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Abstract: The increase of energy consumption in the world is reflected in the consumption of natural
gas. However, this increment requires additional investment. This effect leads imbalances in terms
of demand forecasting, such as applying penalties in the case of error rates occurring beyond the
acceptable limits. As the forecasting errors increase, penalties increase exponentially. Therefore,
the optimal use of natural gas as a scarce resource is important. There are various demand forecast
ranges for natural gas and the most difficult range among these demands is the day-ahead forecasting,
since it is hard to implement and makes predictions with low error rates. The objective of this study is
stabilizing gas tractions on day-ahead demand forecasting using low-consuming subscriber data for
minimizing error using univariate artificial bee colony-based artificial neural networks (ANN-ABC).
For this purpose, households and low-consuming commercial users’ four-year consumption data
between the years of 2011–2014 are gathered in daily periods. Previous consumption values are used
to forecast day-ahead consumption values with sliding window technique and other independent
variables are not taken into account. Dataset is divided into two parts. First, three-year daily
consumption values are used with a seven day window for training the networks, while the last year
is used for the day-ahead demand forecasting. Results show that ANN-ABC is a strong, stable, and
effective method with a low error rate of 14.9 mean absolute percentage error (MAPE) for training
utilizing MAPE with a univariate sliding window technique.

Keywords: demand forecasting; day-ahead forecast; natural gas; neural network; artificial bee
colony (ABC)

1. Introduction

The global demand for clean energy resources that meet the increasing need of energy demands
is rising day by day. Since the early 1990s, natural gas is used more for these energy resources.
While household users consume natural gas for heating, cooking and hot water, factory users utilize
them for power generation, transportation, processing, heating, cooling and cooking. The cost and
selling price of natural gas are affected by natural gas consumption of high-use industrial subscribers
with expenditure items of energy. Therefore, forecasting year ahead natural gas demands close to
actual consumption is important to industrial subscribers.

Although industrial subscribers’ consumption needs to be predictable, household and
low-consuming subscribers do not have to know in advance. This makes consumption estimation
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for low-consuming subscribers difficult. Demand forecasting methods have been developed and
continue to be developed, in order to perform the difficult estimation for low-consuming subscribers’
consumption. Decision makers in the energy sector use these methods to make predictions about
future demand, and supply-and-demand must overlap as much as possible. The supply-and-demand
should be balanced with high accuracy. As a result, the stabilization process becomes a very important
sub-discipline of energy sectors including electricity, gas, water and wind.

Privatization of the electricity and natural gas sectors in Turkey brought the formation of a market
structure. In the market structure, high errors in demand forecast result in penalties. Operation of the
market and penalties will be discussed in the following section. There are various demand forecast
ranges in natural gas, like year ahead monthly, month-ahead daily capacity reservation and day-ahead
forecasting. The most difficult range among these demands is day-ahead forecasting, since it is hard to
implement and has a low error rate in prediction. In this study, day-ahead natural gas demand forecast
using low consuming subscribers’ data is predicted. The hybrid method applying the artificial bee
colony (ABC) algorithm for training the artificial neural network (ANN) structure was used.

1.1. Related Work

The literature for this study can be roughly grouped into two categories, according to the methods
applied. The first category is the daily natural gas consumption demand forecast, and the second is the
ANN and hybrid methods used for energy demand. There are many studies based on daily natural
gas demand forecasting [1–12]. Khotanzad et al. worked on a combination of ANN forecasters for
predicting natural gas consumption at a citywide distribution level [1]. Gorucu et al. used ANN to
forecast gas consumption [2] at a citywide distribution level. Potocnik et al. proposed a strategy to
estimate the forecasting risk for the citywide distribution level [3] using hourly consumption data.
Akpinar and Yumusak divided consumption monthly by season, and tried to forecast consumption [4].
Sanchez-Ubeda and Berzosa presented a novel prediction model that provides forecasting for the
end-use of industrial consumption in Spain for a medium-term horizon (1–3 years) with a very high
resolution (days) based on a decomposition approach on a national level [5]. Yokoyama et al. proposed
a global optimization method called the model trimming method to identify the model parameters [6].
They used neural networks with predicted air temperature and relative humidity as input and energy
demand forecasted. Akpinar and Yumusak used a linear regression in their study with the sliding
window technique [8]. They slid different sized windows data, and researched the best solution
for natural gas demand. Natural gas consumption is forecasted using daily gas consumption data
through different methods including the seasonal autoregressive integrated moving average model
with exogenous inputs (SARIMAX), multi-layer perceptron ANN (ANN-MLP), ANN with Radial
Basis Functions (ANN-RBF), and multivariate Ordinary Least Squares (OLS) [9]. They found that
SARIMAX gives more accurate results than the others. Soldo et al. used the linear autoregreesive
model with exogenous inputs (ARX), ANN and support vector machines (SVM) to forecast daily
natural gas consumption with solar radiation [11]. Their results confirm that solar radiation improves
forecast accuracy. Similar to Soldo’s study, a simulation work was done on energy consumption and
valuable results were obtained [13].

