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Abstract: Modular multilevel converters (MMCs) have become one of the most attractive topologies
for high-voltage and high-power applications. A double-carrier phase disposition pulse width
modulation (DCPDPWM) method for MMCs is proposed in this paper. Only double triangular
carriers with displacement angle are needed for DCPDPWM, one carrier for the upper arm and the
other for the lower arm. Then, the theoretical analysis of DCPDPWM for MMCs is presented by
using a double Fourier integral analysis method, and the Fourier series expression of phase voltage,
line-to-line voltage and circulating current are deduced. Moreover, the impact of carrier displacement
angle between the upper and lower arm on harmonic characteristics is revealed, and further the
optimum displacement angles are specified for the circulating current harmonics cancellation scheme
and output voltage harmonics minimization scheme. Finally, the proposed method and theoretical
analysis are verified by simulation and experimental results.

Keywords: modular multilevel converter; double-carrier phase-disposition pulse width modulation;
double Fourier integral analysis; harmonic characteristic; carrier displacement angle

1. Introduction

Nowadays, modular multilevel converters (MMCs) have become one of the most attractive
multilevel converter topologies available for high-voltage and high-power applications such
as voltage-sourced converter high-voltage direct current (VSC-HVDC) transmission [1–6], static
synchronous compensators (STATCOMs) [7], unified power flow controllers (UPFCs) [8], active power
filters (APFs) [9], medium voltage motor drives [10], integration of renewable energy sources into
the electrical grid [11–13] and battery energy storage systems [14,15]. Compared to other multilevel
converter topologies, the salient features of MMC include: high degree of modularity, high efficiency,
superior harmonic performance, high reliability and absence of dc-link capacitors [5].

Many academic papers have focused on modeling [16–19], control [20–24], and modulation
techniques [25–41] for MMCs. The multilevel converter pulse width modulation technique is one
of the key technologies for MMCs as it affects the harmonic characteristics, voltage balancing and
system efficiency. Various pulse width modulation techniques have been applied for MMCs, and
each technique has advantages and drawbacks [25,26]. The selective harmonic elimination-pulse
width modulation (SHE-PWM) method can provide good harmonic features with low switching
frequency of sub-modules (SMs). However, the calculation of angles increases significantly as the
number of output voltage levels increases [27–29]. The space vector modulation (SVM) method can
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provide more flexibility to optimize switching waveforms. However, when the number of voltage
levels increases, the complexity of the algorithm for SVM grows exponentially [4]. In [30], a simplified
SVM scheme was proposed for MMCs, which reduces the computation demands and can be used
for any level MMC. The main advantage of the nearest level modulation (NLM) method is its simple
implementation. However, the NLM method generates poor quality waveforms with small numbers
of SMs [31,32]. The application scope of NLM is extended by introducing one SM operating in the
PWM mode [33,34]. The phase-shifted carrier pulse-width modulation (PSCPWM) method achieves
even power distribution among the SMs [35,36]. However, dedicated capacitor voltage balancing
controllers for each SM are mandatory, which reduces the harmonic performance of the output
voltage. Compared with PSCPWM, the phase-disposition pulse width modulation (PDPWM) method
has superior harmonic characteristics by placing significant harmonic energy into the first carrier
component in the phase voltage and relying upon the elimination of this component when the
line-to-line voltages are created [25]. The main drawback of the PDPWM is the uneven loss distribution
among the SMs, which can be solved by the voltage balancing method based on sorting [37–40]. In [41],
an improved PDPWM method using a single carrier was proposed for MMCs, which reduces the
control hardware requirement. However, the upper arm and lower arm use the same carrier, and the
impact of the carrier displacement angle between the upper arm carrier and the lower arm carrier
on the harmonic characteristics has not been considered. The circulating current and output voltage
for MMCs are determined by the interactions between the upper arm voltage and the lower arm
voltage [42]. Therefore, the carrier for the lower arm and the carrier for the upper arm need to be
analyzed separately with an interleaved displacement angle. The displacement angle will influence
the high-frequency interactions between the upper arm and lower arm, and further affect the harmonic
characteristics of MMCs [43].

A double-carrier phase-disposition pulse width modulation (DCPDPWM) method for MMC
is proposed in this paper. Only double triangular carriers with displacement angle are needed for
DCPDPWM, one carrier for the upper arm and the other for the lower arm. The theoretical analysis
of DCPDPWM for MMC is presented based on double Fourier integral analysis method, and the
Fourier series expression of phase voltage, line-to-line voltage and circulating current are deduced.
Moreover, the impact of carrier displacement angle between the upper and lower arms on harmonic
characteristics is revealed, and the optimum displacement angles are specified for the circulating
current harmonics cancellation scheme and output voltage harmonics minimization scheme.

The paper is organized as follows: Section 2 introduces the topology and mathematical model
of MMC. Section 3 proposes the DCPDPWM method for MMC. Section 4 presents the theoretical
analysis of DCPDPWM for MMC by using double Fourier integral analysis method, and the optimum
displacement angles are specified for the circulating current harmonics cancellation scheme and output
voltage harmonics minimization scheme. Sections 5 and 6 show the simulation and experimental
results, respectively. The conclusions are summarized in Section 7.

