpreted incompetently by
utilizing the conventional one or two-dimensional flow theory in a PFS, owing to complicated air
movement in the airways and multiple loads on the airflow, including its own gravity, pressure,
air viscosity and mutual interference. The three-dimensional flow theory can take numerous factors
into account, but it is a challenge to solve the 3D and complicated velocity field mathematically [20];
thus, it is unrealistic to launch this study only through the theoretical method at present.

With the rapid development of computational mathematics and widespread application of
computers, computational fluid dynamics (CFD) provides a powerful tool and simulation method
for understanding the real flow phenomenon and its performance [21]. Numerous CFD studies have
been conducted in the mine ventilation domain [22,23], since researchers [24] applied it to investigate
airflow performance for the first time in underground tunnels. The characteristics of parallel fans
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are examined under different operating conditions by using three methods, including the standard
approach, VnetPC and CFD [25]; and the results indicated that CFD was the foremost approach to
simulate and understand the airflow performance because it could consider all losses generated within
the system, as well as provide the best interpretation of the airflow characteristics near the boundary
walls. Four different damage scenarios were discussed in mine ventilation, including a stopping door
open or closed and a booster fan turned on or off, by the onsite tracer gas experiments and a CFD
model [26], and it was concluded that the CFD produced the best results and avoided a trial-and-error
procession. A CFD model of an axial fan was also built by Li et al. [27] with an abnormal angle blade,
and the angle effect of the abnormal blade was launched from the aspects of pressure, efficiency, sound,
vibration and energy consumption. Several turbulent models were evaluated and compared between
CFD result and experimental data by Agus P. Sasmito [23]. He also examined four different flow
stopping designs and six distinctive ventilation scenarios in the cross-cut region, to determine a proper
design and achieve a best approach of air pressure control in “room and pillar” underground mining.
Although there are numerous studies on mine ventilation, little work has been done on the subject of
the shock losses, especially the shock losses in a PFS.

Therefore, this study investigates the performance of PFSs in Gaofeng Mine ventilation in
Southwest China. A CFD approach is utilized to unearth the airflow behavior and the characteristics
of shock losses in a typical PFS, which includes the inlet shock losses and the outlet shock losses.
Meanwhile, parametric studies are conducted to evaluate the effects of several factors, which impact
the shock losses in a PFS.

2. Model Development

2.1. Field Measurement

Gaofeng Mine is an underground mine, which started production from 1985, and it consists of
two main ore bodies named 100# and 105#. Considering that the ore contains high-sulfur content,
the principal exploitation method was selected as the upward horizontal slicing and filling method,
which has the advantage of reducing the exposed area and duration of the mined out area. In Gaofeng
mine ventilation, the technology of MFSVS was applied to construct the ventilation network, due to
the mine depth being more than 1000 m, from the deepest level of −300 m to ground surface level of
720 m; and most of the work areas are focused on every production level below the level of −60 m.
The polluted air discharged from these working faces converges into 50 m station, and the return air is
exhausted up to the ground through 250 m station and 450 m station successively.

Field measurements and investigations of three PFSs were launched to test airflow parameters,
airway size parameters, motor power and fan efficiency in every PFS; therein airflow parameters
consist of airflow velocity, air static and total pressure, air dry and wet bulb temperature, and air
density. The protocols have been listed in more detail in [28], including detailed procedures, measuring
locations and simple analysis of measurement data.

In the light of three PFSs in Gaofeng underground mine ventilation, which is shown in Table 1,
the measured data states clearly that pressure loss rates of fan stations are scattered in the range of 25%
to 45%, which prevent the aerodynamic force from meeting the expected design requirements. Thus,
the ventilation is incapable of clearing out noxious gases and heat, a comfortable working environment
for working areas cannot be guaranteed; and we found that the temperature of several working faces
reached 45 ◦C during the investigation.
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Table 1. Investigation and measurement of PFS in Gaofeng underground mine ventilation.

