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Abstract: The behavior of Fe2O3/Al2O3 particles as oxygen carriers (OCs) for CO chemical looping
combustion (CLC) under different reaction temperatures (700 ◦C, 800 ◦C, 900 ◦C, and 1000 ◦C)
were tested in a lab-scale fluidized bed and a thermogravimetric analysis (TGA) unit. The results
show that the oxygen carrier presents the highest reactivity at 800 ◦C, even after 30 cycles of redox
reaction in a fluidized bed, while more obvious carbon deposition occurred for the case at 700 ◦C, and
agglomeration for the case at 1000 ◦C. Moreover, the detailed behavior of the prepared Fe2O3/Al2O3

particle was detected in the TGA apparatus at different reaction temperatures. Furthermore,
temperature-programming TGA experiments were performed to investigate the influence of different
CO concentrations and CO/CO2 concentrations on the reaction between CO and OC during the
chemical looping combustion processes. Based on these experimental behaviors of the prepared
Fe2O3/Al2O3 during the CLC of CO, the detailed models and electronic properties of the pure and
reduced Fe2O3/Al2O3 supported the slabs, CO adsorption, and oxidation, and the decomposition
reactions on these surfaces were revealed using density functional theory (DFT) calculations which
went deep into the nature of the synergetic effect of the support of Al2O3 on the activity of Fe2O3 for
the CLC of CO.

Keywords: density functional theory (DFT); CO2 capture; chemical looping combustion (CLC);
iron oxide

1. Introduction

Recently, chemical looping combustion (CLC) has been suggested as an effective technology to
capture CO2 without extra energy consumption and with nearly zero emission of pollutants [1,2]. The
system contains two interconnected reactors: the fuel reactor (FR) and the air reactor (AR), as depicted
in Figure 1. In the FR, fossil fuel is oxidized into CO2 and H2O by an oxygen carrier (OC), while the
OC is reduced to lower valence states (see Reaction 1). After that, the reduced OC is transferred to the
AR, and is oxidized into its original state by air (Reaction 2). The outlet gases from the FR are mainly
CO2 and H2O, which can be easily separated by condensing and drying to obtain a high concentration
of CO2 [3–5]. Although Reaction 1 is often endothermic, Reaction 2 is exothermic and therefore the
oxidized OC can also act as a heat carrier to transfer the energy needed to maintain the reduction
reaction that has happened in the FR. Furthermore, the total amount of heat obtained from the CLC
system is even more than that of conventional combustion because of the lower irreversibility of the
two reaction courses [6,7].

(2n + m)MxOy + CnH2m → (2n + m)MxOy−1 + mH2O + nCO2 (1)

2MxOy−1 + O2(Air)→ MxOy (2)
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Figure 1. A schematic diagram of the chemical looping combustion (CLC) system. 

However, an applicable OC usually acts as one of the key factors in the CLC system because of 
its vital role in transferring thermal energy and oxygen. It should possess excellent properties, 
including enough reactivity, high oxygen transfer capacity, low production cost, environmental 
friendliness, and a low tendency of fragmentation and attrition [8–10]. The main materials used as 
OCs are transition metal oxides, such as Mn3O4, Fe2O3, NiO, CuO, and CoO [11–16]. Among these 
metal oxides, Fe-based OC has been recognized as one of the most promising candidates, because it 
possesses the advantages of being low cost, having a good thermal stability, and being 
environmentally friendly [17–20]. Though Fe-based OC has high theoretical oxygen capacity (30%) 
from Fe2O3 to Fe, it has lower reactivity and oxygen transfer rate compared to Ni-based OC and Cu-
based OC during CLC process. Reduction of Fe2O3 experiences the process as below: Fe2O3 → Fe3O4 
→ Fe1-xO → Fe, which shows relatively high reactivity during the first stage from Fe2O3 to Fe3O4, while 
further reduction into FeO or Fe shows lower reaction rate [21,22]. Tang et al. [23] found that the 
transformation from Fe2O3 to Fe3O4 was suitable for the total oxidation of CH4, while partial oxidation 
of CH4 is more favored during the reduced stage from FeO to Fe, which implies that the reactivity of 
Fe-based OC depends greatly on its oxidation state. 

