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Abstract: To improve the accuracy of insulation monitoring between the battery pack and chassis of
electric vehicles, we established a serial battery pack model composed of first-order resistor-capacitor
(RC) circuit battery cells. We then designed a low-voltage, low-frequency insulation monitoring
model based on this serial battery pack model. An extended Kalman filter (EKF) was designed
for this non-linear system to filter the measured results, thus mitigating the influence of noise.
Experimental and simulation results show that the proposed monitoring model and extended Kalman
filtering algorithm for insulation resistance monitoring present satisfactory estimation accuracy
and robustness.

Keywords: insulation resistance; first-order resistor-capacitor (RC) circuit; battery pack model;
extended Kalman filtering (EKF); electric vehicle

1. Introduction

The voltages of storage batteries, fuel cells, and ultra-capacitors for electric vehicles far exceed the
safety limit for the human body, with certain battery packs reaching voltages of 600 V. The performance
of insulating materials, however, degrades after a certain period. Other factors, such as humidity,
can also decrease the performance of the insulation between a high-voltage system and the chassis
ground. Such decrease will create a leakage circuit when the positive or negative wire penetrates the
insulating layer and connects to the chassis ground, which increases its electric potential and thus
affects the operation of the motor controller, other low-voltage electronics, and passengers’ safety.
When insulation performance is degraded in multiple points between the high-voltage circuit and the
chassis ground, heat energy accumulates, which may cause electrical fires under serious circumstances.
To ensure safe vehicle operation, a specialized device should be designed for the real-time online
monitoring of insulation resistance between the high-voltage system and the chassis ground [1,2].

Current methods for monitoring insulation within electric vehicles all have significant drawbacks.
The two most prevalent methods, namely, balanced bridge circuit [3,4] and the unbalanced bridge
circuit [5], cannot detect leakage between the battery pack and the chassis ground. Furthermore,
the introduction of reference resistance during measurement reduces the insulation performance of
the system. The accuracy of non-contact current differential detection [6] for insulation monitoring
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in electric vehicles requires further improvement. Although the alternating current (AC)-voltage
signal injection method [7] mitigates the interference of electromagnetic signals of a vehicle to the
monitoring circuit, the frequent injection of high-voltage signals affects the safe operation of battery
packs. In addition, although the proposed low-voltage, low-frequency signal injection method can
detect leakage within the battery pack, mismeasurement may occur during voltage spikes. To improve
the accuracy of dynamic insulation monitoring, in the present study, measurement and system noise
were considered based on the low-voltage, low-frequency signal injection method, and the insulation
monitoring of the battery pack was modeled. On the basis of this model, results were filtered according
to the extended Kalman filtering algorithm so that calculation results would most closely approximate
actual insulation resistance.

2. Mechanism of the Low-Voltage, Low-Frequency Signal Injection Method Monitoring Circuit

Figure 1 shows the overall voltage curve of the battery pack of an electric vehicle during realistic
working conditions. In this figure, A to B and E to F are hard acceleration processes, whereas C to
D and G to H are regenerative braking processes. During these processes, the violent fluctuation in
the overall voltage can be as high as 80 V. To analyze the effect of changes in the overall voltage of
the battery pack on monitoring accuracy, the equivalent circuit model of the battery pack should be
considered in the insulation monitoring model. The insulation resistance monitoring model of the
battery pack (Figure 2) can be acquired via the low-voltage, low-frequency signal injection method,
where: E1−En are the open-circuit voltages of the battery cells; r01−r0n are the internal resistances;
r1−rn are the polarized resistances; C1−Cn are the polarized capacitors; R0−Rn are the insulation
resistances between the batteries in series and the chassis ground; I is the bus current of the battery
pack; Rr1 and Rr2 are the reference resistances of the monitoring circuit (with both values being Rr);
Rs is the sampling resistance; and Ef is the square-wave generator.
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Figure 2. Insulation detection model between the battery and chassis of an electric vehicle. 
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Figure 1. Total voltage curve of the battery pack.
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The maximum leakage current occurs at either the positive or negative electrode of the battery
pack. Thus, the insulation resistance of the two electrodes should be monitored to determine the
insulation performance of the battery pack. The insulation resistances of the positive and negative
electrodes are defined as Rp and Rn respectively. Therefore,

Rp = R1//R2 . . . //Rn,

and,
Rn = R0.