ANN and hybrid methods are frequently used in the energy sector [1,2,6,7,9–12,14–33].
The adaptive network-based fuzzy inference system (ANFIS) for estimating natural gas demand is one
of the hybrid methods in these studies [7]. Azadah et al. used historical data in their study. Karimi
and Dastranj used an ANN-based genetic algorithm (GA) to predict natural gas consumption [10].
They used GA to optimize the parameters of neural network topology. Yalcinoz and Eminoglu
forecasted the electricity load of Nigde province in Turkey [15]. They used past data for mid-term
monthly forecasting, and weather data along with historical data to forecast daily loads with ANN.
Amjady attempted one-day hourly price forecasting of electricity markets by a new Fuzzy NN [16].
They examined a proposed method for the Spanish electricity market, and this proposed technique
was more accurate than the autoregressive integrated moving average (ARIMA), wavelet-ARIMA,
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multilayer perceptron (MLP) and radial basis function NN (RBF). Saini researched feedforward ANN
based on steepest descent, Bayesian regularization, resilient and adaptive backpropagation (BP)
learning methods to forecast seven-day peak load with weather, and past peak load information [25].
Best performance is accomplished with adaptive BP learning for peak load forecasting. Azadeh et al.
proposed ANFIS-fuzzy data envelopment analysis (FDEA) [30]. FDEA is used to examine the behavior
of gas consumption, and the algorithm is capable of dealing with both complexity and uncertainty.
Szoplik analyzed seasonal and diurnal variation [31]. In this research, the design and training of the
MLP model to forecast the hourly demand for natural gas in the city has been studied. In another
study, Azadeh et al. showed how to model sharp drops/jumps in natural gas consumption [32].
They proposed an emotional learning-neuro-fuzzy inference approach for optimum training and
forecasting of gas consumption estimation.

1.2. Motivation

Optimization algorithms, mentioned previously, are used in ANN. The new optimization
technique called Artificial Bee Colony (ABC) is one of them, and has a wide range of usage
for optimizing, mentioned below. The ABC algorithm could be used as combination with other
algorithms [12,33–35]. Akpinar et al. forecasted day-ahead natural gas demand using Hybrid
ANN-ABC and ANN-BP [12]. They used various ANN structures and hidden layers. They found 18%
mean absolute percentage error (MAPE) and 0.891 coefficient of determination. Uzlu et al. estimated
hydroelectric generation using ANN with the ABC algorithm for Turkey [33]. They found that the
ANN-ABC model is more accurate than classical ANN. Li et al. studied optimal power flow problems
using differential evolution (DE) and ABC algorithms [34]. They mentioned that the DE algorithm
solves problems with a large population size, as opposed to ABC and a proposed hybrid DE-ABC
algorithm. They found DE-ABC convergence time took less than DE, and the DE-ABC algorithm was
effective. An energy efficient optimal deployment strategy is studied in their research. Adak and
Yumusak studied classification of the aroma data for four fruits using ABC [35]. They discovered ANN
trained by ABC was successful in classifying aroma data.

Suganthi presented a survey about energy demand forecasting [36]. A review of forecasting
natural gas demand was performed by Soldo [37], and another review of the ABC algorithm proposed
in this study was also presented by Karaboga [38].

1.3. Our Contribution

This paper studies forecasting day-ahead natural gas demand. ANN has a wide range usage area
for predicting energy demand as mentioned in previous studies, and the ABC algorithm has been used
for optimization in several fields. In our paper, as an alternative of using the BP algorithm, the ABC
algorithm is applied for the training stage of the ANN.

The main reasons for selecting ABC are that ABC is easier to apply, and it requires less parameters
than other algorithms. Since the exploration feature of ABC is more successful than others, it will reach
the global minimum without getting stuck in a shallow local minimum. In addition, the use of the
ANN-ABC algorithm with univariate data, and use of the sliding window technique are important
points of study while predicting day-ahead demand. ABC optimized feedforward-ANN (ANN-ABC)
and ANN-BP with three different hidden layer structures and various neurons are applied for the
day-ahead demand prediction of natural gas, which is a sub-branch of the energy sector. These
methods have not been used together previously for natural gas and day-ahead predictions. The data
does not contain any information with other variables except its own past data.