In addition, while being used as OC, the pure metal oxides will be gradually reduced, which 
tend to agglomerate under high temperature in the FR, and the reduced OC is difficult to re-oxidize 
back to its original structure in the AR [24]. It has been proved that loading metal oxides onto inert 
oxide supports—especially onto Al2O3—can act as a very efficient method to solve these problems 
[25,26]. Cabello et al. [27] claimed that Al2O3 present in the Fe-based OC particles promotes full 
combustion of fuel into CO2 and H2O. Al2O3 not only influences the structure of Fe-based OC, but 
also alters its chemical properties for CLC of fuel. However, the synergetic effect of Al2O3 on the 
reactivity of the prefect and reduced Fe2O3 during the CLC process has not been adequately revealed. 
In particular, the mechanisms of CO oxidations and catalyzed CO decomposition on the surface of 
the gradually reduced Fe2O3 supported on Al2O3 remain unknown. 

To address these points, a comprehensive study based on experiments was performed to detect 
the influences of temperature on carbon deposition and the reactivity of the oxygen carrier 
(Fe2O3/Al2O3) in a lab-scale fluidized bed, thermogravimetric analysis (TGA) unit. The synergetic 
effects of Al2O3 on the reactivity of the pure and reduced Fe2O3 for CO oxidations and decomposition 
during the CLC process were detected by performing density functional theory (DFT) calculations. 
The results may provide a deep insight into the gradually changing activity of the reduced 
Fe2O3/Al2O3 particle for CO adsorption, oxidation, and decomposition reactions. 

2. Experimental and Theoretical Method 

2.1. Preparation of the Oxygen Carrier 

The properties of the oxygen carrier are largely dependent on its active components and the 
preparation methods [28]. A modified incipient impregnation method was used to prepare an oxygen 
carrier of Fe2O3/Al2O3 (the mass fraction of Fe2O3 is 15 wt %). Stoichiometric amounts of iron nitrate 
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However, an applicable OC usually acts as one of the key factors in the CLC system because of its
vital role in transferring thermal energy and oxygen. It should possess excellent properties, including
enough reactivity, high oxygen transfer capacity, low production cost, environmental friendliness, and
a low tendency of fragmentation and attrition [8–10]. The main materials used as OCs are transition
metal oxides, such as Mn3O4, Fe2O3, NiO, CuO, and CoO [11–16]. Among these metal oxides, Fe-based
OC has been recognized as one of the most promising candidates, because it possesses the advantages
of being low cost, having a good thermal stability, and being environmentally friendly [17–20]. Though
Fe-based OC has high theoretical oxygen capacity (30%) from Fe2O3 to Fe, it has lower reactivity and
oxygen transfer rate compared to Ni-based OC and Cu-based OC during CLC process. Reduction of
Fe2O3 experiences the process as below: Fe2O3→ Fe3O4→ Fe1−xO→ Fe, which shows relatively high
reactivity during the first stage from Fe2O3 to Fe3O4, while further reduction into FeO or Fe shows
lower reaction rate [21,22]. Tang et al. [23] found that the transformation from Fe2O3 to Fe3O4 was
suitable for the total oxidation of CH4, while partial oxidation of CH4 is more favored during the
reduced stage from FeO to Fe, which implies that the reactivity of Fe-based OC depends greatly on its
oxidation state.

In addition, while being used as OC, the pure metal oxides will be gradually reduced, which tend
to agglomerate under high temperature in the FR, and the reduced OC is difficult to re-oxidize back
to its original structure in the AR [24]. It has been proved that loading metal oxides onto inert oxide
supports—especially onto Al2O3—can act as a very efficient method to solve these problems [25,26].
Cabello et al. [27] claimed that Al2O3 present in the Fe-based OC particles promotes full combustion
of fuel into CO2 and H2O. Al2O3 not only influences the structure of Fe-based OC, but also alters its
chemical properties for CLC of fuel. However, the synergetic effect of Al2O3 on the reactivity of the
prefect and reduced Fe2O3 during the CLC process has not been adequately revealed. In particular,
the mechanisms of CO oxidations and catalyzed CO decomposition on the surface of the gradually
reduced Fe2O3 supported on Al2O3 remain unknown.