2. Topology and Mathematical Model of MMC

The schematic diagram of a three phase MMC is shown in Figure 1. The MMC comprises upper
and lower arms per phase-leg. Each arm consists of N series-connected, nominally identical SMs and a
series buffer inductor. The buffer inductors for the upper and lower arms can be chosen as coupled or
separate ones. The coupled inductor is adopted in this paper as it has lighter weight and smaller size
than two separate inductors [34,35]. The power loss of SMs and the resistances of the inductors are
ignored. Based on Kirchhoff’s voltage law, the following equations can be obtained:

Lp
dipj

dt
+ Mu

dinj

dt
=

Udc
2
− upj − uj (1)

Ln
dinj

dt
+ Mu

dipj

dt
=

Udc
2
− unj + uj (2)
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where Udc is the dc-link voltage. uj denotes the output voltage phase-j (j = a, b, c). upj and unj are the
output voltage of the upper and the lower arms, respectively. ipj and inj refer to the current of the upper
arm and the lower arm, respectively. Lp and Ln are the self-inductances of the coupling inductance for
the upper and lower arms, respectively. Mu is the mutual inductance, assuming the two inductors are
closely coupled and the leakage inductance can be ignored (i.e., Lp = Ln = Mu = L).
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Figure 1. Schematic diagram of three phase modular multilevel converter (MMC). SM: sub-module.

According to Kirchhoff’s current law, the upper and lower arm current of phase-j can be
expressed as:

ipj = icj +
ij

2
(3)

inj = icj −
ij

2
(4)

where ij and icj are the output current and circulating current of phase-j, respectively.
Combining (1)–(4), the output voltage and circulating current of phase-j can be derived as:

uj =
1
2
(
unj − upj

)
(5)

icj =
1
2
(
ipj + inj

)
(6)

Combining (1), (2) with (6), the following equation can be obtained as:

4L
dicj

dt
= Udc − upj − unj (7)

According to (7), the circulating current of phase-j can be calculated as:

icj = Icj +

t∫
0

Udc − upj − unj

4L
dt (8)

where Icj is the dc component of circulation current icj.
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3. Implementation of Double-Carrier Phase Disposition Pulse Width Modulation for MMCs

The principle of DCPDPWM for MMCs is shown in Figure 2, where N is the number of SMs for
each arm (e.g., N = 10). Only two carriers with displacement angle are needed for DCPDPWM, one
carrier for the upper arm and the other for lower arm. Where θ is defined as the displacement angle
between the upper arm carrier and lower arm carrier, and the range of θ can be obtained as [0, 2π).
Note that the displacement angle θ between upper arm carrier and lower arm carrier has a significant
impact on the harmonic characteristics of MMC, which will be analyzed in Section 4.
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Figure 2. Principle of double-carrier phase-disposition pulse width modulation (DCPDPWM) for
MMCs: (a) integer portion of the upper arm modulation signal; (b) integer portion of the lower arm
modulation signal; (c) modulation of the remainder for the upper arm; (d) modulation of the remainder
for the lower arm; (e) pulse width modulation (PWM) signal of the upper arm; (f) PWM signal of the
lower arm; (g) number of on-state SMs for the upper arm; and (h) number of on-state SMs for the
lower arm.
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The reference voltages of the upper and lower arm for phase-j can be expressed as:

upj,re f =
Udc

2
[
1 + M cos

(
ωot + π + φj

)]
(9)

unj,re f =
Udc

2
[
1 + M cos

(
ωot + φj

)]
(10)

where M (0 < M ≤ 1) denotes the modulation index. ωo is the angular frequency of output voltage. φj
is the phase angle of phase-j (φa = 0, φb = –2π/3, φc = 2π/3).

The modulation signals of the upper and lower arms for phase-j can be obtained as:

upj,mod =
upj,re f

UC
=

N
2
[
1 + M cos

(
ωot + π + φj

)]
(11)

unj,mod =
unj,re f

UC
=

N
2
[
1 + M cos

(
ωot + φj

)]
(12)

where UC is the capacitor rated voltage of SMs. Given that UC = Udc/N. The range of modulation
signals are [−N/2, N/2].

As shown in Figure 2a,b, the integer portion of upper arm and low arm modulation signals can
be calculated as:

Npj,int = f loor
(upj,re f

UC

)
(13)

Nnj,int = f loor
(unj,re f

UC

)
(14)

In which the function floor(x) obtains the largest integer that is less than or equal to x. Npj,int, Nnj,int
are the integer portion of modulation signals, respectively.

As shown in Figure 2c,d, the remainder of reference voltage for upper and lower arms can be
derived as:

upj,rem = upj,re f −UC × Npj,int (15)

unj,rem = unj,re f −UC × Nnj,int (16)

where upj,rem and unj,rem are the remainder of reference voltage for upper arm and lower
arm, respectively.

The expressions of upper and the lower arms carriers can be obtained as:

upj,car =

{
UC
π (ωct− θ − 2kπ) , 2kπ ≤ ωct− θ < 2kπ + π

−UC
π (ωct− θ − 2kπ − 2π) , 2kπ + π ≤ ωct− θ < 2kπ + 2π

(17)

unj,car =

{
UC
π (ωct− 2kπ) , 2kπ ≤ ωct < 2kπ + π

−UC
π (ωct− 2kπ − 2π) , 2kπ + π ≤ ωct < 2kπ + 2π

(18)

where upj,car and unj,car are the carriers of upper and lower arms, respectively. k is the number of carrier
period (k ∈ [0, 1, ..., n]). ωc is the angular frequency of triangular carrier.