Station Site Fan Name Fan Model Rated Power (kW)
Measured Air

Quantity (m3/s)
TP (Pa) Measured Input

Power (kW)
Measured

Efficiency (%)
Measured Pressure

Loss Rate (%)Rated Measured

450 m station
450A

K40(C)-22 110 80.67 900
610 79.4 34.8 32.22

450B 671 77.5 39.2 25.44

250 m station
250A

K40(B)-19 110 103.5 929
520 72.4 41.8 44.02

250B 525 83.3 36.3 43.48

50 m station
50A

K40(B)-19 110 110.56 963
619 107.8 35.7 35.7

50B 620 101.0 38.1 35.6

Note: The probes before the fans’ entries of 450 m station, 250 m station and 50 m station are 2.0 m, respectively; the probes after the fans’ exits of 450 m station, 250 m station and 50 m
station are 3.0 m, 5.0 m (roof caving instability near the fan) and 1.5 m, respectively.
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2.2. Physical Model

From the description of Section 2.1, we can find that 50 m station played a key role in the
ventilation system, which is selected as the physical model. The station consists of two axial flow fans
in parallel, and the fan model is K40(B)-19. The fan structure diagram is shown in Figure 2, and its
main parameters are provided by the manufacturer as follows: (1) rotating speed of 980 rpm; (2) rated
air quantity range from 35 m3/s to 85 m3/s; (3) rated pressure range from 290 Pa to 1300 Pa.
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Figure 2. Structure diagram of K40(B)-19 type fan.

The field investigation found that 50 m station was located in the horizontal return airway in
50 m production level, the tunnels before and after the station are straight within a certain distance,
and the lengths of the straight sections before and after the PFS are 48.8 m and 24.3 m. Double air-doors
were set up before the PFS with the distance about 50 m, where a short return air shaft is linked with
multiple production levels, and it makes the air-doors facilitate the maintenance of equipment near
the air shaft; the arrangement also eliminated the effect of air leakage near the PFS.

Considering that Pan J.Y. [16] presents the impact scope of the shock losses respectively at about
10 m airway before and after fans, the model determines to build a 15 m tunnel before fans, as well as a
15 m tunnel after fans, in order to comprehensively analyze the inlet and outlet shock losses in the fan
station. The tunnel cross-section size is 4.92 m× 3.03 m with area of 13.2 m2 according to the measured
data, and there is a certain expanded tunnel near the position of parallel fans, with the tunnel length
and maximum size of 5.0 m and 6.052 m × 3.026 m. In addition, owing to the short tunnel distance of
15 m and the shotcrete support technology applied to protect the tunnel wall, the friction loss is not
significant in the segment of the intake and return airways; therefore, the effects of friction loss and
wall roughness on the intake and return airways are negligible in the model.

The fan station is located at the position with the widest tunnel size, and the thickness of the
stopping construction with fans is 1.3 m, which is basically the same as the length of the fan housing;
and the tightness of the stopping is really good, according to the in-site investigation. Double air-doors
were set into the stopping with the width of 0.8 m and the height of 1.4 m, and there is only a little or no
air across the bulkhead, so it can be negligible to take account of the pressure leakage and effect caused
by the bulkhead. The distance between two fans housing is 0.3 m in PFS, the model is established and
shown in Figure 3, and the airflow in the PFS has following features: (1) the atmospheric pressure value
is 101.26 kPa; (2) the dry and wet bulb temperatures are 30.2 ◦C and 30.1 ◦C, respectively; (3) the air
density is 1.16 kg/m3; (4) the air quantity and velocity of the inlet are 110.56 m3/s and 8.4 m/s.
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2.3. Governing Equations

The mathematical model comprises conservation equations, including mass, momentum (N-S)
and energy, are shown in Equations (1)–(3).