To address these points, a comprehensive study based on experiments was performed to detect the
influences of temperature on carbon deposition and the reactivity of the oxygen carrier (Fe2O3/Al2O3)
in a lab-scale fluidized bed, thermogravimetric analysis (TGA) unit. The synergetic effects of Al2O3 on
the reactivity of the pure and reduced Fe2O3 for CO oxidations and decomposition during the CLC
process were detected by performing density functional theory (DFT) calculations. The results may
provide a deep insight into the gradually changing activity of the reduced Fe2O3/Al2O3 particle for
CO adsorption, oxidation, and decomposition reactions.

2. Experimental and Theoretical Method

2.1. Preparation of the Oxygen Carrier

The properties of the oxygen carrier are largely dependent on its active components and the
preparation methods [28]. A modified incipient impregnation method was used to prepare an oxygen
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carrier of Fe2O3/Al2O3 (the mass fraction of Fe2O3 is 15 wt %). Stoichiometric amounts of iron nitrate
precursor are dissolved in water under continuous stirring at 40 ◦C in order to increase the solubility
of the nitrate. After the complete dissolution of nitrate, the alumina particles were slowly added to
the solution. Then the mixtures were further treated by ultrasonic for 12 h, and were dried at 110 ◦C
overnight. Finally, the dried samples were calcined at 550 ◦C for 5 h under oxidizing conditions, then
crushed and sieved to a particle size of 0.1–0.3 mm for the CLC experiments.

2.2. Combustion Experiment

CLC experiments were conducted in a fluidized-bed reactor, where a quartz tube (with an inner
diameter of 16 mm and a total length of 1500 mm) was placed in an oven with a porous distributor
plate located 550 mm from the bottom, and the oxygen carrier particles were placed on the porous
quartz plate, as illustrated in Figure 2. Four different operating temperatures (700 ◦C, 800 ◦C, 900 ◦C,
and 1000 ◦C) were used, and the real-time temperature was measured at a point of 10 mm above the
porous quartz plate with an accuracy of ±2 ◦C. A 6 g sample of Fe2O3/Al2O3 particles with a size of
0.1–0.3 mm was placed on the porous plate and then initially heated to the reaction temperatures in
an inert atmosphere (N2). Then, the sample was alternately exposed to CO, and the air atmosphere
was introduced into the reactor at the bottom of the tube, respectively. In order to prevent the
mixing of fuel gas and air, N2 was introduced to the reactor for 180 s between each reducing period
and oxidizing period. The gas flow of N2, air, and CO was 500 mL/min. The outlet gases were
tested using a gas analyzer (Intelligent Analytical Instruments XLZ-1090, Sielins, Beijing, China) to
record the concentration of CO2. Furthermore, the fresh and the used oxygen carriers were tested
by X-ray Diffraction (XRD, D/MAX-RB, Rigaku, Tokyo, Japan), Scanning Electron Microscope (SEM,
LEO-1450, Carl Zeiss AG, Oberkochen, Germany), and Brunauer-Emmett-Teller (BET, Autosorb-iQ-MP,
Quantachrome, Boynton Beach, FL, USA).
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(PerkinElmer, STA6000, Boston, MA, USA). Between 40 and 50 mg of Fe2O3/Al2O3 was loaded in a 
platinum basket and heated up to 120 °C/min at 30 °C/min and held for 10 min to remove the moisture 
in the N2 atmosphere. After weight stabilization, the sample was further heated to the desired 
temperature with the heating rate of 50 °C/min. Once the set temperature was reached, the 
experiment was started by exposing the sample to alternating CO and air atmosphere for the 
reduction and oxidation steps. To avoid the mixing of CO and air, nitrogen was introduced for 3 min 
after each reducing and oxidizing period. In the reducing period, Fe2O3 is mostly reduced to other 
lower oxidation states of iron oxide, such as magnetite (Fe3O4) and wustite (FeO). The degree of the 
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Figure 2. A schematic diagram of the fluidized-bed reactor system.