As shown in Figure 2e,f, the PWM signals of upper and lower arms can be obtained by comparing
the remainders with the carriers of upper and lower arms, respectively. The PWM signals of upper
and lower arms can be calculated as:

Npj,pwm =

{
1, upj,rem > upj,car
0, upj,rem ≤ upj,car

(19)

Nnj,pwm =

{
1, unj,rem > unj,car
0, unj,rem ≤ unj,car

(20)
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As shown in Figure 2g,h, the number of on-state SMs for each arm can be obtained by adding the
integer portion and corresponding PWM portion. The number of on-state SMs for upper and lower
arms can be obtained as:

Npj,dcm = Npj,int + Npj,pwm (21)

Nnj,dcm = Nnj,int + Nnj,pwm (22)

where Npj,dcm, Nnj,dcm are the number of on-state SMs for upper and lower arms, respectively.
The block diagram of double-carrier phase-disposition pulse width modulation with a capacitor

voltage balancing algorithm is shown in Figure 3. Firstly, the number of on-state SMs for each arm is
obtained through the DCPDPWM. Then, the selection of the SMs is performed based on the reducing
switching frequency (RSF) voltage balancing algorithm [44], which can achieve capacitor voltage
balancing of SMs and reduce the average device switching frequency. upj[i] (i = 1, 2, . . . , N) and unj[i]
are the capacitor voltages of SMs for the upper and lower arms, respectively.
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Figure 3. Block diagram of double-carrier phase-disposition pulse width modulation for MMCs.

As the circulating current control can influence several performance features of MMCs such as
suppressing the low frequency circulating current, increasing the switching frequency, reducing the
capacitor voltage ripple and so on, for simplicity, it is assumed that the circulating current control
method is not applied in the block diagram as shown in Figure 3. Note that this assumption is
reasonable as the circulating currents flowing through the three phase legs of the MMC caused by the
voltage differences among the dc-link voltage and three phase legs, which will not affect the output
voltages and currents [5,22]. Moreover, this paper mainly focuses on the high frequency (switching
frequency) circulating current caused by DCPDPWM method for MMCs, whereas the circulating
current control method focuses on low frequency circulating currents (mainly second-order harmonic
currents), which can be suppressed by adding a circulating current control method [36,43]. Thus
the circulating current control method affects significantly the low frequency harmonic circulating
current and has a relatively small influence on switching frequency circulating current. The switching
frequency harmonics caused by circulating current control method can be suppressed by selecting the
arm inductance properly [24].

4. Theoretical Analysis of DCPDPWM Method for MMCs

The double Fourier integral analysis method is the most well-known analytical method for
determining the harmonic components of a PWM method [45]. In this section, the theoretical
analysis of DCPDPWM for MMCs is presented using the double Fourier integral analysis method.
The Fourier series expression of phase voltage, line-to-line voltage and circulating current are deduced.
Moreover, the influence of carrier displacement angle between upper and lower arms on the harmonic
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characteristics is revealed, and the optimum displacement angles are specified for the circulating
current harmonics cancellation scheme and output voltage harmonics minimization scheme.

4.1. Influence of the Carrier Displacement Angle on Harmonic Characteristic of Output Voltage and Circulating
Current for MMC

Note that the following harmonics analysis focuses on the switching harmonics produced by
DCPDPWM, while the low-frequency harmonics (e.g., second-order harmonic for circulating current)
caused by the energy oscillation between the upper arm and lower arm are not included.

Assuming N is even, and the range of modulation index M can be obtained as [0, 1]. For simplicity,
it is assumed that the capacitance of each submodule is large enough and all the capacitor voltages
of SMs are naturally balanced (i.e., UC = Udc/N), so that the capacitor voltage ripple can be ignored.
Note that this assumption is reasonable as the capacitor voltage ripple is generally a relatively small
portion comparing with the reference voltages of upper and lower arms [36,43].

The analytical technique for determining the spectral components of multilevel PWM method
proposed in [46,47] is applied for DCPDPWM. The phase voltage can be derived as follows (see
Appendix A):

uj =
MUdc

2 cos
(
ωot + φj

)
+ 8Udc

Nπ2

∞
∑

m=0

C0
2m+1 sin

[
(2m+1)θ

2

]
cos
[
(2m + 1)ωct + (2m+1)θ

2 − π
2

]
+ 4Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
2m+1 sin

[
(2m+1)θ

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot + φj

)
+ (2m+1)θ

2 − π
2

]

+ 2Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos(mθ)× cos

[
2mωct + (2n− 1)

(
ωot + φj

)
+ mθ

]
(23)

where m denotes the carrier index variable and n refers to the baseband index variable.
The line-to-line voltage can be calculated as:

uab = ua − ub =
√

3MUdc
2 cos

(
ωot + π

6
)

+ 8Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
2m+1 sin

( 2nπ
3
)

sin
[
(2m+1)θ

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot− π

3
)
+ (2m+1)θ

2

]

+ 4Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m sin

[
(2n−1)π

3

]
cos(mθ)× cos

[
2mωct + (2n− 1)

(
ωot− π

3
)
+ mθ + π

2
]

(24)

Substituting (23) and (24) into (7), the circulating current can be obtained as:

icj =
Idc
3 + 4Udc

NLπ2ωc

∞
∑

m=0

C0
(2m+1)2 cos

[
(2m+1)θ

2

]
× cos

[
(2m + 1)ωct + (2m+1)θ

2 + π
2

]
+ 2Udc

NLπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
(2m+1)((2m+1)ωc+2nωo)

cos
[
(2m+1)θ

2

]

× cos
[
(2m + 1)ωct + 2n

(
ωot + φj

)
+ (2m+1)θ

2 + π
2

]
+ Udc

NLπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m(2mωc+(2n−1)ωo)

sin(mθ)× cos
[
2mωct + (2n− 1)

(
ωot + φj

)
+ mθ + π

2
]

(25)