∂ρ

∂t
+∇(ρU) = 0 (1)

∂

∂t
(
ρUj

)
+∇

(
ρUjU

)
= − ∂p

∂xj
+∇

[
µ
(
∇U + (∇U)T

)
− 2

3
µ∇UI

]
+ ρg + Fj (2)

∂

∂t
(ρT) +∇(ρUT) = ∇

(
kT
cp
∇T
)
+ ST (3)

where ρ is the density, t is time, U is the velocity vector, p is the fluid pressure, µ is the kinetic
viscosity, I is the dynamic tensor, ρg is the gravity vector, Fj is the external physical strength, T is the
temperature, cp is the specific heat capacity, kT is the coefficient of heat transfer in fluid, and ST is the
viscous dissipation energy.

Supplementary turbulent transport equations are also indispensable based on the fluid
characterization, to make the control equations closed. Previous studies evidenced that the Realizable
k− ε turbulence model provides the best performance for solving complex flows, such as swirling
flow, boundary layer separation, highly adverse pressure gradients, separated flows and secondary
flow [27,29,30]. Thus, the Realizable k− ε turbulence model is selected to close the control equations,
and the modeled transport equations for k and ε are shown in Equations (4)–(5). Besides, the airflow is
treated as an incompressible fluid during the calculation process.

∂

∂t
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∂ε
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ε2

K +
√vε

+ C1ε
ε

k
C1zGb (5)

where k is the turbulent kinetic energy, ε is the turbulent dissipation rate, µt is the eddy viscosity and
µt = ρCµ

k2

ε , Cµ is a constant, Gk represents the generation of k due to the mean velocity gradients, Gb is

the generation of k due to buoyancy, C1 = max
[
0.43, η

η+5

]
, η = S k

ε , S =
√

2SijSij, C2 and C1ε are constants,

σk and σε are the turbulent Prandtl numbers for k and ε. C1z = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2.
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2.4. Computational Method and Boundary Conditions

The calculation is carried out by solving the 3D steady RANS (Reynolds-Averaged Navier-Stokes)
equations, due to the research focus on the regular fluid characteristics in a PFS. Standard wall
functions are used in the near-wall region. The semi-implicit pressure-linked equation (SIMPLE)
algorithm is utilized to solve the coupling of the pressure-velocity fields [31]. Second-order upwind
spatial discretization is set for the convective terms, diffusive terms and turbulent viscosity coefficient,
to improve the accuracy of calculations [27,32]. The gravity of calculating condition is defined as
9.8 N/kg, and the air density is set as the measured value.

The multiple reference frame (MRF) model is applied to couple the rotating blades and the
stationary zone, which is widely employed in fluid machinery and turbo-machinery applications [33].
Interfaces are well defined to deliver fluid information between the rotating zone (parallel fans) and
the stationary zone (the intake and return airways).

The inlet and the outlet are defined as the mass flow inlet and the pressure outlet. The mass
flow at the inlet is prescribed as 110.56 m3/s (within the rated air quantity range of 70 to 170 m3/s
under the parallel operating condition), and the relative pressure at the outlet is 0. The simulation is
considered converged as the parameters’ residuals are less than the default criteria of Fluent, and the
final deviation of air quantity is just 2 × 10−5 between the inlet and the outlet [27].

2.5. Mesh Generation

The model is created in AutoCAD 2014 and ANSYS workbench; ANSYS ICEM CFD is used for
meshing and assembling. The fluid domain is divided into two parts: the fan internal domain, which
is meshed by unstructured tetrahedral grids with a flexible and strong geometric adaptability for the
complicated airfoil blade shape, and the tunnel fluid domain, which is meshed by structured meshes.
Considering that the airflow changes drastically around the thin blades, a sectional mesh refinement
technique is adopted along the blade surface to achieve a more accurate solution [34], as shown in
Figure 4. It should be noted that the procedure not only ensures the mesh quality but can also save
computational cost.
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Figure 4. Mesh generated in model and local mesh refinement.