The insulation resistance monitoring circuit of the positive electrode Rp can be simplified as
shown in Figure 3, where EH is the terminal voltage of the battery pack, Vf is the low-voltage
monitoring square-wave voltage, and Vs is the voltage of the sampling resistance. The monitoring
voltage generates a monitoring current that flows into the sampling resistance. Then, the square-wave
voltage signal generated from the sampling resistance is measured and converted by the control unit
in accordance with Equation (6). The value of insulation resistance will be calculated within the
control unit.
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Equation (6) can be acquired via the following steps:

I2 = I1 + Is (1)

Vf = Rp × Is + Rr2 × I2 + Rs × Is (2)

Vh = Rr1 × I1 + Rr2 × I2 (3)

where Vs can be measured through the voltage measuring circuit. Therefore, Is can be expressed
through Equation (4). The correlation between Rr1 and Rr2 can be expressed as Equation (5).

Is = Vs/Rs (4)

Rr1 = Rr2 = Rr (5)

Therefore, through conversion, the insulation resistance between the positive electrode and the
chassis ground is:

Rp = Rs ×
2×Vf −Vh

2×Vs
− Rs − 0.5× Rr (6)

3. Design of the Discrete Extended Kalman Filter

The extended Kalman filter (EKF) was designed during system modeling to reduce the impact of
the overall voltage fluctuation. The extended Kalman filtering algorithm includes a highly efficient
observer, which also presents high robustness against non-linear systems [8,9]. To apply the EKF in
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the insulation monitoring system, the system should be described by a state space model [10], which
can be expressed as:

X(k + 1) = f[k, X(k)] + G(k)×W(k) (7)

Z(k) = h[k, X(k)] + V(k) (8)

where X(k + 1) and X(k) are the respective system state vectors at the kth and (k + 1)th sampling time;
G(k) is the noise-driving matrix; W(k) is the process noise; V(k) is the observation noise; and f[k, X(k)]
and h[k, X(k)] are functions that describe the system. In the mode of the insulation monitoring system
proposed in this paper, X(k) = [Vh(k) Vs(k)]T. Thus,

f[k, X(k)] = X(k) (9)

h[k, X(k)] =
Vf × RS

B× X(k)
− A× X(k)× RS

B× X(k)
− RS − 0.5× Rr (10)

where A =
[

1 0
]
, B =

[
0 1

]
and X(k) =

[
Vh Vs

]T
.

Given that the system is nonlinear, a linearization process is undertaken at each step to
approximate a nonlinear system with a linear time-varying system [11]:

X(k + 1) = F(k + 1|k)X(k) + G(k)×W(k) + Φ(k) (11)

Z(k) = h
[∧

X(k|k− 1), k
]
+

∂h

∂
∧
X(k)

∣∣∣∣∣∣∧
X(k|k−1)

[
X(k)−

∧
X(k|k− 1)

]
+ V(k) (12)

where,

∂h

∂
∧
X(k)

∣∣∣∣∣∣∧
X(k|k−1)

= H(k)

h
[∧

X(k|k− 1), k
]
− ∂h

∂
∧
X(k)

∣∣∣∣∣∣∧
X(k|k−1)

∧
X(k|k− 1) = y(k)

Therefore, Equation (12) can be expressed as:

Z(k) = H(k)X(k) + y(k) + V(k) (13)

The linearized model is then acquired as:

X(k + 1) = F(k + 1|k)X(k) + G(k)×W(k) (14)

Z(k) = H(k)X(k) + y(k) + V(k) (15)

where,
F(k + 1|k) = 1 ,

G(k) is the noise-driven matrix,
W(k) is the process noise with an average value of 0 and a variance of Q, and
V(k) is white Gaussian noise with an average value of 0 and a variance of R.