The magnitudes of carrier harmonic components and associated sideband harmonic components
for the phase voltage, line-to-line voltage, circulating current can be expressed as follows:

Uj,m,n =


Pm,n ×

∣∣∣sin (2m+1)θ
2

∣∣∣, i f ωj = (2m + 1)ωc, 2m + 1 ∈ {1, 3, . . .}

Pm,n ×
∣∣∣sin (2m+1)θ

2

∣∣∣, i f ωj = (2m + 1)ωc + 2nωo, 2m + 1 ∈ {1, 3, . . .}, 2n ∈ {−∞, . . . ,−2, 2, . . . , ∞}
Pm,n × |cos mθ|, i f ωj = 2mωc + (2n− 1)ωo, 2m ∈ {2, 4, . . .}, 2n− 1 ∈ {−∞, . . . ,−1, 1, . . . , ∞}

(26)
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Ull,m,n =



0, i f ωll = (2m + 1)ωc, 2m + 1 ∈ {1, 3, . . .}
2Pm,n ×

∣∣∣sin (2m+1)θ
2

∣∣∣, i f ωll = (2m + 1)ωc + 2nωo, 2m + 1 ∈ {1, 3, . . .}, 2n /∈ {0, 3, 6, . . .}
0, i f ωll = (2m + 1)ωc + 2nωo, 2m + 1 ∈ {1, 3, . . .}, 2n ∈ {3, 6, . . .}
2Pm,n × |cos mθ|, i f ωll = 2mωc + (2n− 1)ωo, 2m ∈ {2, 4, . . .}, 2n− 1 /∈ {0, 3, 6, . . .}
0, i f ωll = 2mωc + (2n− 1)ωo, 2m ∈ {2, 4, . . .}, 2n− 1 ∈ {0, 3, 6, . . .}

(27)

Icj,m,n =


Qm,n ×

∣∣∣cos (2m+1)θ
2

∣∣∣, i f ωcj = (2m + 1)ωc, 2m + 1 ∈ {1, 3, . . .}
Qm,n ×

∣∣∣cos (2m+1)θ
2

∣∣∣, i f ωcj = (2m + 1)ωc + 2nωo, 2m + 1 ∈ {1, 3, . . .}, 2n ∈ {−∞, · · · ,−2, 2, . . . , ∞}
Qm,n × |sin mθ|, i f ωcj = 2mωc + (2n− 1)ωo, 2m ∈ {2, 4, . . .}, 2n− 1 ∈ {−∞, . . . ,−1, 1, . . . , ∞}

(28)

where:

Pm,n =


8Udc

(2m+1)Nπ2 |C0|, i f ωj = (2m + 1)ωc, 2m + 1 ∈ {1, 3, . . .}
4Udc

(2m+1)Nπ2 |C1|, i f ωj = (2m + 1)ωc + 2nωo, 2m + 1 ∈ {1, 3, . . .}, 2n ∈ {−∞, · · · ,−2, 2, . . . , ∞}
Udc

mNπ |C2|, i f ωj = 2mωc + (2n− 1)ωo, 2m ∈ {2, 4, . . .}, 2n− 1 ∈ {−∞, . . . ,−1, 1, . . . , ∞}
(29)

Qm,n =


Pm,n

2Lωc(2m+1) , i f ωcj = (2m + 1)ωc, 2m + 1 ∈ {1, 3, . . .}
Pm,n

2Lωc [(2m+1)ωc+2nωo ]
, i f ωcj = (2m + 1)ωc + 2nωo, 2m + 1 ∈ {1, 3, . . .}, 2n ∈ {−∞, . . . ,−2, 2, . . . , ∞}

Pm,n
2Lωc [2mωc+(2n−1)ωo ]

, i f ωcj = 2mωc + (2n− 1)ωo, 2m ∈ {2, 4, . . .}, 2n− 1 ∈ {−∞, . . . ,−1, 1, . . . , ∞}
(30)

where Uj,m,n, Ull,m,n and Icj,m,n are the magnitudes of carrier harmonic components and associated
sideband harmonic components for the phase voltage, line-to-line voltage and circulating current,
respectively. ωj, ωll, and ωcj are the angular frequency of phase voltage, line-to-line voltage and
circulating current, respectively.

As shown in Equations (23)–(30), the phase voltage consists of a fundamental component, odd
carrier harmonic components, even sideband harmonic components of odd carrier groups, and odd
sideband harmonic components of even carrier groups. The carrier harmonic components and triple
sideband harmonic components are cancelled in the line-to-line voltage. The circulating current
consists of dc component, odd carrier harmonic components, even sideband harmonic components of
odd carrier groups, and odd sideband harmonic components of even carrier groups.

It can be seen that the magnitudes of carrier harmonic components and associated sideband
harmonic components for the phase voltage, line-to-line voltage and the circulating current are the
function of displacement angle θ, respectively. Figure 4 shows the magnitudes of the harmonic
components for the phase voltage and circulating current with different displacement angles. Only
the first four harmonic groups (m ≤ 4) are studied here due to the limitations of the paper. Where
P1,2n, P2,2n-1, P3,2n, P4,2n-1 and Q1,2n, Q2,2n-1, Q3,2n, Q4,2n-1 are the maximums of the first four harmonic
groups for phase voltage and circulating current, respectively.