2.3. Thermal Gravimetric Analysis (TGA)

The reactivity of Fe2O3/Al2O3 with CO was carried out in a thermo gravimetric analyzer
(PerkinElmer, STA6000, Boston, MA, USA). Between 40 and 50 mg of Fe2O3/Al2O3 was loaded
in a platinum basket and heated up to 120 ◦C/min at 30 ◦C/min and held for 10 min to remove
the moisture in the N2 atmosphere. After weight stabilization, the sample was further heated to the
desired temperature with the heating rate of 50 ◦C/min. Once the set temperature was reached, the
experiment was started by exposing the sample to alternating CO and air atmosphere for the reduction
and oxidation steps. To avoid the mixing of CO and air, nitrogen was introduced for 3 min after
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each reducing and oxidizing period. In the reducing period, Fe2O3 is mostly reduced to other lower
oxidation states of iron oxide, such as magnetite (Fe3O4) and wustite (FeO). The degree of the oxygen
carrier conversion (Xoc) in the reduction reaction is defined as:

Xoc = (mox −m)/(mox −mred) (3)

where m is the instantaneous weight of the sample, mox is the mass of the sample at its fully oxidized
state, and mred is the weight of the sample at its fully reduced state. The difference between mox and
mred in Equation (3) is the theoretical maximum amount of oxygen that can react with the CO.

2.4. Thermodynamic Analysis

Thermodynamic analysis was performed by FACTSAGE 7.1 (GTT-Technologies, Herzogenrath,
Germany), and was used to predict the phases and compounds that can be formed, and their fractions
and thermodynamic properties at given temperatures and pressures similar to the experimental
conditions employed [29]. The Gibbs free energy change (∆G) of the reduction reaction of Fe2O3 was
calculated to discuss its oxidizing capability with CO. ∆G is a measure of the thermodynamic driving
force that motivates the reaction process. Figure 3 presents the standard Gibbs free energy changes for
all possible reactions between CO and iron oxide of different stable phases under various temperatures.
The results indicated that all of reactions are more favored at higher temperature due to more negative
values of Gibbs free energy, which is similar with the tendency of reactions between iron-based oxygen
carrier and CH4 in the literature in 2005 by Xin et al. [30]. The more negative the value of ∆G, the
more likely that the reaction towards positive will proceed. Moreover, it also confirmed that the
reactions between Fe-based oxygen carrier and CO became more difficult with decreasing oxidation
sates. Several conditions for the generation of CO2 via the reaction of iron based oxygen carrier with
CO are as follows:

3Fe2O3 + CO→ 2Fe3O4 + CO2 (4)

Fe2O3 + CO→ 2FeO + CO2 (5)

Fe2O3 + 3CO→ 2Fe + 3CO2 (6)

Fe3O4 + CO→ 3FeO + CO2 (7)

Fe3O4 + 4CO→ 3Fe + 4CO2 (8)

FeO + CO→ Fe + CO2 (9)
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2.5. Theoretical Method

Fe2O3(001) is one of the dominant growth faces of the natural α-Fe2O3; five atomic layers of
Fe2O3(001) were modeled and supported on four matching atomic layers of Al2O3(001) to simulate
the Fe2O3/Al2O3 system. Then, the reduced Fe2O3/Al2O3 was modeled by gradually removing the
O atom on the top layer. The stable configurations of the pure and reduced Fe2O3/Al2O3 supported
slabs are shown in Figure 4. Based on these optimized surfaces, CO adsorption, oxidation, and
decomposition reactions were investigated.
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Figure 4. The stable configurations of the pure Fe2O3/Al2O3 slab and a series of the reduced
Fe2O3/Al2O3 slabs.

All calculations were performed using DFT with the generalized gradient approximation
(GGA) [31] of Perdew, Burke, and Ernzerhof (PBE) [32] to realize the exchange correlation potential [33].
The electronic wave functions were expanded in a plane-wave basis set with a cut-off energy of
350 eV in all calculations, and the convergence criteria was set at the medium level. All reactants,
products, intermediates, and transition states were completely optimized, and were confirmed to be
the local minimum energy by frequency analysis. Optimization of the energy, displacement, and force
convergence was used as a criterion. The convergence valves were 2.0 × 10−5 Ha/atom, 5.0 × 10−3 Å,
and 4.0 × 10−3 Ha/Å, respectively. The binding energies (EB) for the studied interaction systems were
calculated by using the following equation:

EB = E(CO−OC)− E(OC)− E(CO) (10)

where E(OC) is the energy of the isolated oxygen carrier, E(CO) is the energy of an isolated CO molecule,
and E(CO–OC) is the total energy of the CO interacting with the Fe2O3 system under consideration.
The transition state of the CO oxidation was searched using the complete linear/quadratic synchronous
transit (LST/QST) [34,35].