The calculation accuracy is confirmed by the mesh number. Six groups of different mesh numbers
are tested on the model, and it shows that when the mesh number exceeds 6.12 million, the variations of
TP and fan efficiency can be negligible [27]; and when the mesh number reaches 6.63 million, the relative
pressure difference is less than 10−5. To be more specific, the mesh elements of a single fan and tunnel
number are 3.14 million and 0.67 million, respectively, and the mesh average quality reaches 0.814.
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As an index of the computational cost, the model takes approximately 4 h of computing time on a
workstation with two quad-core processors (2.57 GHz) and 16 GB of RAM (Random-Access Memory).

3. Results and Discussion

3.1. Validation

The simulation model is validated by comparing the fan performance with experimental data.
It is well known that a certain difference with fan performance existed between single fan and parallel fans
operating points, and it was also found that all fan operating points were changing at all times during the
in-site experiment, due to the airflow variation of all working faces and the air piston effect in underground
mines, especially in the air shaft. For the sake of validating the calculating model, it is determined to
compare the fan performance between single fan for the standard condition and the fan curve data
in standard fan test, which was given by the fan manufacturer [35]. Considering that the standard
fan test is the C type industrial fan performance testing system [36], a certain distance pipeline model
with 90◦ arc entry is established to connect the fan inlet, and the schematic can be referenced from [37],
and computational method and boundary conditions are the same as thedescription in Section 2.3. A fan
characteristic curve with 13 points is achieved by viewing simulation results, and compared with the
experimental characteristic curve under standard conditions, as shown in Figure 5.
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Figure 5 indicates that the numerical curve coincides with the experimental curve, and the
maximum relative deviation of TP is only 3.15% within the rated air quantity range of 35–85 m3/s.
Therefore, the numerical result is acceptable and reliable. It also illustrates that the hump effect is
eliminated basically by the stabilizing ring device on this kind of axile fan product, and a superficial
low-lying area existed on the simulated curve compared with the smooth experimental curve. It is
expected that the model ignores several internal structures, which might act as regulations or obstacles
for eliminating the hump effect.

3.2. Airflow Characteristic in PFS

It is set that the air quantity at the inlet varied from 60 to 160 m3/s with 10 m3/s increments [38].
Figure 6 shows the characteristic curves of parallel fans and each fan therein. It states clearly that
the curve of parallel fans coincides with the combined curve of two standard parallel fans, when
Q ≥ 90 m3/s; whereas Q < 90 m3/s, the pressure of parallel fans is higher than the standard ones. With
the decrease of air quantity, the deviations are increasing between two combined curves (combined
Fan_1 and Fan_2), and the maximum deviation value reaches 147.78 Pa within the rated flow range.
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Thus, the characteristic curve of two fans working in parallel is not a simple superposition of two
standard fan characteristic curves.
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A further comparison of characteristic curves among Fan_1, Fan_2 and standard fan was also
shown in Figure 6. The operating points in Fan_1 and Fan_2 are slightly higher or lower than the
corresponding standard points, when Q ≥ 45 m3/s; whereas both curves of Fan_1 and Fan_2 are
much higher than the standard one when Q < 45 m3/s, and the maximum pressure deviation value
is 150.03 Pa within the rated flow range. The deviation is caused by the phenomenon that both fans
boost the pressure to grab air to achieve a better operating point at low-flow rates. The curve of Fan_1
also does not coincide with the curve of Fan_2, due to the distance between the position of Fan_1 and
tunnel wall being much closer, which makes Fan_1 have a greater pressure increase. The maximum
relative deviation of TP between Fan_1 and Fan_2 reaches 8.43%. It suggests that the difference of the
fans’ locations in the tunnel exert a non-negligible impact on fan performance, which will be explored
deeply in future work.

The TP values of multiple probes or surfaces in the PFS were monitored, and the data are listed in
Table 2. It must be noted that the walls of airways’ model are set as smooth walls; therefore, the inlet and
outlet shock losses in PFS are equal to the pressure loss of the intake and return airways, respectively.