It is found that the changing tendency of the magnitudes for harmonic components in the phase
voltage and circulating current are opposite. When the magnitudes of harmonic components for phase
voltage and line-to-line voltage are at their minima, the magnitudes of the harmonic components for
the circulating current are maximum, and vice versa. Therefore, the displacement angle θ should be
specified according to the specific industry application. When the number of SMs for each arm is
large, such as in HVDC applications, superior harmonics characteristics of the output voltage can be
achieved, so reducing the harmonics of the circulating current is the main problem. On the other hand,
when the number of SMs for each arm is small, such as in STATCOM and motor drive applications,
reducing the harmonics of the output voltage is preferred.
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4.2. Circulating Current Harmonics Cancellation Scheme for DCPDPWM Method

When displacement angle θ = π, the circulating current harmonics cancellation scheme for
DCPDPWM can be obtained. According to (23), the phase output voltage can be obtained as:

uj =
MUdc

2 cos
(
ωot + φj

)
+ 8Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos[(2m + 1)ωct]

+ 4Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
2m+1 cos

[
(2m + 1)ωct + 2n

(
ωot + φj

)]

+ 2Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2mωct + (2n− 1)

(
ωot + φj

)]
(31)

According to (24), the line-to-line voltage can be expressed as:

uab =
√

3MUdc
2 cos

(
ωot + π

6
)
+ 8Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
2m+1 sin

( 2nπ
3
)
× cos

[
(2m + 1)ωct + 2n

(
ωot− π

3
)
+ π

2
]

+ 4Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m sin

[
(2n−1)π

3

]
cos
[
2mωct + (2n− 1)

(
ωot− π

3
)
+ π

2
] (32)

According to (25), the circulating current can be derived as:

icj =
Idc
3

(33)

It can be seen that the magnitudes of the carrier harmonic components and associated sideband
harmonic components for the circulating current are zero, which means that the carrier harmonic
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components and associated sideband harmonic components of the circulating current caused by
DCPDPWM are completely cancelled out, leaving only the dc component. Therefore, the power loss
and arm current stress are decreased. However, the magnitudes of the carrier harmonic components
and sideband harmonic components for the phase voltage are at their maxima. The equivalent
switching frequency (frequency of the lowest harmonic group) is fdcm, where fdcm denotes the carrier
frequency of DCPDPWM.

4.3. Output Voltage Harmonics Minimization Scheme for the DCPDPWM Method

When carrier displacement angle θ = 0, the output voltage harmonics minimization scheme for
DCPDPWM can be obtained. According to (23), the phase output voltage can be derived as:

uj =
MUdc

2
cos
(
ωot + φj

)
+

2Udc
Nπ

∞

∑
m=1

∞

∑
n=−∞

C2

2m
cos
[
2mωct + (2n− 1)

(
ωot + φj

)]
(34)

According to (24), the line-to-line output voltage can be obtained as:

uab =
√

3MUdc
2 cos

(
ωot + π

6
)
+ 4Udc

Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m sin

[
(2n−1)π

3

]
× cos

[
2mωct + (2n− 1)

(
ωot− π

3
)
+ π

2
]

(35)

According to (25), the circulating current can be derived as:

icj =
Idc
3 + 4Udc

NLπ2ωc

∞
∑

m=0

∞
∑

k=1

C0
(2m+1)2 × cos

[
(2m + 1)ωct + π

2
]

+ 2Udc
NLπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
(2m+1)((2m+1)ωc+2nωo)

× cos
[
(2m + 1)ωct + 2n

(
ωot + φj

)
+ π

2
]

(36)

It can be seen that the odd carrier harmonic components and the even sideband harmonic
components of odd carrier groups for phase voltage are completely cancelled, leaving only the odd
sideband harmonic components of even carrier groups. The equivalent switching frequency of phase
voltage increases to 2 × fdcm, which means that the better harmonic characteristics can be achieved for
phase voltage and current. However, the magnitudes of odd carrier harmonic components and even
sideband harmonic components of odd carrier groups for circulating current are maximized, which
increases the current stress upon the power semiconductor devices and decreases the MMC efficiency.

When the carrier displacement angle θ = 0, the carrier for the upper arm and carrier for the lower
arm are the same, which means that only a single carrier is needed. Therefore, single carrier PDPWM is
a special kind of DCPDPWM. Comparing Equations (34)–(36) with Equations (20), (34) and (21) in [43],
it is found that when the equivalent switching frequency is the same (i.e., fdcm = N × fpsc, fpsc is the
carrier frequency of PSCPWM), the phase voltage and line-to-line voltage of DCPDPWM have the same
harmonic characteristics as PSCPWM, whereas the harmonics of the circulating current for DCPDPWM
is different from PSCPWM. The harmonics of circulating current for DCPDPWM consist of odd carrier
harmonics and odd sideband harmonics of even carrier groups, while the circulating current harmonics
of the PSCPWM method comprise the sideband harmonic components of carrier groups.

5. Simulation Results

In order to verify the validity of the DCPDPWM method and the theoretical analysis in this
paper, a MMC-based three phase inverter with ten SMs per arm was developed using PSIM software.
The simulation parameters are listed in Table 1.

Comparison can be made between the proposed DCPDPWM method and PSCPWM method
presented in [43] with circulating current harmonics cancellation scheme and output voltage harmonics
minimization scheme. Note that the carrier frequency of DCPDPWM fdcm = N × fpsc, so that the average
frequency of SMs for DCPDPWM method is basically equal to the PSCPWM method.
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Table 1. Parameters of the simulation.