H(k) =
[

−Rs
2×Xk−1(2)

Rs(−2×Vf +Xk−1(1))
2×(Xk−1(2))

2

]
(16)

The choice of covariance matrices affects the filter convergence and should thus be considered
with care. In practice, process and measurement noises Q and R are difficult to obtain [12]. Therefore,
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they are often used as tuning parameters. Laroche et al. [13] proposed a methodology for tuning Q
to achieve parameter tracking. The component of the matrix is chosen as the square of the typical
parameter variation on a sampling interval. To ensure convergence in less than 40 s and without being
too senstive to the noise, after measurement and multiple adjustment, Q =

[
0.04 0.01

]
and R = 80

are chosen.
EKF is essentially based on the principle of minimizing the mean square error estimation to

seek a recursive estimation algorithm. The time update and measurement update are consecutively
performed at each time interval. The detailed steps can be summarized by the following steps [14,15]:

(1) Initial state X(0) and P0.
(2) Time update, which includes the state space update and covariance of the error update:

X−k =
ˆ
Xk−1 (17)

P−k = FkP̂k−1FT
k + Qk (18)

where X−k is the predicted state at step k, X̂k−1 is the previous estimated state at step k−1, P−k is
the predicted error covariance at step k, and P̂k−1 is the estimated error covariance at step k−1.

(3) Measurement update, which involves Kalman gain calculation, state estimation measurement
update, and error covariance update:

Kk = P−k ×HT
k ×

[
Hk × P−k ×HT

k

]−1
(19)

Z−k = Hk × X−k (20)

X̂k = X−k + K× (Zk − Z−k ) (21)

P̂k = (I−Kk ×Hk)× P−k (22)

where Kk is the Kalman gain, Z−k is the predicted output, and Zk is the measured output.

4. Matlab Simulation Model and Analysis

4.1. Simscape Battery Cell Model

Several battery models and charging and discharging characteristics were described in
references [16–19]. The first-order equivalent circuit model is very common in simulating cell voltage
change because the model is relatively simple, can easily obtain parameters, and runs in real time.
The core goal of the equivalent circuit model is to simulate the actual battery voltage response of the
current input. Huria et al. [20] reported that the first-order resistor-capacitor (RC) circuit model is
precise for most industrial application. Increasing the order will significantly increase the amount of
required calculation, but will not increase accuracy [21]. The first-order equivalent circuit model is
supported by Huria et al. [20] due to its accuracy and feasibility, and many researchers have adapted
this model in their studies [18,22–25]. Figure 4 shows the classic first-order RC equivalent circuit
model. The equivalent circuit model, which contains a voltage source, series resistor, and a pair of RC,
accurately describes cell characteristics.

The electrical behavior of a practical model [26] shown in Figure 4 can be expressed as follows:

•
U1 = − U1

R1C1
+

IL
C1

(23)

Ut = Em −U1 − ILR0 (24)
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In Figure 4, Em is the open circuit voltage; R1 and C1 are the resistance and capacitance of
polarization effect respectively, and R0 represents the resistance of battery. Em, R1, C1, and R0 are
functions of the state of charge (SOC) and temperature. Specifically, these four elements can be obtained
from the two-dimensional look-up tables:

R0 = R0 (SOC, T) (25)

R1 = R1 (SOC, T) (26)

C1 = C1 (SOC, T) (27)

Em = Em (SOC, T) (28)

Those look-up tables were obtained by using a parameter estimation tool in Simulink Design
Optimization (R2012b, The MathWorks, Inc, Natick, MA, USA) with series pulse discharge data
under different temperatures. These look-up tables were selected based on seven different points
of SOC. The pulse discharge curve for each temperature was run individually through estimation.
This will produce a set of one-dimensional look-up tables versus SOC for the four parameters at each
temperature. Simulink Design Optimization iteratively simulated the discharge profile in Simscape
while comparing the simulation results with experimental data. Then also, using nonlinear least
squares algorithm, the error gradient across each of the 28 parameters (four tables× seven breakpoints)
to minimize the sum of squared error.

We used the battery model from reference [20], which is a fidelity electrical model with thermal
dependence, to characterize and simulate high-power lithium battery cells. Hence, the SOC and
temperature were calculated following the method cited in the literature. SOC was calculated in
Coulomb counting using Equation (29), and SOC(t0) was periodically recalibrated by the SOC-OCV
(open circuit voltage) curve. State of health (SOH) was calculated using Equations (30) and (31)
as follows:

SOC(t) = SOC(t0) − (
∫

I(t) dt)/CM, (29)

CM = (PassedCharge)/(SOC2 − SOC1), (30)

SOH = CM/CN × 100%, (31)

where SOC(t0) is the SOC at the beginning of the discharge or charge; I(t) is the working current; CM is
the current capacity of the battery; CN is the brand new capacity of the battery; PassedCharge is the
total capacity flow out of the battery; and SOC1 and SOC2 are the SOCs of the battery before and after
discharge, respectively.

