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Abstract: The economic and environmental benefits brought by electric vehicles (EVs) cannot be
fully delivered unless these vehicles are fully or partially charged by renewable energy sources
(RES) such as photovoltaic system (PVS). Nevertheless, the EV charging management problem
of a parking station integrated with RES is challenging due to the uncertain nature of local RES
generation. This paper aims to address these difficulties by deploying an energy storage system
(ESS) in parking stations and exploiting the charging and discharging scheduling of EVs to achieve
better utilization of intermittent PVS for EV charging. A real-time charging optimization scheme
is also formulated, using mixed-integer linear programming (MILP) to coordinate the charging or
discharging power of EVs along with the power dispatches of power grid and ESS based on the
vehicles’ charging or discharging priorities and electricity price preferences. Extensive simulations
show that the proposed approach not only maximizes the satisfaction of EV owners in terms of
fulfilling all charging and discharging requests, but also minimizes the overall operational cost of the
parking station by prioritizing the utilization of energy from PVS, ESS, and scheduling of every EV’s
charging and discharging.

Keywords: energy storage system; electric vehicle; mixed-integer linear programming (MILP);
photovoltaic system; renewable energy source

1. Introduction

The depletion of fossil fuels and increasing greenhouse gas emissions associated with their wide
usage, especially in the transportation sector, have received growing attention from the public in recent
decades. Extensive use of electric vehicles (EVs) instead of traditional internal combustion engine
vehicles in the transportation sector is envisioned as one promising solution to mitigate the crisis,
motivated by the lower operational costs and lower gas emissions of EVs. Nevertheless, the integration
of large-scale EVs into existing power system is challenging due to the massive electricity demands of
these emerging loads. Uncoordinated charging of large EV fleets in venues such as parking stations
tends to impose significant risk on the power system in terms of transmission and/or distribution
system overloading, power losses, and voltage deviations [1].

To alleviate the technical drawbacks created by the high penetration level of EVs in the power
system, extensive research was conducted by leveraging the controllable charging rate and flexible
load characteristic of EVs. Numerous coordinated charging schemes were proposed in the literature
aiming to level, delay, and regulate large-scale EV charging without compromising the stability of
the power system [2–4]. A proper EV charging coordination scheme can benefit the utility further by
providing demand response or ancillary services in the case of a system emergency, as these aggregated
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charging loads create an enormous demand with a notable impact on power grids [5–7]. Most of these
previous works share a common pitfall by considering the electricity used for EV charging as supplied
from the grid. The main goal of introducing EVs as a solution to reduce air pollution is therefore
diminished because the carbon footprint produced from the transportation sector is shifted to the
power generation sector. Some state-of-the-art studies [8,9] advocated the necessity of integrating
renewable energy sources (RESs) and EVs into a smart grid in order to maximize the environmental
and economic benefits of EVs. Therefore, deploying RES such as a photovoltaic system (PVS) as
a complete or partial power source for EV charging in a parking station is expected to further reduce
greenhouse gas emissions [10]. Nevertheless, the optimal energy management of an EV parking station
integrated with PVS is challenging due to the high inter-temporal variation of electricity production
from PVS and variable EV traffic in the parking station. Significant research efforts are needed to
explore suitable solutions for overcoming these technical challenges before the integration of PVS in
an EV parking station becomes commonplace.

This paper aims to provide insight to address the aforementioned challenges by incorporating an
energy storage system (ESS) in the EV parking station supplied by a conventional power grid and PVS.
ESS offers some desirable characteristics of controllable charging and discharging rates that enable it
to be leveraged by the charging management system (CMS) to better utilize the intermittent PVS and
steady power grid for EV charging throughout the scheduling process. Particularly, ESS can be charged
by the excess PVS production or by the power grid during off-peak pricing periods, while the energy
stored in ESS can be utilized for EV charging when the electricity price rises. The vehicle-to-grid (V2G)
capability of EVs is also exploited in this study, given that the energy stored in EV batteries can be
accumulated or released at different intervals of their stay, depending on the state of charge (SOC),
electricity prices, and power of PVS. However, searching for the optimal utilization of both ESS and
EVs as energy storage in a parking station integrated with PVS and a power grid is challenging due to
the additional complexity brought by these new entities. A sophisticated EV charging optimization
scheme is proposed in this paper, optimizing the charging and discharging scheduling of EVs and ESS
in real time with CMS. Apart from preventing the parking station from overloading, the proposed
work also aims to minimize the operational costs of the parking station by prioritizing the use of
energy obtained from PVS, ESS, and the power grid for EV charging. The technical novelty and main
contributions of this paper are summarized as follows:

1. To the best of the authors’ knowledge, the work proposed in this paper is the first to exploit the
benefits of both the ESS and V2G capability of EVs to better utilize the intermittent PVS for EV
charging in a parking station.

2. A real-time charging scheduling scheme is proposed to coordinate the charging or discharging of
EVs along with dynamic electricity prices, ESS, and PVS.

3. An EV charging optimization problem is formulated using mixed integer linear programming
(MILP), aiming to maximize the satisfaction of EV owners in terms of simultaneously fulfilling
all charging requests and minimizing the overall operational costs of the parking station.

The remaining of this paper is organized as follows. Section 2 presents the related work.
The system model of an EV parking station integrated with RES and ESS is described in Section 3,
followed by the MILP formulation used to solve the EV charging scheduling problem in Section 4.
Extensive computer simulations are presented in Section 5, and conclusions are drawn in Section 6.