Furthermore, a comparison of the air pressure results and Table 1 shows that the measured TP
values of PFS are 619 Pa and 620 Pa in the 50 m station, where the probes before and after the fans’
entries of 50 m station are 2.0 m and 1.5 m, in order to ensure the safety of in-situ experimental
equipment and measured personnel; and the simulated average value of TP is 620.35 Pa, due to the
data in the same probes being −424.38 Pa and 195.97 Pa under the same air quantity condition. Thus,
the simulated TP coincides with the experimental values. For the 250 m station, the measured TP
values are 520 Pa and 525 Pa as the air quantity is 103.5 m3/s, where the probes before and after the
fans’ entries are 2.0 m and 5.0 m; considering that the simulated data at the same probes are −441.7 Pa
and−102.31 Pa when the air quantity is 100 m3/s, and−424.38 Pa and 115.10 Pa when the air quantity
is 110.56 m3/s, so the simulated TP is within the range of 539.48 Pa to 544.01 Pa. It indicates that
there is a certain deviation of TP between simulated and experimental results, which is caused by the
different layout of both PFS, including the tunnel cross-section and the position of fans. In addition,
we cannot carry on a comparison between the 450 m station and the simulated results, due to their fan
models being different.
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Table 2. Statistical data of air pressure in PFS.

Air Quantity (m3/s)
Total Fan Pressure (Pa) Fan Station Pressure (Pa) Shock Losses (Pa)

Outlet Pressure Loss Rate (%)
Inlet Outlet Difference Inlet Outlet Difference Inlet Outlet

60.00 −703.22 470.11 1173.33 746.80 52.90 799.70 −43.58 417.21 35.56
70.00 −702.35 461.99 1164.34 706.58 65.96 772.54 −4.23 396.03 34.01
80.00 −631.05 468.18 1099.23 613.54 74.99 688.53 17.51 393.19 35.77
90.00 −528.73 471.11 999.84 506.41 86.08 592.49 22.32 385.03 38.51
100.00 −467.27 479.49 946.76 440.76 65.56 506.32 26.51 413.93 43.72
110.56 −453.39 495.53 948.92 422.55 76.93 499.48 30.84 418.60 44.11
120.00 −427.92 520.26 948.18 393.61 84.57 478.18 34.31 435.69 45.95
130.00 −396.51 511.05 907.55 357.36 87.88 445.24 39.15 423.17 46.63
140.00 −348.96 509.00 857.96 306.08 84.44 390.52 42.88 424.56 49.48
150.00 −278.64 515.64 794.28 231.22 97.35 328.57 47.42 418.29 52.66
160.00 −158.45 543.66 702.10 106.44 124.61 231.05 52.01 419.05 59.68
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3.3. Inlet Shock Losses in PFS

The data in Table 2 shows that the inlet shock losses decrease as the air quantity increases, and the
distribution is −43.58 to 52.01 Pa, which is less than the value of outlet shock losses. It may be strongly
explained why the guide vane exerts little or no effect on an axial flow fan.

The airflow velocity streamlines are shown in Figure 7 by investigating the airflow in the intake
airway. We can see that the velocity is distributed evenly under the assumption of the uniform flow
structure at the inlet, and the velocity is increased near the fans’ entries due to the fluid sudden
shrinkage. Therefore, the inlet shock losses are primarily caused by sudden shrinkage or expansion of
the airway, and the flow characteristic can be interpreted by the one-dimensional flow theory; so the
inlet shock losses can be written as [39].