Parameter Value

Number of SMs per arm N = 10
Frequency of reference voltage fo = 50 Hz

Buffer inductors Lp = Ln = Mu = 0.5 mH
Arm equivalent resistance 0.1 Ω

SMs capacitance C = 10 mF
DC-link voltage Udc = 10000 V

Modulation index M = 0.95
Carrier frequency of DCPDPWM fdcm = 4000 Hz

Carrier frequency of PSCPWM fpsc = 400 Hz
Load inductance Ld = 2 mH
Load resistance Rd = 80 Ω

5.1. Comparison between DCPDPWM and PSCPWM Methods with Circulating Current Harmonics
Cancellation Scheme

The comparison of simulation waveforms and harmonic spectra between the DCPDPWM and
PSCPWM for MMC with circulating current harmonics cancellation scheme are shown in Figures 5
and 6, respectively. As shown in these figures, the voltage levels of phase voltage for both the
PSCPWM and DCPDPWM methods are eleven. The equivalent switching frequency of phase voltage
for PSCPWM method is the same with DCPDPWM method (i.e., fequ = fdcm = N × fpsc = 4000 Hz).

It can be seen that the most significant harmonic for DCPDPWM is the first carrier harmonic
component, which can be cancelled in the line-to-line voltage. The triplen sideband harmonics in
the phase voltage for DCPDPWM are also cancelled in the line-to-line voltage. However, only the
triplen sideband harmonic components of the phase voltage are eliminated in the line-to-line voltage
for PSCPWM. The magnitudes of the sideband harmonic components of line-to-line voltage and phase
current for DCPDPWM method are lower than for PSCPWM, which means that the DCPDPWM can
achieve better harmonic performance than PSCPWM.

Moreover, it is found that the carrier harmonic components and associated sideband harmonic
components of circulating current caused by DCPDPWM are completely cancelled, whereas the
sideband harmonic components of circulating current caused by PSCPWM are also completely
cancelled, leaving only dc components and low frequency harmonics (mainly second-order harmonics).
Therefore, the circulating current harmonics for the PSCPWM method are similar to those of the
DCPDPWM method with the circulating current harmonics cancellation scheme. Note that the low
frequency harmonic components can be reduced by the circulating current control method. In order to
ensure that the harmonic characteristics are only affected by the modulation method, the circulating
current control method is not included in this paper. It can be concluded that the simulation results are
completely consistent with the theoretical analysis with the circulating current cancellation scheme for
the DCPDPWM method.

Note that only transitions caused by DCPDPWM and PSCPWM methods are considered in the
following analysis when the circulating current control method is not applied for MMC. However,
when the circulating current control method is applied for MMC, the transitions will be increased.

Comparison of the simulation results between the DCPDPWM and PSCPWM methods with
circulating harmonics cancellation scheme are shown in Table 2. It can be seen that the total switching
number per arm in 1 power grid period for PSCPWM and DCPDPWM are 80 and 79, respectively.
The total harmonic distortion (THD) of line-to-line voltage and phase current for DCPDPWM are
6.89% and 3.91%, respectively. The THD of line-to-line voltage and phase current for PSCPWM are
9.77% and 7.01%, respectively. It is found that when the total switching frequency is basically the
same, the DCPDPWM has better harmonic characteristics than PSCPWM with the circulating current
harmonics cancellation scheme.
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Figure 7 shows the THD of line-to-line voltage for DCPDPWM and PSCPWM for different
modulation indexes with the circulating current harmonics cancellation scheme. It can be seen that
DCPDPWM method has better line-to-line harmonic characteristics than the PSCPWM method in the
whole modulation index region.

Table 2. Comparison of simulation results between DCPDPWM and PSCPWM methods with the
circulating current harmonics cancellation scheme. THD: total harmonic distortion.

Modulation Methods DCPDPWM PSCPWM

THD of line-to-line output voltage (%) 6.89 9.77
THD of phase current (%) 3.91 7.01

Total switching number per arm (1 power grid period) 79 80
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Figure 5. Comparison of simulation waveforms between DCPDPWM and phase-shifted carrier
pulse-width modulation (PSCPWM) methods with the circulating current harmonics cancellation
scheme: (a) phase voltage of DCPDPWM; (b) phase voltage of PSCPWM; (c) line-to-line voltage of
DCPDPWM; (d) line-to-line voltage of PSCPWM; (e) phase current of DCPDPWM; (f) phase current of
PSCPWM; (g) circulating current of PDPWM; and (h) circulating current of PSCPWM.
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Figure 6. Comparison of harmonic spectra between DCPDPWM and PSCPWM methods with the
circulating current harmonics cancellation scheme: (a) phase voltage of DCPDPWM; (b) phase
voltage of PSCPWM; (c) line-to-line voltage of DCPDPWM; (d) line-to-line voltage of PSCPWM;
(e) phase current of DCPDPWM; (f) phase current of PSCPWM; (g) circulating current of PDPWM; and
(h) circulating current of PSCPWM.Energies 2017, 10, 581 14 of 23 
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Figure 7. THD of line-to-line voltage for DCPDPWM and PSCPWM methods in different modulation
index with circulating current harmonics cancellation scheme.
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5.2. Comparison between DCPDPWM and PSCPWM Method with Output Voltage Harmonics
Minimization Scheme

The comparison of simulation waveforms and harmonic spectra between the DCPDPWM and
PSCPWM methods for MMC with output voltage harmonics minimization scheme are presented in
Figures 8 and 9, respectively.