3. Results and Discussion

3.1. Experimental Results in the Fluidized-Bed Reactor

Firstly, we focused on the performance of Fe2O3/Al2O3 for the CLC of CO in a fluidized bed
reactor for five redox cycles. The reduction efficiency of Fe2O3/Al2O3 in the AR was characterized
by analyzing the concentration of the outlet CO2. Figure 5a displays the CO2 concentration of the
fifth reduction period at different reaction temperatures. Because CO was introduced into the FR,
the reaction between Fe2O3/Al2O3 and CO made the concentration of CO2 rapidly increase and
reach 100% at 700 ◦C, 800 ◦C, and 900 ◦C. Then the concentration of CO2 declined quickly after the
Fe2O3/Al2O3 was reduced to a certain oxidation state, as the oxygen in the Fe2O3/Al2O3 particle was
gradually depleted with the CLC process. The results indicated that the oxygen carrier has a high
reactivity and can fully oxidize CO into CO2 at a certain reduction period, and that pure CO2 could be
captured by controlling the reaction time of the oxygen carrier in the FR. However, the concentration
of CO2 only reached 80% at 1000 ◦C, which may be attributed to the agglomeration of the oxygen
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carrier and the occurrence of less oxygen transfer during the reduction period, because less carbon
deposition happened in this case in comparison with the other cases.
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Except for the reduction efficiency, carbon deposition on the reduced Fe2O3/Al2O3 is another
important factor to characterize the behavior of the prepared Fe2O3/Al2O3. If carbon deposits on the
reduced Fe2O3/Al2O3, carbon will be brought into the AR, leading to the generation of CO2 in the
oxidation period [36]. Figure 5b shows the CO2 concentration for the fifth oxidation period in the AR
under different temperatures. As can be seen in Figure 5b, the most obvious carbon deposition happens
for the case at 700 ◦C, corresponding to the report that low temperature favors carbon deposition due
to the Boudouard reaction of CO during the CO CLC process [37].

We further calculated the conversion of Fe2O3/Al2O3 through the yield of CO2, which can be
measured by the concentration of CO2 and the rate of CO flow inlet into the reactor. The results
indicate that the conversions of oxygen carrier are 0.503, 0.571, 0.514, and 0.322 at 700 ◦C, 800 ◦C,
900 ◦C, and 1000 ◦C within the period of 0 to 44 s (as displayed in Figure 5a), which means that a large
number of Fe2O3 was reduced to FeO and Fe.

In order to analyze the carbon conversion and the amount of carbon deposition, the relative
fraction (fi) of CO and CO2 in the outlet gases were calculated using the following equation [38]:

fi =

∫ t
0 noutxidt∫ t

0 nout
(
xCO + xCO2

)
dt

(11)

where xi is the molar fraction of i indicated by the subscript in the outlet gases during the reduction
period, nout is molar flow rate of the outlet gases, and t is the reaction time. The carbon dioxide
yield (γCO2 ) was used to quantify the conversion from CO into CO2, which was calculated using the
following equation:

γCO2 =
fCO2

fCO + fCO2

(12)

where γCO2 = 1 denotes that all CO was completely converted into CO2.
Figure 6a shows the yield of CO2 as a function of temperature, where γCO2 first increased and then

declined with the increase of temperature, and the maximum value was obtained at 800 ◦C. This result
indicates that the oxygen carrier has the highest reactivity to oxidize CO into CO2 at a temperature of
around 800 ◦C. This trend means that there is an equilibrium selection between the favorable carbon
deposition under relatively lower temperatures (<800 ◦C) and the agglomeration of the oxygen carrier
at relatively higher temperatures (>800 ◦C). Figure 6b shows a decrease in the average amounts of
carbon deposition with a temperature increase from 700 ◦C to 1000 ◦C, corresponding to the fact that
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low temperature favors reactions for reducing CO into C [39,40]. Although carbon formation occurred
in the reduction period, the total amount of carbon deposited on the oxygen carrier was not more than
3% of the mole ratio of CO that is used in each experiment.Energies 2017, 10, 598 7 of 14 
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Further, long-term experiments were carried out to investigate the thermal stability of
Fe2O3/Al2O3 under the temperature of 800 ◦C. After 30 reducing/oxidizing reaction cycles, the
CO2 concentration could still reach 100% and keep for seconds, which confirmed that the Fe2O3/Al2O3

has a good reactivity and stability for CO oxidation, as shown in Figure 7a. Figure 7b shows that carbon
deposition increased slightly with reaction cycles, which implies that part of the active components
had been deactivated. Generally, carbon conversion at 800 ◦C in long-term experiments still keeps a
relatively high value, suggesting that Fe2O3/Al2O3 is suitable as an oxygen carrier for the CLC system.
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3.2. TGA Experiments