Pshock = RshockQ2 (6)

where Pshock is the inlet shock loss, Rshock is the Atkinson’s resistance converted by the inlet shock
loss factor; and Rshock = X ρ

2A2 ; therein X, ρ, A are the inlet shock loss factor, air density and tunnel
cross-sectional area, respectively. The curve of “Pshock −Q” and polynomial fitting curves are depicted
in Figure 8, to determine X when the air quantity is 110.56 m3/s in the PFS.
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It can be observed in Figure 8 that the quadratic fitting curve is bad, whereas the good fitting
performance is presented with quite a small residual error, as the fitting degree starts from the third
time. Therefore, the cubic function is selected as the inlet shock loss calculation formula, and can be
expressed as:

Pshock =
(
−9.661× 10−6Q + 3.565× 10−3

)
Q2 (7)
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It means that Rshock = −9.661× 10−6Q + 3.565× 10−3. According to the measured data, it can
be known ρ = 1.16 kg/m3 and S = 13.2 m2, thus, we can get the expression of X, and it presents that
Rshock and X with Q has a linear functional relationship.

X = −2.902× 10−3Q + 1.071 (8)

The data in Table 2 also shows that the TP difference value between the inlet and the fans’ entries
is negative when Q < 70 m3/s. To make a contrast clearly, the velocity distributions at the positions of
fans’ entries are plotted in Figure 9, under the condition of Q = 60 m3/s and Q = 80 m3/s. It can be
found that the rotating flow phenomenon occurs with uneven velocity distribution when Q = 60 m3/s,
whereas airflow converges into both fans without a revolving tendency when Q = 80 m3/s. It indicates
that the airflow will be forced into the state of swirling with an unstable operating point when Q is less
than the minimum rated air quantity, and the rotating flow phenomenon brings about the increase of
air pressure near the fans’ entries compared with the pressure at the inlet, so the TP difference value
between the inlet and the fans’ entries becomes negative. Moreover, the increase of pressure may raise
the stress on fan blades, which easily triggers several adverse effects, such as shell vibration and fan
overload, so it is necessary to avoid the low flow-rate operating point.
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3.4. Outlet Shock Losses in PFS

The data in Table 2 shows that the outlet shock losses are more significant within the range of
385.03 to 435.69 Pa, and the relationship is not clear between shock losses and air quantity. The outlet
shock losses raise the outlet pressure loss rate from 35% to 60% as the air quantity increases. Thus,
we can see that at least 1/3rd of energy consumption is needed to overcome the outlet shock losses in
an MFSVS with PFS applied.

Considering that pressure directly determines the variation of the shock losses in a PFS, several
cross-section average values of static pressure (SP), VP and TP in the return airway were monitored,
as shown in Figure 10. It can be observed that the absolute values of SP, VP and TP reach their
maximum at the position of fans’ exits (position = 0); and these parameters are changing remarkably
within the position from 0 to 3.0 m, and changing gently with the position from 3.0 to 15.0 m, even
remaining basically unchanged. Three curves are close to zero with the position increasing. At the
outlet, the average value of SP rises to 1.51 Pa, and the average values of VP and TP sharply decrease to
73.93 Pa and 76.93 Pa. It indicates that a part of air VP is transformed into SP along the return airway,
and another part of air VP becomes pressure loss due to the TP also decreasing. The pressure loss
occurs during the process of air moving and pressure conversion, in order to overcome all resistance
in the PFS. Therefore, the VP consumption is the essential cause of outlet shock losses in a PFS.
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Since the relationship between VP and velocity can be expressed as Pv = 1
2 ρv2, where Pv, ρ, v is