Thermal influence is not usually considered in the currently proposed battery models.
However, Huria et al. [20] added a thermal model to the equivalent circuit model and creatively
improved the Simscape model. As shown in Figure 5, the Simscape model contains three input
terminals (environment temperature input, positive, and negative) and three output terminals
(battery temperature, SOC, and energy consumption power).



Energies 2017, 10, 714 7 of 13

These outputs can be used to analyze the operating state of the cell and estimate the
system insulation resistance. The Simscape model is suitable for Matlab simulation and analysis.
The parameters of the equivalent circuit model can be estimated through the least square method with
experimental data, which can be obtained by pulse discharge process under different temperatures
and SOCs. Then, the parameter results are incorporated into look-up tables that are related to SOC and
temperature T. The computer determines the parameters of the model via the look-up tables. This is a
practical method. Moreover, the Simscape model has been tested by Huria et al. [20] and Wang et al. [27].
Their results indicate that the model responds accurately in a given battery voltage fluctuation.
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4.2. Battery Pack Model

Eight cells were connected in series to compose a stack (Figure 6). The internal structure of each
battery is shown in Figure 5, where the H terminal outputs the internal temperature of the battery, and
convective heat transfer occurs between two batteries to simulate the heat transfer on both sides of the
battery. The m-port on each battery outputs the collected battery voltage, current, and temperature.
Next, 10 stacks were again connected in series to compose a pack (Figure 7). The model parameters
are derived from 80 ICR18650 battery cells (Samsung SDI Co., Ltd., Yongin-Si, Gyeonggi-Do, Korea)
using the method in [20]. The discharge capacity of the series battery pack is limited by the cell with
the smallest SOC. Therefore, we make the minimum value of the SOCs of all series cells as the SOC of
the battery pack. Similarly, the SOH of the battery pack is the minimum of the series cells’ SOHs.
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Through the charging and discharging process of the 80 battery cells, we validated the accuracy
of our model relative to the actual reaction. We built a 3.2-Ah, 296-V battery pack model composed of
80 battery cells that were connected in series. When the pack is fully charged, the voltage can reach
336 V. Figure 8 compares the battery voltage between the simulation and experimental results for
the battery pack under a (a) constant current/constant voltage (CC/CV) charging mode, and a (b)
0.5 C/1 C discharging mode. The simulation results closely approximate the experimental values and
have a maximum error of 1.6%. These results showed that the battery pack model accurately reflects
the actual voltage and can be applied in the insulation monitoring of the power system.
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constant current/constant voltage (CC/CV) charging mode; (b) Experiment and simulation discharge
curves under 0.5 C/1 C discharging mode.

4.3. Insulation Resistance Monitoring Model

The monitoring model is shown in Figure 9. In the model, vehicle speed and ambient temperature
were simulated by Signal Builder. The power system of the vehicle was also simulated through the
vehicle transmission system, which calculated the current through the battery pack. R01 and R02 are
the reference resistances, Rs is the sampling resistance, and Rp is the insulation resistance between
the simulated battery pack and the chassis ground. In Figure 9a, the Vf signal waveform is drawn
to express the Vf signal more clearly, with a signal voltage of ±40 V and a frequency of 0.25 Hz.
The Figure 9b shows that the extended Kalman filtering algorithm was achieved by the EKF block.
In the simulation experiment, the variances of the noises added to VH and Vs signals are 0.02 and
0.00001 respectively and the measure noise is 80 or 800.

In the simulation, R01 = 2000 KΩ, R02 = 2000 KΩ, and RS = 10 KΩ, and the NEDC operating cycle
was simulated. The system impedance was set as 2000 KΩ and 20 KΩ. The variance of the simulation
noise was set as 4000 and 80 K. The results are shown in Table 1. A comparison of simulations 1 and
2, or of 3 and 4, revealed that the monitoring circuit calculates the insulation resistance regardless of
the value of system impedance and the variance of noise. In addition, EKF effectively reduced the
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maximum absolute error and the root mean square error. A comparison of simulations 1 and 3, or of 2
and 4, revealed that the extended Kalman filtering algorithm markedly improves monitoring accuracy
when the system is suffering from degraded insulation performance.Energies 2017, 10, 714 9 of 13 
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Table 1. Results of the simulation. RF: Reference Resistor.