Moreover, the detailed behavior of the prepared Fe2O3/Al2O3 particle was detected in the TGA
apparatus at different reaction temperatures (700 ◦C, 800 ◦C, 900 ◦C, and 1000 ◦C). During the CLC
process, in an ideal case, the active component of Fe2O3 could be reduced by CO to different final
oxidation states, such as Fe3O4, FeO, and Fe, with the corresponding conversion χ of 0.11, 0.33, and
1, respectively. Figure 8 compares the TGA results under four different temperatures, where the
Fe2O3/Al2O3 particle shows the highest conversation at 800 ◦C and the lowest at 1000 ◦C due to the
agglomeration under high temperature reported by Bao et al. [41]. The TGA result corresponds to that
of the fluidized-bed experiments. Moreover, all the conversation curves suggest that the reduction of
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Fe2O3/Al2O3 under various temperatures experienced three distinct reaction stages. The first stage is
for the reduction of Fe2O3 into the oxidation state between Fe3O4 and FeO with the highest reaction
rate and shortest time occupied. The second stage is for further reduction into another oxidation state
lower than FeO with a lower reaction rate. Finally, the third stage is for deeper reduction of the OC,
but where the OC was not completely reduced into Fe. The same results were likewise obtained from
our previous work [42]. In short, deeper reduction degrees show lower reactivity. In addition, the
reaction between Fe2O3/Al2O3 and CO shows the highest efficiency under 800 ◦C.
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Further, temperature-programming TGA experiments were performed to investigate the influence
of different CO concentrations and CO/CO2 concentrations on the equilibrium of the reaction between
CO and the OC during CLC processes. Figure 9a illustrates the results of a temperature-programming
TGA investigation into the reaction between Fe2O3/Al2O3 and CO at different concentrations (and
different CO/CO2 concentrations). With temperature increases from ambient temperature to 900 ◦C,
the CLC reaction between the OC and the CO under the conditions of different CO concentrations and
different CO/CO2 concentrations experiences two stages. The first stage corresponds to weight loss,
since Fe2O3 was reduced by CO gradually with the formation of CO2. After Fe2O3 was reduced to a
certain reduction state, more Fe atoms appeared on the surface of the reduced Fe2O3, which could act as
active sites to catalyze the decomposition of CO, resulting in carbon deposition on the surface showing
a weight increase as the second stage. As could be seen in Figure 9, relatively lower CO concentration
favors the reduction of Fe2O3, while higher CO concentration leads to more obvious weight increase at
the second stage, where more carbon deposition happens on the surface of the reduced Fe2O3, leading
to obvious weight increase. These results can be attributed to a higher concentration of CO resulting in
quicker consumption of O atoms on the surface of Fe2O3/Al2O3, then more Fe atoms exposed on the
surface promoting the catalytic decomposition of CO, resulting in carbon deposition on the surface.
Figure 9b shows that a reasonable CO/CO2 ratio favors the conversion of Fe2O3/Al2O3 with less
carbon decomposition.

3.3. Characterization of the Oxygen Carrier

The BET test of the freshly prepared Fe2O3/Al2O3 particle shows a high specific surface area
(192.75 m2/g) compared to other oxygen carriers in previous studies [43,44]. However, the specific
surface area decreases to 113.76 m2/g, 96.68 m2/g, 76.35 m2/g, and 40.71 m2/g after use in a fluidized
bed for five cycles at 700 ◦C, 800 ◦C, 900 ◦C, and 1000 ◦C, respectively. These results correspond very
well to the analysis above that suggests that changes in the oxygen carrier reactivity and the CO2 yield
occur when the temperature increases.
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Figure 10 presents the XRD patterns for the fresh Fe2O3/Al2O3 and the used Fe2O3/Al2O3 after
five redox reaction cycles in the fluidized bed reactor. As can be seen, the reflections of Fe2O3 and Al2O3