the VP, air density and airflow velocity, the velocity exerts a fundamental influence on the variation of
VP. The airflow streamlines of velocity provide a visual expression of movement information in the
return airway, as shown in Figure 11. Two parts of airflow out of fans converge, and present spiral
lines with circumferential velocity because of the fan rotating blade angle. Complex and intensive
streamlines are presented within a certain distance from the fans’ exits, due to the limitation of the
tunnel wall and fluid viscous damping effect; and the trend of airflow streamlines vary mildly along
the rest of the return airway.
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Furthermore, the velocity magnitude and velocity angle distribution in the airways are monitored,
as shown in Figure 12. At the position of fans’ exits, the velocity has the widest distribution domain with
the range of 0 to 63.8 m3/s, and the velocity angle distribution reaches the maximum symmetrically
with the interval of (−178.3◦, 187.9◦); which indicates that the circumferential velocity determined by
the blade angle dominates the airflow direction. In the return airway, the velocity and velocity angle
are also altering dramatically in the range of 0 to 3.0 m, and continue to change gently along the rest
of return airway; which coincides with the previous analysis. At the outlet, the velocity and velocity
angle distribution become (2.4, 15.3) and (−46◦, 28◦), respectively.
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Figure 12. Velocity magnitude and velocity angle in the intake and return airways. (a) Velocity
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It can be found that the airflow forms a vortex movement due to circumferential velocity in
the return airway, which always raises a turbulent phenomenon with a strong momentum transfer
rate, and the contours of k and ε is shown in Figure 13. The data indicates that the k average value
reaches the maximum of 49.60 m2/s2 at the position of 1.50 m, which means the top point of turbulent
development. In the range of position >3.0 m, k begins to vary slowly after a significant decline.
Figure 13 also shows that ε exerts the greatest effect near the fans’ exits, which means the transition rate
from kinetic energy to internal energy in viscous fluid reaches a top point; and theε value is gradually
reduced as the air flows along the rest of the return airway. Similarly, ε begins to change slowly or
maintain a stable state in the range of position >3.0 m. Therefore, the energy loss, due to the turbulent
phenomenon, mainly occurs within the range from 0 to 3 m in the return airway.
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In summary, the outlet shock losses are primarily caused by the installation angle of fan blades,
which raises the circumferential velocity, and the velocity brings about the turbulent phenomenon
and pressure loss. Therefore, the rear guide vane, which can convert the turbulence to the SP,
is indispensable for an axial fan to increase its efficiency; however, the majority of engineers and
administrators do not always choose to purchase such matching devices at present, because they think
that the rear guide vane maybe exert little effect on a high-quantity and low-pressure fan, which has
brought significant performance in terms of energy saving. The analysis also indicates that the outlet
shock losses occur within the range of 0 to 3 m in the return airway, and a small part loss occurs within
the range of 3 to 15 m. It can be certified by the loss of TP within the range of 0 to 3.0 m, which is
350.83 Pa, accounting for 83.81% of the outlet shock losses and 78.06% of the total shock losses in a
PFS. Compared with the previously proposed conclusion that the shock losses in a PFS are mainly
generated between 10 m in front of the fans’ entries and 10 m behind the fans’ exits [16], the work is
more detailed and specific.

In addition, a reverse flow circulation phenomenon appears near the fans’ exits. From the velocity
contour of the fans’ exits in Figure 14, we can see that the air velocity presents radiation downward as
the center of fan hub, except the velocity in the hub area is close to zero. It indicates that the airflow
centrifugal movement makes the area behind the hub become a none or weak airflow region; that
is to say, the area is a low air pressure zone, so the recirculation phenomenon is generated owing to
air flows from a high pressure place to a low pressure place. Therefore, several improvements and
additional auxiliary devices, such as optimizing the shape of hub and using a conical diffuser, may be
necessary for an axial fan to eliminate airflow recirculation, and the study will be developed in our
further work.
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3.5. Effect of Factors

3.5.1. Effect of Blade Installation Angle

This study, as reported in previous sections, shows the shock losses lead to serious air pressure loss
in a PFS; however, the fan blade installation angle can be adjusted in practical application, according
to the dynamic demand of mine ventilation. In order to clearly interpret the effect of the blade
installation angle on the inlet and outlet shock losses, four supplementary simulations with different
blade deviation angles (∆θ) are conducted, based on the original model and blade angle under the
condition of air quantity of 110.56 m3/s in the PFS, and Figure 15 shows the TP data obtained from
the simulated results. It indicates that the TP value of fan and PFS are reduced as the blade angle
decreases, and vice versa.
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Figure 15. Pressure under different fan blade installation angle conditions.