It can be seen that the voltage levels of phase voltage for both the PSCPWM and DCPDPWM
methods rise to twenty-one. The equivalent switching frequency increases to fequ = 2fdcm = 2N
× fpsc = 8000 Hz. It is found that the odd carrier harmonic components, and even sideband
harmonic components of odd carrier groups in the phase voltage are completely eliminated in the
line-to-line voltage for DCPDPWM, leaving only the even sideband harmonics of odd carrier groups.
The sideband harmonic components of odd carrier groups in the phase voltage are cancelled for
PSCPWM, leaving also the even sideband harmonics of odd carrier groups. It is found that the phase
voltage, line-to-line voltage and phase current for PSCPWM and DCPDPWM methods have the same
harmonic performance.
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Figure 8. Comparison of simulation waveforms between the DCPDPWM and PSCPWM methods with
output voltage harmonics minimization scheme: (a) phase voltage of DCPDPWM; (b) phase voltage of
PSCPWM; (c) line-to-line voltage of DCPDPWM; (d) line-to-line voltage of PSCPWM; (e) phase current
of DCPDPWM; (f) phase current of PSCPWM; (g) circulating current of PDPWM; and (h) circulating
current of PSCPWM.
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Figure 9. Comparison of harmonic spectra between DCPDPWM and PSCPWM methods with output
voltage harmonics minimization scheme: (a) phase voltage of DCPDPWM; (b) phase voltage of
PSCPWM; (c) line-to-line voltage of DCPDPWM; (d) line-to-line voltage of PSCPWM; (e) phase current
of DCPDPWM; (f) phase current of PSCPWM; (g) circulating current of PDPWM; (h) circulating current
of PSCPWM.

It can be seen that the harmonics of circulating currents between DCPDPWM and PSCPWM
are different. The switching harmonics of circulating current for DCPDPWM includes odd carrier
harmonic components and odd sideband harmonic components of even carrier groups. The main
switching harmonics of DCPDWPM in the circulating current is the first carrier harmonic, while the
switching harmonics of circulating current for PSCPWM consist of the sideband harmonics of carrier
groups. It can be concluded that the simulation results completely agree with the theoretical analysis
when applying the output voltage harmonics minimization scheme for DCPDPWM method.

Comparison of simulation results between the DCPDPWM and PSCPWM methods with output
voltage harmonics minimization scheme are shown in Table 3. It can be seen that when the total
switching number per arm in 1 power grid period are basically the same, the THD of line-to-line output
voltage and phase current for both the DCPDPWM and PSCPWM are 4.78% and 2.44%, respectively.

Figure 10 shows the THD of line-to-line voltage for DCPDPWM and PSCPWM methods in
different modulation index with output voltage harmonics minimization scheme. It can be seen that
DCPDPWM method has the same line-to-line voltage harmonic characteristics with PSCPWM method
in the whole modulation index region.
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Table 3. Comparison of simulation results between DCPDPWM and PSCPWM method with the output
voltage harmonics minimization scheme.

Modulation Methods DCPDPWM PSCPWM

THD of line-to-line output voltage (%) 4.78 4.78
THD of phase current (%) 2.44 2.44

Total number of switching per arm (1 power grid period) 79 80
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6. Experimental Verification

In order to further verify the proposed method and theoretical analysis, a three-phase MMC
laboratory prototype was built. The parameters of the prototype are shown in Table 4. The dc-link
voltage is 400 V, and the number of SMs per arm is N = 4. A coupled inductor is adopted as the arm
inductor, and a resistance-inductor load is used.

Table 4. Parameters of Prototype.

Parameter Value

DC-link voltage Udc = 400 V
Number of SMs per arm N = 4

Frequency of reference voltage fo = 50 Hz
Arm inductor Lp = Ln = Mu = 1 mH

SMs capacitance C = 2.2 mF
Modulation index M = 0.9

Carrier frequency of DCPDPWM fdcm = 4000 Hz
Carrier frequency of PSCPWM fpsc = 1000 Hz

Load inductance Ld = 2 mH
Load resistance Rd = 20 Ω

Figures 11 and 12 show the experimental waveforms and harmonic spectra of DCPDPWM and
PSCPWM with circulating current harmonics cancellation scheme, respectively. It is found that the
switching harmonics of the circulating current are basically cancelled for DCPDPWM and PSCPWM
methods. It can be seen that voltage level number of phase voltage is five, and the equivalent
switching frequency of phase voltage for both the DCPDPWM and PSCPWM methods is 4000 Hz
(fequ = fdcm = N × fpsc). For the DCPDPWM method, the main harmonic component of phase voltage is
the first carrier harmonic component, which is eliminated in the line-to-line voltage. The harmonic
components magnitudes in the line-to-line voltage and phase current for DCPDPWM are lower than
PSCPWM with circulating current harmonics cancellation scheme.

From Figure 12, it can be seen that the THD of line-to-line voltage and phase current for
DCPDPWM are 18.70% and 4.55%, respectively. The THD of line-to-line voltage and phase current
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for PSCPWM are 30.30% and 9.89%, respectively. The experimental results show that DCPDPWM
has better harmonic characteristics than PSCPWM with the circulating current harmonics cancellation
scheme. It is found that the experimental results match well with the theoretical analysis and
simulation results.