The rest of the paper is organized as follows: the natural gas market of Turkey and collected
natural gas, and the data are presented in Section 2. A theoretical description of methods is provided
in Section 3. Section 4 gives detailed information about modeling, definitions, scenarios and results.
The key findings and next studies are given at the end of the paper as conclusions in Section 5.
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2. Experimental Background

2.1. Natural Gas Consumption in Turkey

Turkey’s natural gas market is shown in Figure 1. The companies make an annual, month-ahead
daily capacity reservation, and day-ahead forecast based on regulations placed on dotted lines [39].
The producer is generally outside of Turkey [40]. Import/export and wholesale companies could
import natural gas to Turkey through pipelines or as liquid natural gas (LNG). Companies report their
year-ahead monthly, month-ahead daily capacity reservation and day-ahead forecasts in a hierarchical
manner to the companies that have a contract, excluding the bottom level. Import or wholesale
companies make a final estimation using data collected from the bottom-up. Each month and each
day, these forecasts are inspected, and if a mean absolute percent error is higher than 10% (depends
on consumption range), penalties occur [39]. If month-ahead daily capacity reservation passes an
acceptable error limit six times in a month, a penalty occurs for all of the remaining days of the month.
The penalty rate exhibits 10% MAPE distribution throughout the year and varies between 8% and 12%
according to the consumption-estimation amount. The fact that estimations are around 15% MAPE
during the year indicates that the amount of penalty to be paid will be low and the forecast is well
done. The Energy Market Regulatory Authority (EMRA, also known by the acronym EPDK) inspects
the natural market controlled by the Petroleum Pipeline Corporation (PPC is also known as BOTAS).
According to the EMRA report, in 2014, imported natural gas by nine long-term and two spot (LNG)
import licensed entities was 49.262 billion m3 [40]. It was stated in the same report that 14.78% of total
imports was LNG with 7.281 billion m3. At the national level, total consumption was nearly 20% for
the household ratio [40]. This consumption amount that affects penalties was noticeably high, and it
was forecasted from the residential/and small commercial end users who are subscribers of the city
distribution company based on the bottom part of the market. As mentioned in the report, nearly
26% of total consumption at the national level comprises the sum of household and low-consumption
subscribers [40].

Figure 1. Turkey natural gas market and users.

2.2. The Preparation of the Data

Natural gas is distributed to end-users through pipelines in Turkey [41]. Reduction and measuring
stations (RMSs) connect the cities to the pipelines. The pressure of natural gas decreases and the
consumption volume of natural gas is calculated at these stations. There are three types of RMS.
They are RMS-A, RMS-B and RMS-C. National distribution to regional distribution pipelines connect
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through the RMS-A. The consumption range in an hour is 10,000 m3 to 300,000 m3 for RMS-A, and
the pressure reduces from 40–75 bar to 12–25 bar. City natural gas distribution companies administer
RMS-A type stations. The other two kinds of RMS are B and C, and they reduce pressure from 6–25 bar
to 4 bar, and from 1–4 bar to 0.3 bar. Steel lines are used to connect RMS-A and RMS-B due to the
high pressure. Distinct from RMS-A and RMS-B, polyethylene lines are used before and after RMS-C.
Hourly consumptions are measured and calculated for all RMSs. The natural gas consumption data is
collected from the natural gas distribution company of Sakarya province (AGDAS), Sakarya, Turkey.
Daily resolution consumption data is converted from hourly resolution consumptions for all RMSs.
Telemetry systems were established so high-consuming industrial subscribers have access to RMS for
remote measurement. In addition, 90% of industrial subscribers have RMS and a telemetry system in
the city. Telemetry consumptions for RMS-B and RMS-C are subtracted from RMS-A consumptions
daily. The remaining 10% of industrial subscribers are low-consuming industries. Thus, this daily
consumption of household and low-consuming subscribers are found. Finally, daily time series
consumption data is prepared and ready for forecasting in this study. Time series forecasting is an
important area of forecasting, in which past observations of the same variable area are collected and
analyzed to develop a model describing the underlying relationship [42]. In this study, four years
of natural gas consumption data was collected (2011–2014) and used. The first three years are used
for training the ANN. The consumption data from 2014 is used for testing. Column values in the
dataset are daily consumption. Seven inputs and one output are used to create the network structure.
One week of data from before the estimation date is used to forecast. As in reality, the estimation day
(forecasting day) does not contain any consumption data. The forecasted day is a day ahead of the
forecasting day. Thus, the previous seven days of data before the forecasting day is added as an input
for the dataset (Figure 2). As an example, forecasting for 22 April 2014 is done on 21 April 2014 by
using data between 14 April 2014 and 20 April 2014. The amount of data used for training is 1088 days
of data, and the amount of data used for testing is 365 days of data.

Figure 2. Day-ahead forecasting dataset.

The real consumption values are too big to use because the sigmoid function in ANN training
requires values between zero to one. Generally, the min-max normalization function is applied to
normalize values between zero and one. However, normalization is done in the [0.1–0.9] range, in order
to avoid numerical flowing and zero value tendency for learning [43]. The min-max normalization
equation is shown in Equation (1):

xi0.1−0.9 = 0.8
[

xi − xmin

xmax − xmin

]
+ 0.1. (1)

Table 1 shows descriptive statistics of consumption with normalization. The first column C
gives real consumption statistics, the second column C0−1 gives consumption with a normalized [0–1]
range, and the third column C0.1−0.9 gives consumption with a normalized [0.1–0.9] range. As seen in
Table 1, the skew is positive and the median is smaller than mean, thus the right tale of series is longer.
The sum of consumptions has been about 425 billion m3 for four years, and the range of consumption
was about 950,000 m3.
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Table 1. Descriptive statistics of consumption and normalized consumption.