In terms of the inlet shock losses, the resistance varies slightly between 30.12 Pa and 30.95 Pa
except for ∆θ = −10◦, and the resistance rises up to 84.16 Pa when ∆θ = −10◦. It indicates that the
blade angle is relatively small to let the air quantity pass through parallel fans smoothly. In terms of the
outlet shock losses, combined with the air velocity triangle in Figure 16, we can find that the u remains
constant because the fan speed is constant; as the blade angle reduces from θ to θ1 (such as ∆θ = −5◦

and ∆θ = −10◦ in Figure 15), the v inclines to the axis direction, and the δ increases, and the outlet
shock losses drop down with circumferential velocity component decreases. Conversely, the outlet
shock losses and the circumferential velocity component are developed as the angle increases from θ

to θ2 (such as ∆θ = 5◦ and ∆θ = 10◦ in Figure 15).
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In addition, the data shows that the fan station pressure drops by 235.28 Pa as ∆θ changes from
−5◦ to −10◦, but it rises by 10.32 Pa as ∆θ changes from 5◦ to 10◦. It suggests that an improper blade
angle will increase air pressure loss greatly, which also severely degrades the fan efficiency. Therefore,
an unsuitable installation blade angle should be avoided under the condition of specific air quantity.

3.5.2. Effect of Airflow Mutual Interference

Some researchers have speculated that the shock losses will increase under the condition of N
fans in parallel operation, due to the effect of split-flow at the position of fans’ entries, as well as the
mutual interference in airflow mixing process at the position of fans’ exits [10]. It suggested that two
fans should be installed in different airways to form a disconnected parallel structure. Other studies
held that the shock losses dropped greatly with enlarging the airway cross-section area, as the number
of parallel fans increases [17]. Consequently, there is a substantial divergence in the pros and cons of
airflow mutual interference; thus, it is necessary to have a further insight on this issue.

Considering that the airflow presents a uniform linear flow structure in the intake airway under
certain hypothesies, and the air flows into the fans based on the principle of proximity, the split-flow
exerts little influence on the shock losses in the PFS; thus, the inlet shock losses will remain unchanged
when the airflow is divided into two separate parts. Therefore, an isolation wall is added into the
return airway in the PFS model, as shown in Figure 17, in order to illustrate the effect of airflow
mutual interference.
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Figure 18 shows the results under different air quantity conditions; it indicates that the average
pressures fall slightly in both fans and PFS when the airflow is divided into two parts, and the drop
ranges are (11.9, 79.9) and (17.5, 61.8), respectively. However, there is a tiny change between two curves
of the outlet shock losses, and the deviation interval is (−32.9, 15.0). Therefore, the mutual interference
exerts little effect on the shock losses in the PFS. It also suggests that the approach is useless to form a
parallel structure by letting two fans install in different airways, to avoid the airflow interference and
reduce the shock losses in PFS.
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4. Conclusions

A series of PFS models in MFSVS were established to study the characterization and effects of the
shock losses. Conclusions are as follows:

The fan in parallel structure shows distinct performance and operating characteristics, compared
with the standard fan. The inlet shock losses in a PFS, due to a sudden change of airflow surface area,
can be interpreted by one-dimensional flow theory and a fitting function, and a linear relationship
is unearthed between the inlet shock losses and air quantity. The outlet shock losses, due to
the circumferential velocity and turbulence, exert a significant effect on pressure loss and energy
consumption, and the outlet shock losses are primarily generated within the range of 0 to 3.0 m
behind the fans’ exits; hence, a conical diffuser with rear guide vane is put forward to recover air
pressure in PFS. Further discussions also evidence that the outlet shock losses are greatly affected by
the fan blade installation angle, whereas the inlet shock losses are hardly affected. The airflow mutual
interference exerts little effect on the shock losses in PFS, to achieve the goal of consumption reduction
and energy saving.

In our future work, a series of studies will focus on many factors and effective measures for
energy conservation, as well as the relationship between the shock losses’ coefficient, air quantity and
tunnel cross-section.
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