in the fresh oxygen carrier are weak and broad. Both the characteristic peaks of the oxygen carrier
became intensified and narrow after reacting with CO in the fluidized bed reactor. This illustrates
that the lattice size of the crystals in the oxygen carrier was increased. Further, the characteristic
peaks of Fe3O4 and FeO were detected in the used oxygen carriers, which indicated that most of the
Fe2O3 was reduced to FeO and Fe3O4. In addition, the FeAl2O4 was also detected in XRD patterns.
Hafizi et al. [45] also found that FeAl2O4 was generated in their oxygen carrier of Fe/Ca/Al2O3

prepared by the sequential impregnation method. Therefore, this irreversible reaction between active
components and inert carriers is one of the problems that needs to be addressed during the CLC
process [44].
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The morphologies of the fresh Fe2O3/Al2O3 and the used Fe2O3/Al2O3 after 5 and 30
oxidation-reduction cycles under 800 ◦C in a fluidized-bed reactor were analyzed using SEM, as
shown in Figure 11. In Figure 11a, the image of the fresh Fe2O3/Al2O3 has a dense surface and the
grains are regular. However, the images of the used Fe2O3/Al2O3 for the 5th and 30th cycles had many
morphological changes, which became coarser and more porous, as shown in Figure 11b,c. The SEM
images indicate that the oxygen carrier had not agglomerated in any obvious way after 30 cycles.Energies 2017, 10, 598 10 of 14 
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3.4. The Mechanism of CO CLC on Fe2O3/Al2O3

Further, the internal association between the reactivity and the gradually changed structure
(and property) of the reduced Fe2O3/Al2O3, as well as the synergetic effect of Al2O3 on the active
component (the pure and the reduced Fe2O3) were discussed by investigating the electronic property
of the Fe2O3/Al2O3 layer structure, and the mechanisms of adsorption, oxidation, and decomposition
of CO on the pure Fe2O3/Al2O3 and the reduced Fe2O3/Al2O3 particle.

Figure 12 depicts the electron density difference for the stable Fe2O3/Al2O3 slab. According to
Figures 4 and 12, it can be observed that a hybrid occurs at the interface between Fe2O3 and Al2O3,
leading to a longer Fe-O bond (an average value of 0.211 nm) at the interface than that in the bulk
phase (an average value of 0.202 nm), and the newly formed Al–O bond at the interface is of 0.194 nm,
slightly shorter than the bulk Al–O bond (0.191 nm). The newly formed Al–O shows a symmetric
electron density different from that of the Al–O of the Al2O3 slab, showing an obvious electronic
interaction at the interface. Figure 12b depicts the total density of state (DOS) for the O atom on the
bottom layer of Fe2O3, as well as that for the O and Al atoms on the top layer of Al2O3, which shows
an obvious energy overlap between the O atom on the bottom layer of Fe2O3 and the Al atom on the
top layer of Al2O3, leading to a strong hybrid. The electron population around the O atom on the
bottom layer of Fe2O3 is similar to that of the O atom on the top layer of Al2O3. This result confirms
the stability of such supported Fe2O3/Al2O3 systems and the formation of FeAl2O4 species analyzed
above by XRD.

Based on the stable Fe2O3/Al2O3, we want to go deeper into the mechanisms of adsorption,
oxidation, and decomposition of CO during CLC. Because CO prefers to interact with the Fe atom
of Fe2O3 through the C atom [37], the interaction between CO and the α-Fe2O3(001) surface was
done by approaching the CO molecule to the Fe atom to do geometric optimization. Then, the
adsorption energy was calculated according to Equation (10). Figure 11 compares the adsorption
energy of CO on the pure and reduced Fe2O3/Al2O3 (seen in Figure 4), in comparison with the
adsorption energy of CO on the pure and reduced Fe2O3 in our previous work [46]. The support
that Al2O3 promotes in the interaction between CO and the surfaces can be observed in Figure 13,
with the adsorption energy of –1.51 eV, –1.61 eV, –1.97 eV, –2.13 eV, –2.16 eV, and –2.25 eV for the
CO-Fe2O3/Al2O3, CO-Fe2O2.86/Al2O3, CO-Fe2O2.57/Al2O3, CO-Fe2O2.29/Al2O3, CO-Fe2O2/Al2O3,
and CO-Fe2O1.7/Al2O3 systems, respectively. Generally, deeper reduction shows stronger interaction,
which corresponds to the case between CO and the surface without the support [46].
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After the adsorption of CO on the OC surface, CO reacts to lattice oxygen on the surface, breaking
O–Fe bonds and forming oxygen vacancy, and thus leading to the gradually reduced process of
Fe2O3/Al2O3. Therefore, the corresponding oxygen vacancy formation energy (Evac) could be used
to characterize the reduction in the reactivity of the surface. The Evac was calculated using the
following equation:

Evac =
EO2

2
+ Ek−1

slab,r − Ek
slab,r (13)

where k refers to the number of O atoms, Eslab,r is the total energy of the optimized slab, and EO2 is the
total energy of the O2 molecule. Evac is the obtained energy for the O vacancy formation.

Figure 14 illustrates the energy profiles between Evac and the theoretical valence of the Fe atom of
the pure and reduced Fe2O3/Al2O3, in comparison with those for the pure and reduced Fe2O3(001)
with the supported Al2O3 [47] range from 3.25 eV to 3.61 eV. However, Evac from the pure and reduced
Fe2O3/Al2O3 into the Fe2O2/Al2O3 range is between 2.86 eV to 3.30 eV, which is lower than those
on the un-supported surfaces, respectively. The results suggest that Al2O3 has a synergetic effect in
improving the oxygen transfer capacity from the bulk of the iron-based oxygen to the surface during
the CLC of CO. The improvement in the reduction property of iron-based oxygen is due to the hybrid
between O and Al at the interface.

As the experimental analysis results and our previous works [48,49] show, after the reduction
of Fe2O3 into the lower oxidation state around FeO, a more metallic Fe atomic site appears on the
surface, which can act as an active site for catalyzed CO decomposition. Herein, we compared the
catalytic CO decomposition by Fe2O2/Al2O3 and Fe2O1.7/Al2O3, which is compared to the catalytic
CO decomposition by Fe2O2 and Fe2O1.7. The reactions initiated from the stable adsorption of CO on
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the surface of the OCs, and the stable decomposition structure of CO on the surface of the OC was
set as the final state. The results indicate that the decompositions of CO catalyzed by Fe2O2/Al2O3

and Fe2O1.7/Al2O3 pass through transition states with an energy barrier (Ea) of 3.89 eV and 3.16 eV,
respectively. Analogously, CO decomposition on Fe2O2 and Fe2O1.7 had to pass through transition
states with an Ea of 4.27 eV and 3.38 eV, respectively. These results imply that the carbon deposition rate
increases with the reduction of the OC, but no evidence could verify that Al2O3 favors the prevention
of carbon deposition on the reduced Fe2O3/Al2O3.
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4. Conclusions

The reactivity, thermal stability, redox properties, and structural evolution of Fe2O3/Al2O3

were investigated in detail by multicycle tests in a fluidized bed and thermogravimetric analyzer at
different reaction temperatures ranging from 700 to 1000 ◦C. The carbon deposition occurred during
the reduction period and showed a declined tendency with increasing temperature. However, the
oxygen carrier showed a high reactivity and did not show an obvious decrease even after 30 cycles
at 800 ◦C. Temperature-programming TGA experiments suggested that a reasonable CO/CO2 ratio
favors the conversion of Fe2O3/Al2O3, thus avoiding high carbon decomposition. The SEM images
and XRD spectrum indicated that the structure of oxygen carriers used at different temperatures had
no obvious agglomeration except at 1000 ◦C. Further, density functional theory calculations showed
that a hybrid occurs at the interface between Fe2O3 and Al2O3, with obvious electronic interaction at
the interface. The electronic synergy of Al2O3 promotes the interaction between CO and the surfaces,
hence favoring oxygen transfer from the bulk of iron-based oxygen to the surface during the CLC of
CO. However, no evidence could verify that Al2O3 favors the prevention of carbon deposition on the
reduced Fe2O3/Al2O3. These results may provide a fundamental understanding of the relationship
between the behavior of Fe2O3/Al2O3 and CO.
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