Descriptive Statistics C C0−1 C0.1−0.9

Mean 290,914 0.28 0.32
Standard Error 6604 0.01 0.01

Median 202,069 0.18 0.25
Mode 45,254 0.02 0.11

Standard Deviation 252,417 0.27 0.21
Sample Variance 63,714,170,871 0.07 0.05

Kurtosis −0.90 −0.90 −0.90
Skewness 0.65 0.65 0.65

Range 947,195 1.00 0.80
Minimum 27,765 0.00 0.10
Maximum 974,960 1.00 0.90

Sum 425,025,317 405.89 470.82
Count 1461 1461 1461

3. Method

This study examines forecasting with a back propagation learning based neural network and an
artificial bee colony learning based feedforward network. These methods are briefly introduced in
this section.

3.1. Artificial Neural Network (ANN)

Artificial neural networks are developed to apply the working principles of the brain. They use
neurons, which carry out simple processes and have the ability to process data and make calculations
through an interconnected network [44]. ANN is composed of layers, neurons and weights. Neurons
build up the layers and are connected to each other through links called weights. A Backpropagation
(BP) algorithm is used traditionally in the learning phase. ANN consists of three basic layers. These are
the input, hidden, and output layers. The hidden layer may consist of one or more layers. ANN weights
are adjusted by using a BP algorithm traditionally.

3.1.1. Feedforward Algorithm

A sample is chosen from the training set, either randomly or in a specific order, to apply the
feedforward process to the network. The NET value is calculated using Equation (2) weights, Wkj, of
the related neurons multiplied by the output values, Oi

k, and each are summed up in the equation:

NETa
j =

n

∑
k=1

WkjOi
k (2)

NET values are put into an activation function, and hidden output values are calculated.
The hidden outputs are multiplied by the weights which connect the hidden layer with the output
layer, and net output values are found. Similarly, these net output values are put into the activation
function given in Equation (3) to find the output of the network. βa

j represents the threshold value of
the related neuron:

Oa
j =

1

1 + e−
(

NETa
j +βa

j

) (3)

3.1.2. Backpropagation Algorithm

BP algorithm is a traditional method for training a neural network. Weights and threshold values
of a network are determined randomly in the beginning of the training. The period of this random
choice can be limited by the user. At the end of the feedforward, the network output, Om, differs to
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an extent from the expected output, Tm, and this difference is referred to as an error, Em. The error is
calculated at the end of each iteration Equation (4):

Em = Tm −Om (4)

Epoch, on the other hand, is the case when all of the training data set is given to the network.
The error value of each epoch is the sum of the squares of the iteration errors Equation (5). The error
value mean squared error (MSE) of the last epoch is the error at the end of the training, and it is
expected to be low:

TE =
1
2 ∑

m
E2

m (5)

If the error value of an iteration is above an acceptable level, weights and threshold values are
updated and feedforward is repeated. The weights connecting the hidden and output layers are
updated first. The amount of change for each weight is calculated beforehand using Equation (6), in
order to make the update. Momentum α and the learning coefficient λ are taken into account during
this calculation. The learning coefficient determines the learning level in each iteration. The smaller
it is, the slower the learning phase is. Momentum, however, is intended to help the network not get
stuck in local minima. δm represents the local gradient, and is calculated by using Equation (7):

∆Wa
jm (t) = λδmOa

j + α∆Wa
jm (t− 1) (6)

δm = f ′ (NET) Em (7)

The f ′(NET) term in Equation (7) is the derivative of the activation function. If the activation
function is chosen to be the sigmoid function, the term is expanded as in Equation (8):

δm = Om(1−Om)Em (8)

3.2. Artificial Bee Colony Algorithm (ABC)

The artificial bee colony algorithm is a swarm optimization algorithm, and it simulates the nectar
searching behavior of bees. The first ABC algorithm, which was developed by Karaboga, includes
three different types of bees [45]. These are the employee, onlooker and scout bees. There are some
assumptions in the algorithm. Each source is assumed to be controlled by only one employee bee.
Numbers of employed and unemployed bees are equal. Any employee bee turns into a scout bee if its
source is depleted. Figure 3 gives the work procedure of the ABC algorithm.

Create food sources

do

    Send employee bees

    Calculate the probabilities 

    Send onlooker bees according to the probabilities

    Keep the best result

    Send the scout bees

while(cycle <= max_cycle)

Figure 3. The procedure of the artificial bee colony (ABC) algorithm.