Simulation No.
System Impedance

RF (KΩ)
Measure Noise

Variance
Maximum Absolute Error (Ω) Root Mean Square Error (Ω)

without EKF with EKF without EKF with EKF

1 2000 800 4780.3 1426.4 1974.5 589.7
2 2000 80 723.7 205.6 277.3 77.9
3 20 800 4780.3 427.8 1879.1 206.4
4 20 80 723.7 143.9 256.2 38.5
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5. Analysis of Bench Test Results

To validate the superiority of the proposed model and the algorithm based on extended Kalman
filtering, the insulation monitoring circuit based on this study was tested in an actual battery pack
system. Figure 10 shows the 52-Ah, 296-V battery pack system, which was composed of 1600 battery
cells (ICR18650 3.7 V/2.6 Ah) for the bench test. Within this pack, 20 cells were connected in parallel
as a stack, and then 80 stacks were connected in a series. For the measuring circuit, R01 = 2000 KΩ,
R02 = 2000 KΩ, Rs = 10 KΩ, and T = 1200 s. The electronic load was provided by AVL e-Storage Tester
(https://www.avl.com/-/avl-e-storage). The working condition is shown in Figure 11a. Figure 11b
shows the current and voltage of the battery pack.
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Figure 11. (a) Work condition; (b) Voltage and current.

In the first group of tests, a 2-MΩ resistor was connected in parallel between the battery pack
and the vehicle chassis. As shown in Figure 12a, although the measured values were affected by
measurement noise, the extended Kalman filtering algorithm reduced this influence. At the beginning
of the measurement process, error quickly converged after only a few iterations. Figure 12b shows
the measurement errors of the two methods. After k = 5 s, the error of the extended Kalman filtering
algorithm was below 0.5%. The test results verified the feasibility of the proposed model for battery
pack monitoring circuit and the effectiveness of the insulation monitoring algorithm based on extended
Kalman filtering.

https://www.avl.com/-/avl-e-storage
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The key to insulation monitoring is maintaining the accurate measurement of system insulation
resistance under external interference when the system is suffering from degraded insulation
performance. Therefore, during the second group of tests, a 20-KΩ resistor was connected in parallel
between the battery pack system and the vehicle chassis to simulate poor insulation resistance.
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(a) Comparison of insulation resistances; (b) Error analysis of insulation resistances.

Figure 13a shows the measurement results of insulation resistance before and after adopting
the extended Kalman filtering algorithm. As shown in Figure 13b, the highest error of the extended
Kalman filtering algorithm, which can reach 30%, was generated during the initial period and stabilized
within 5%. However, without the algorithm, the measurement error remained at approximately 20%.
After calculation, the root mean square error was 8823.66 Ω without the extended Kalman filtering
and decreased to 226.35 Ω with the extended Kalman filtering. Therefore, the extended Kalman
filtering algorithm mitigates the majority of the error and improves measurement reliability. Under the
same experimental conditions, the extended Kalman filtering algorithm significantly improves the
measurement accuracy under degraded insulation performance while offering satisfactory robustness.
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6. Conclusions

As seen from the results of the two groups of tests, when the vehicle was operated under complex
working conditions, the insulation resistance monitoring circuit exhibited strong performance in
mitigating interference regardless of the state of the system’s insulation resistance. Figures 12b and 13b
show that the extended Kalman filtering algorithm significantly improves the measurement accuracy
while offering satisfactory robustness under degraded insulation performance. After t = 50 s, the error
of the extended Kalman filtering algorithm was below 1.5%. However, without the algorithm, the
measurement error remained at approximately 20%. Compared with the high-voltage AC signal, the
low-voltage AC signal in this paper will not affect the safe use of the battery pack. Although the model
has several limitations (for example, this method will slightly increase storage space and computation
time), the experimental results show that the insulation monitoring circuit based on the extended
Kalman filtering algorithm is effective and significantly improves estimation accuracy and robustness.
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