Figures 13 and 14 present the experimental waveforms and harmonic spectra of DCPDPWM and
PSCPWM with output voltage harmonics minimization scheme, respectively. It can be seen that the
voltage level number of the phase voltage increases to nine for both the DCPDPWM and PSCPWM
methods, which means that the lower THD of phase voltage and line-to-line voltage can be achieved.
It is found that the harmonic components of the first carrier groups are basically cancelled in the
phase voltage, and the equivalent switching frequency of phase voltage for DCPDPWM and PSCPWM
methods rises to 8000 Hz (fequ = 2 fdcm = 2 × N × fpsc).
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current harmonics cancellation scheme: (a) phase voltage and circulating current of DCPDPWM;
(b) phase voltage and circulating current of PSCPWM; (c) line-to-line voltage and phase current of
DCPDPWM; and (d) line-to-line voltage and phase current of PSCPWM.
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Figure 12. Harmonic spectra of experimental waveforms for the DCPDPWM and PSCPWM methods
with circulating current harmonics cancellation scheme: (a) phase voltage of DCPDPWM; (b) phase
voltage of PSCPWM; (c) line-to-line voltage of DCPDPWM; (d) line-to-line voltage of PSCPWM;
(e) phase current of DCPDPWM; (f) phase current of PSCPWM; (g) circulating current of PDPWM; and
(h) circulating current of PSCPWM.
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Figure 13. Experimental waveforms of DCPDPWM method and PSCPWM method with output voltage
harmonics minimization scheme: (a) phase voltage and circulating current of DCPDPWM; (b) phase
voltage and circulating current of PSCPWM; (c) line-to-line voltage and phase current of DCPDPWM;
(d) line-to-line voltage and phase current of PSCPWM.

Meanwhile, it can be seen that there are many switching harmonics in the circulating current,
which causes high switching ripples in the waveform of circulating current. The circulating current
harmonics for DCPDPWM are different with PSCPWM. The main switching harmonic component
in the circulating current of DCPDPWM is the first carrier harmonic component, while the switching
harmonics in the circulating current for PSCPWM are the sideband harmonic of the carrier groups.
From Figure 14, it can be seen that the THD of line-to-line voltage and phase current for DCPDPWM
are 13.27% and 2.93%, respectively. The THD of line-to-line voltage and phase current for PSCPWM
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are 13.34% and 2.98%, respectively. The experimental results show that DCPDPWM has the same
harmonic characteristics than PSCPWM with the output voltage harmonics minimization scheme.
The experimental results agree with the theoretical analysis and simulation results.
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Figure 14. Harmonic spectra of experimental results for DCPDPWM and PSCPWM methods with
output voltage harmonics minimization scheme: (a) phase voltage of DCPDPWM; (b) phase voltage of
PSCPWM; (c) line-to-line voltage of DCPDPWM; (d) line-to-line voltage of PSCPWM; (e) phase current
of DCPDPWM; (f) phase current of PSCPWM; (g) circulating current of PDPWM; and (h) circulating
current of PSCPWM.

7. Conclusions

This paper has proposed a DCPDPWM method for MMCs. Only double triangular carriers with
displacement angle are needed, one carrier for the lower arm, and the other carrier for the upper arm.
The theoretical analysis of DCPDPWM for MMCs is presented by using a double Fourier integral
analysis method. The Fourier series expression of phase voltage, line-to-line voltage and circulating
current are deduced, and further the influence of carrier displacement angle between the upper and
lower arms on the harmonic characteristics of the output voltage and circulating current is revealed.
Furthermore, the optimum displacement angles are specified for the circulating current harmonics
cancellation scheme and the output voltage harmonics minimization scheme. The proposed method
and theoretical analysis are verified by simulations and experimental results.

It can be concluded that when applying the circulating current harmonics cancellation scheme,
the carrier and associated sideband harmonics of the circulating current caused by DCPDPWM are
completely cancelled, leaving only the dc component and low frequency components, which is similar
to the circulating current harmonic characteristics for PSCPWM. The DCPDPWM method has better
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line-to-line voltage harmonic characteristics than the PSCPWM method with the same equivalent
switching frequency. When applying the output voltage harmonics minimization scheme, the odd
carrier harmonics and even sideband harmonics of odd carrier groups for phase voltage are eliminated,
and the phase voltage and line-to-line voltage of DCPDPWM have the same harmonic characteristics
as PSCPWM. However, the magnitudes of the odd carrier harmonics and odd sideband harmonics
of even carrier groups for circulating current are at a maximum. The harmonic circulating current
characteristics between the PSCPWM and DCPDPWM methods are different. The main harmonic
caused by DCPDWPM in the circulating current is the first carrier harmonic, while the circulating
current harmonics caused by PSCPWM consist of the carrier group sideband harmonics.
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Appendix A

The lower arm voltage can be obtained as:

unj(t) =
Udc

2 + MUdc
2 cos

(
ωot + φj

)
+ 8Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos[(2m + 1)ωct]

+ 4Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)ωct + 2n

(
ωot + φj

)]

+ 2Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2mωct + (2n− 1)

(
ωot + φj

)]
(A1)

where m denotes the carrier index variable and n refers to the baseband index variable.
The coefficients C0, C1, C2 are as follow:

C0 =
∞
∑

k=0
cos(kπ)J2k+1

[
(2m+1)NπM

2

]
×
{

1
(2k+1)

[
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2
)
+ 2

N
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(
(2k + 1) cos

(
2h

NM

)−1
)

cos(hπ)

]} (A2)

C1 =
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∑

k=0
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(A3)

C2 = J2n−1(mNπM) cos((n− 1)π) (A4)

where Jn(λ) represents the Bessel coefficient of order n and argument λ.
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The upper arm voltage can be derived as:

upj =
Udc

2 + MUdc
2 cos

(
ωot + π + φj

)
+ 8Udc

Nπ2

∞
∑

m=0

C0
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+ 4Udc
Nπ2

∞
∑
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∞
∑

n = −∞
(n 6= 0)
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2m+1 cos

[
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(
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Nπ

∞
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∞
∑

n=−∞

C2
2m cos

[
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(
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)]
(A5)

Substituting (A1) and (A5) into (8), the phase voltage can be derived as:

uj =
MUdc

2 cos
(
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)
+ 8Udc

Nπ2

∞
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2m+1 sin

[
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2
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