Nectar found in the food sources is collected by employee bees. Onlooker bees go out to find
new nectar sources in light of the information shared by employee bees. Scout bees, on the other
hand, randomly search for new nectar sources and turn into an employee bee once they find a source.
Food sources are produced at the first step of the ABC algorithm within the given upper and lower
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limits. The rand function is used in this food source generation process to generate random numbers
as shown in Equation (9), i represents the food source, and j represents the parameter to be optimized
in the equation:

xij = xmin j + rand (0, 1)
(
xmax j − xmin j

)
(9)

Employee bees turn into scout bees when the food source is depleted, and they determine new
nectar sources by referring to present nectar source information that onlooker bees give. Equation (10)
is used in this process. vij represents the new nectar source. i is a random index that represents the
food source, and j represents the parameter to be optimized. φij is a random number that controls the
generation of neighbor food sources:

vij = xij + φij

(
xij − xkj

)
(10)

The fitness value of the new food source is determined by the fitness function in Equation (11).
If the nectar amount of the new food source is lower than the present one, the food source is not
changed and the searching process continues:

f itnessi =

{
1

1+ fi
fi ≥ 0

1
abs( fi)

fi < 0

}
(11)

fi in Equation (11) is the fitness value of the ith solution, and is related to the nectar amount of the
food source in the ith location. The ABC algorithm runs for a predetermined number of iterations, and
it intends to find the global minimum.

3.3. ABC Based ANN (ANN-ABC)

Even though artificial neural networks have been extensively applied in various fields, they still
have weaknesses, such as over-fitting the training data or getting stuck in a shallow local minimum [46].
There are numerous proposals in existing literature for bypassing these problems. As analyzed, most of
the solutions contain hybrid algorithms [47]. In this study, as an alternative to using the BP algorithm,
the ABC algorithm is applied for the training stage of the artificial neural network. The main reasons
for selecting ABC are that ABC is easier to apply, and it requires less parameters than other algorithms.
Since the exploration feature of ABC is more successful than others, it will reach the global minimum
without hooking the local minimum. The flow diagram presented in Figure 4 shows the ABC training
process of the ANN. First, the ABC inputs randomly generated weights and thresholds into an array
and optimizes the values, after which it determines the most fitted weight and threshold values. Fitness
in this context is computed by placing weight and threshold values, which are calculated in each
iteration into the network, and by feedforward movement.

The ABC will try to optimize the weights and thresholds of the artificial neural network stated in
Figure 5. The array to be given for the algorithm of Figure 5 will be [a, b, c, d, b1, b2, e, f, g, h, b3, b4].
The error in each iteration resulting from the feedforwarding is the return value of the fitness function,
and computed according to the specified error types.
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Figure 5. Sample artificial neural network for ANN-ABC.

3.4. Different Training Error Parameters

The training for feedforward ANN is processed related to the MSE error values. It is essentially
based on decreasing the MSE errors in each epoch. However, in the BP algorithm training, the back
differentiate error is propagated into the network, and the calculated MSE value is only used for
informational purposes. For natural gas demand forecasting, the MSE decrement is not appropriate.
MAPE is used for natural gas forecasting [39]. Thus, the data error in total is obtained individually for
each data on average. Another significant property of MAPE is absolute value. Due to the absolute
value, error directions are not considered, and the error is reduced from both the negative and positive
side. Since the global minimum is searched for while training, there is no sense in multiplying the
error by 100. Therefore, the percentage for the MAPE application is not included in this work. Another
expression used in the training is the coefficient of determination (Ṙ2). The strength of the relationship
between training and realization is determined by this term. This value can vary between −1 and 1.
If either the training or realization value decreases while the other one is increasing, the relationship
is considered to be negative. If both of them increase, the relationship is considered positive. If the
coefficient of the determination value is close to zero, it refers to the weakness. If this value is close to
−1 or 1, the relationship is described as strong. The training with Ṙ2 value prevents the aggregation of
the error for the entire series in a particular region. Therefore, the average error remains stable in the
summer, winter, spring and fall seasons on average. Since the global minimum is searched for in this
study; Ṙ2 must be defined in a different way. This expression is defined as | 1− Ṙ2 | and represented
as R̄.

2. Thus, a high Ṙ2 value will approach the global minimum, which is zero. Eventually, the MSE,
MAPE and Ṙ2 values are used during the training stage in this work.

4. Scenarios and Results

In this study, different scenarios are prepared to forecast natural gas consumption. These scenarios
have two parts. The first part is training the ANN using the BP algorithm, and the second part is
training the ANN using the ABC algorithm. All trainings are realized with the same numbers of
neurons and hidden layers. The MSE, MAPE and R̄.

2 measurements are selected in the training stage
for the ABC. The MSE, MAPE and R̄.

2 measurements are also calculated for BP training. ANNs are
tested for the year 2014 using calculated training weights. Table 2 shows the training parameters for
the ABC and BP. In this table, the food source limit is the values of natural gas consumption, and the
value is 365 due to the daily forecast.
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Table 2. ABC and back propagation (BP) parameters.

Parameter (ABC) Value Parameter (BP) Value

Lower bound −10 Learning rate 0.2
Upper bound 10 Momentum 0.8
Colony size 100 Weights’ lower bound −1
Food source limit 365 Weights’ upper bound 1

The ANN structure is shown in Figure 6. Seven days before the forecasting day were used for
input values for the network, and day-ahead consumption is forecasted. The training stage for ANNs
are prepared individually by MSE, MAPE and R̄.

2 error calculations. Normalized consumptions are
transformed to real consumptions before calculating errors. The error calculations (MSE, MAPE
and R̄.

2) are done with real consumptions. Thus, training is done with real data, and various ANNs
are designed to determine the best-performing ANN. For this purpose, one hidden layer network
with 20, 40, 60, 80 and 100 neurons is trained with 500, 1000, 3000, 5000, 7000, and 10,000 epochs.
Thirty different results are found for BP training, and 90 different results are found for ABC training for
one hidden layer. The test data in the hidden layer network that provides suitable network performance
are selected. The suitable network performance criterion is 0.2 or less MAPE. The networks having
suitable performance are redesigned with two hidden layers, and the training is repeated with the same
number of epochs used for one hidden layer. In the two hidden layers structure, the second hidden
layer’s neuron number is incremented in tens from 10 to 60. For each MSE, MAPE and R̄.

2 training
error for ABC training and MSE for BP training, 120 individual network structures are prepared and
trained. Unlike the suitable performance of one hidden layer network structure, two hidden layers’
network structures performance criteria is 0.16 or less MAPE. The networks are redesigned for the
performance criteria of two hidden layers and five, 15, and 30 neurons are used in the third hidden
layer with the same numbers of epochs used for one and two hidden layers.

Input 

Layer

1st Hidden 

Layer

Output 

Layer

nth Hidden 

Layer

...

...

...

...

...
.

.

.

.

.

.

.

.

.

1st layer bias nth layer bias

T-1

T-2

T-6

T-7

T+1

Forecasted 

Consumption

Figure 6. The structure of ANN chosen for training.

The numbers of prepared ANN structures within the performance criteria are given in Table 3.
The rows indicate the number of hidden layers, and the columns indicate the number of epochs. It is
seen that the most efficient training is with 7000 epochs.
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Table 3. Number of prepared ANN structures within the performance criteria.

Hidden Layer Epochs 500 1000 3000 5000 7000 10,000

One Hidden Layer 5 5 5 5 5 5
Two Hidden Layers 6 12 6 12 18 6
Three Hidden Layers - - 3 3 12 9

The error terms MSE, MAPE and R̄.
2 are used for training the ANN-ABC. Due to the nature of

BP, only MSE is used in the training stage of ANN-BP. The network structures with the best results
from MAPE for the test dataset and the abbreviations for them are given in Table 4. The best network
structures are shown for three criteria. These three criteria are the number of hidden layers, training
algorithms for the ABC, and the test results for BP and ABC. The ANN models with the lowest MSE,
MAPE and R̄.

2 values in the test dataset are shown in Table 4. In the test dataset for one hidden layer
BP training model, 40 neurons and 1000 epochs are the best solutions for the MSE value. For ABC
training using the MSE error values in one hidden layer, the best test dataset result is obtained with
20 neurons and 3000 epochs. Other situations are seen in the table. Abbreviations are written along
with the type of training and two parameters in parentheses. The first parameter is the error type for
ANN at the end of training with the BP algorithm (the training can be done only with MSE). If the
training type is ABC, then the first parameter shows an error type used in training and at the end of
training. The first parameter S stands for MSE value, M stands for MAPE value, and R stands for R̄.

2

value. The second parameter in parentheses is the number of hidden layers.
The test dataset based on the best results is found with a different ANN structure and different

number of epochs (Table 4). All results mentioned in this paragraph are based on the best test dataset
outcomes (Figure 7). The best results when MSE is used for error criteria are 500 epochs for ABC
training (Figure 7(a2)) and 1000 epochs for BP training. The lowest MSE value is found as 646,201,826.5
in three hidden layers on BP training, while the lowest MSE value for ABC training is 2,185,385,306
in three hidden layers. As can be seen, the BP training MSE value is 3.5 times less than the lowest
ABC training MSE value (Figure 7(a3)). For MAPE error criteria, the lowest epoch number is 7000
for training the ABC, and 10,000 epochs for BP training (Figure 7(b1–b3)). The lowest MAPE values
are 0.0894 and 0.1412 with three hidden layers for BP and ABC training, respectively (Figure 7(b3)).
At the end of the training, the MAPE value for BP is two times lower than ABC. The lowest epoch
numbers of R̄.

2 in training are 7000 and 3000 for BP and ABC, respectively (Figure 7(c1,c2)). The R̄.
2

value is too low for BP training with 1.78 × 10−6 with three hidden layers. 0.0734 is the lowest value
of R̄.

2 for ABC training with three hidden layers. Ṙ2 is close to 1 in BP training, and the Ṙ2 value for
ABC training is 0.9266 (Figure 7(c3)). During the training stage, differentiated errors are propagated to
the network weights as the structure of BP. Thus, BP training presents less errors than ABC training on
both error criteria and hidden layer structures (Figure 7). The error criteria results indicate that BP has
a significant success in training. However, ABC training results are less successful compared to the BP
training. This statement can be also applied to forecasting results for BP and ABC.
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Table 4. ANNs with the lowest MAPEs (mean absolute percentage error) and abbreviations.

Types of Structures MSE MAPE R̄.
2

BP ABC BP ABC BP ABC

One hidden layer Neurons/Epochs 40/103 20/3 × 103 20/104 20/7 × 103 20/7 × 103 40/5 × 103

Abbreviation BP(S,1) ABC(S,1) BP(M,1) ABC(M,1) BP(R,1) ABC(R,1)

Two hidden layers Neurons/Epochs 20 + 50/104 20 + 40/500 20 + 30/104 20 + 20/7 × 103 20 + 60/104 20 + 60/104

Abbreviation BP(S,2) ABC(S,2) BP(M,2) ABC(M,2) BP(R,2) ABC(R,2)

Three hidden layers Neurons/Epochs 20 + 60 + 15/104 20 + 10 + 15/104 20 + 60 + 30/104 20 + 10 + 5/7 × 103 20 + 60 + 30/104 20 + 10 + 5/3 × 103

Abbreviation BP(S,3) ABC(S,3) BP(M,3) ABC(M,3) BP(R,3) ABC(R,3)
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Figure 7. ANN training states with the lowest MAPEs (mean absolute percentage error). (a) Training
with MSE (mean squared error); (b) Training with MAPE (mean absolute percentage error); (c) Training
with R̄.

2.

As depicted in Figure 7, most of the training takes place in the first 100 epochs of BP training.
After 100 epochs, the training slope goes down to nearly zero. Even with the MAPE criterion on one
hidden layer, training errors increase (Figure 7(b1)). Unlike BP training, error values in ABC decreases
in every epoch step continuously. This situation expresses that, after finding the most effective nectar,
the ABC searches for better sources nearby. This is so that it continues to make improvements in
learning. Comparatively, BP tends to over-fit the training data. After the training step, day-ahead
forecasts are done from 01.01.2014 to 31.12.2014 by trained networks. Seven-day consumptions before
the forecasting day are used for day-ahead prediction. Based on the training error criteria, forecasting
results for the lowest error ANN are showed in Figure 8 for three different hidden layer structures.
The most noticeable point that is independent from the error criteria is that the BP and ABC errors
visibly drop as the number of hidden layers increase. For BP, one and two hidden layers have high
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errors independent from the error criteria. The tested network, which is trained by BP, previously had
100% MAPE with a single hidden layer, approximately 63% MAPE with two hidden layers, and 33%
with three hidden layers, regardless of the error criteria. It can be said that each added hidden layer
decreases 33% MAPE in the BP algorithm. The negligibility of the layer amount of the ABC trained
network is also notable. Independent from the error criteria, both one and two hidden layers have
16.8% MAPE on average, while three hidden layers have nearly 16.6% MAPE. In other words, in the
ABC trained network, hidden layer number does not vary regardless of the error criteria. The fact that
different results obtained in the same structure by changing the network weights shows the success
level of the training. Since the ABC trained network has better results than the BP trained network, the
accuracy of the approach applied in the study is confirmed.
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Figure 8. Day-ahead forecasts of the lowest MAPEs. (a) Forecast of MSE (mean squared error);
(b) Forecast of MAPE (mean absolute percentage error); (c) Forecast of R̄.
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Tests in all scenarios showed that ANN-ABC generates lower error values than ANN-BP.
The error values at the end of the test process are presented in Table 5 according to the hidden
layers. Among single hidden layer structures for all scenarios, the network that has 7000 epochs
with 20 neurons has the best performance, with a MAPE value of 16.29%. Among the two hidden
layer networks, the best performing network with a 15.36% MAPE value is the network that ran
with 7000 epochs and has 20 + 20 neurons. In addition, the best network of the three hidden layers
structures presents a 14.94% MAPE value run with 7000 epochs and 20 + 10 + 5 neurons. All of these
values are for ANN-ABC. Since ANN-BP performs worse compared to ANN-ABC in all scenarios,
the ANN is trained by a different BP examination. In this case, the ANN-BP has one, two and three
hidden layers and a normalized dataset between [0, 1], where these values are not converted to real
numbers during training. The lowest error value obtained with a single hidden layer network is 41.7%,
two hidden layers is 30.21%, and three hidden layers is 29.97%.

Table 5. Day-ahead forecasting results.

Training Type
One Layer Two Layers Three Layers

BP ABC BP ABC BP ABC

MSE Model BP(S,1) ABC(S,1) BP(S,2) ABC(S,2) BP(S,3) ABC(S,3)
MAPE 99.2% 16.4% 63.8% 17.6% 30.2% 16.9%

MAPE Model BP(M,1) ABC(M,1) BP(M,2) ABC(M,2) BP(M,3) ABC(M,3)
MAPE 99.9% 16.3% 61.7% 15.4% 33.9% 14.9%

R̄.
2 Model BP(R,1) ABC(R,1) BP(R,2) ABC(R,2) BP(R,3) ABC(R,3)

MAPE 97.6% 17.8% 63.5% 17.4% 34.3% 18.0%

MSE: mean squared error; MAPE: mean absolute percentage error; BP: backpropagation; ABC: artificial bee colony.

The lowest MAPE values based on the predictions for the test data of BP and ABC trainings
are given in Figure 9. During the forecasting series, the BP algorithm error is usually higher than
the ABCs. The high prediction values for the summer period indicate that the BP algorithm effect
is stronger in the winter. The high influence in winter months from BP leads to a sharp increase or
decrease in predictions for summer, spring, and fall seasons, when the previous days’ consumption
values are used as input. The sudden increase or decrease in the BP algorithm can be seen clearly
from February–March and November–December. For instance, in October, the BP algorithm forecast
is totally different from the actual consumption. In this month, the slow increase in consumption
behavior causes a very high consumption response, and this implies that BP uses memorization instead
of learning. In contrast, it can be said that all seasons have a similar effect on the ABC algorithm.
It can also be clearly seen that the prediction and realization overlap for the summer. The fact that
a small amount of increase in October has almost the same level of consumption prediction, clearly
showing the success of ABC training. Different from the BP algorithm, towards the end of April, the
ABC algorithm predictions are proportionally similar to the real consumption decrease.

Figure 10 shows states for the lowest MAPE values of the BP and ABC models during training.
The lowest error for the BP algorithm is found in the MSE value, while, for the ABC algorithm, it is the
MAPE value. Therefore, the graph has a two-sided y-axis, where the left axis represents MAPE, and
the right axis represents MSE values. In the detailed BP algorithm graph, from the 5.21 × 109 MSE
value to the 7.5 × 109, MSE value is reached at the 10th epoch, and the local minimum point is reached
only one time. The 110th epoch value has a 3 × 109 MSE value. While the training stage after this time
stays almost unchanged, after 4000 epochs, the training increased, and at the end of 10,000 epochs, it
reached a 6.46 × 108 MSE value. The BP algorithm reduced the MSE error by one tenth in training.
In the BP algorithm, 7/10 of the total reduced errors take place until 4000 epochs, while 3/10 of
reduced errors occur between 4000 and 10,000 epochs. This state indicates that the majority of the
training is completed until the first half of training. However, in the ABC model, MAPE decreased for
each epoch during the training stage, which had a value of 0.67 at the beginning. It is also analyzed
that, in training, the ABC has below 15% MAPE for the 6097th epoch, and 14.68% MAPE at the end of
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the 7000th Epoch. In the test, the ANN-ABC gives 14.9% MAPE for one-day forecasting, which proves
that the ABC does not memorize the consumption data, and the training with the ABC succeeds.

0

2

4

6

8

10

01.01.2014 02.04.2014 02.07.2014 01.10.2014 31.12.2014

m
³

x 
1
0
⁵

Date

Consumption BP(S,3) ABC(M,3)

Figure 9. The best ANN structures of BP (backpropagation) and ABC day-ahead forecasts for test data.
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Figure 10. The best ANN structures of BP and ABC day-ahead forecasts for training data.

5. Conclusions

The study researches natural gas demand forecasting by applying BP and ABC learning to neural
networks. Three different criteria in ABC learning and one criteria for BP learning are prepared.
The MSE criteria is used for training with BP and ABC algorithms. MAPE and R̄.

2 are coded for
ABC training. Even though coding the program is difficult, adaptation would be easy for companies.
Decision makers can use the natural gas demand forecasting results obtained from forecasting models
as decision support systems. Therefore, they can comfortably use this support system for determining
day-ahead demand and show the consistency of forecasts by comparing their predictions and neural
network results. Based on the results, the main conclusions of this paper are as follows: in the testing
stage, the ABC training gives better results than BP training, and ABC training with MAPE criteria
gives the best results for each number of hidden layers. The ABC gave 14.9% MAPE with three hidden
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layers. The MAPE value obtained is very close to the 10% MAPE value, which causes penalties.
This shows that the amount of penalty to be paid will be lower than with the method trained with BP.
In the BP training, 30.2% MAPE is high; thus, the penalty will be much higher than the ABC performed
prediction. The ABC training network confirms the possibility of forecasting natural gas demand.
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