2. Review of Existing Literature

Substantial works were proposed in recent years to address the EV charging scheduling problem
mentioned in [2–4]. Linear programming (LP) is one approach commonly used to pursue EV charging
scheduling. An LP model was formulated in [11] to maximize the profit of aggregator and minimize the
charging cost of EVs. In [12], a hierarchical control scheme was developed to minimize the charging cost
and peak load caused by EV charging across multiple aggregators. The overall charging profile of each
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aggregator is first allocated at the power distribution level and a heuristic method is then used to obtain
the charging rate of each EV. The aggregator’s profit in [7,13] is maximized by MILP and fuzzy linear
programming (FLP), respectively. Two LP models were formulated in [14] to optimize EV charging in
a parking station with different points of view, i.e., to maximize either the operator’s revenue or the
number of completely charged EVs. Two contradictory objectives—minimizing the charging cost of
an EV parking station and maximizing EV users’ satisfaction—were simultaneously achieved in [15]
via LP and a modified convex relaxation scheme. Other optimization techniques such as quadratic
programming (QP) [16,17], dynamic programming (DP) [18], swarm intelligence [19–21], and game
theory [22] were also used for EV charging scheduling. Different objective functions including the
minimization of EV charging cost and grid’s load variance, maximization of the aggregator’s profit,
average state-of-charge (SOC) of EVs, and EV owners’ utilization rate in the parking station, were
utilized in these works.

Some recent studies suggested the crucial role of RES such as PVS or wind energy for EV charging
in order to fully deliver its environmental and economic values, leading to the growing attention
of optimal energy management issues of an EV parking station integrated with RES. An online
multi-objective framework was developed in [23] for an energy hub from the perspective of both EV
users and system operator, aiming to minimize distribution system losses and total rescheduling costs
and to maximize the wind energy utilization for EV charging. In [24], the V2G regulation of EVs was
optimized using an LP-based hierarchical framework to minimize the operational costs of a distribution
grid with intermittent wind power. Lyapunov optimization was used in [25] to minimize EV charging
costs and waiting time for fulfilling EV charging requests without requiring prior knowledge of PVS
generation and EV charging demands. In [26], a two-stage mechanism was formulated using QP to
tackle the EV charging involving PVS. The minimization of charging costs and peak to average (PAR)
of the system were attained by first solving the offline optimal energy dispatch problem, followed by
the dynamic charging coordination of EV. A classification scheme was suggested in [27] to categorize
the EVs in a solar-powered parking station based on their charging behavior. An MILP energy trading
scheme was then proposed to minimize the charging cost by encouraging more active participation of
EVs in V2G. In [28], a fuzzy controller was designed to minimize the charging cost of an EV parking
station consisting of PVS by adjusting the charging rates of EVs in real time based on their respective
power requirements and electricity tariff.

While there has been growing interest in exploring the potential of PVS or wind energy as
a complete or partial source for an EV parking station, limited efforts have been made to address
the intermittency of PVS or wind energy availability and the uncertainty of EV charging demands
in a parking station. One possible solution to overcome these drawbacks involves the integration
of ESS into these intermitted power sources, leading to the deployment of various hybrid energy
systems (HESs) in different smart grid applications [29]. Nevertheless, ESS tends to generate high
operational costs and strong operational constraints. The power flow management between different
entities of HES needs to be addressed carefully in order to reduce the operation costs by optimizing
the utilization of ESS and renewable generation, as well as matching local production with local
consumption. For instance, a lithium-ion battery and fuel cell are used in [30] to prevent the power
failure of a DC microgrid consisting of PVS and wind energy, in which a fuzzy logic controller (FLC)
was designed to improve the battery’s life by maintaining its desired SOC. In [31], a similar HES was
deployed and the operation of ESS was controlled using a multi-agent FLC by referring to the SOC
of both the DC bus and ESS. Another energy management scheme used to minimize the grid power
fluctuations or consumption of a residential grid-connected microgrid while keeping the SOC of ESS
within secure limits was reported in [32–34]. The optimal operation of a grid-connected HES consisting
of PVS, fuel cell, and ESS was formulated in [35], using MILP to minimize either the running costs or
the CO2 emissions. In [36], the electricity cost of a grid-connected smart home consisting of PVS, ESS,
and EVs was minimized using MILP based on the dynamic electricity prices. The optimal power flow
management problem of a grid-connected PVS with ESS in [37] was solved using DP to minimize the
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cost of peak shaving by considering the battery ageing effect in the optimization. In [38], the charging
and discharging of ESS in similar HES were controlled using convex optimization to maximize cost
savings by considering the energy loss of ESS due to the rate capacity effect. A central controller
was designed in [39] to compensate for the power fluctuation caused by the renewable generation in
the microgrid by coordinating the operation of heat pumps and ESS modeled as a two-tank energy
storage device. Most existing works [30–36] related to the life cycle of ESS with its SOC assumed
that no significant maintenance costs were incurred by ESS as long as ESS was not overcharged or
over-discharged beyond the limits of SOC. Meanwhile, some limited studies [37–39] that considered
the ESS models with more comprehensive degradation effects during optimization tend to employ
a nonlinear mathematical formulation, which is generally not feasible for real-time applications.

The proposed EV charging scheme is compared with previous works of EV charging optimization
in Table 1 in terms of the objective model, solution method, and the presence of RES, ESS, and V2G.
The difference between the proposed approach and those in the literature are summarized as follows.

1. The works in [7,11,12,14–22] rely on the electricity generated from conventional units for EV
charging. The proposed work considers PVS as a power source for EV charging, hence is designed
to fully deliver the economic and environmental advantages of EVs.

2. Only the V2G capability of EVs was exploited to mitigate the intermittent RES in [24,27,28],
while the proposed approach harnesses both the energy storage capability of ESS and the V2G
capability of EVs to better utilize the PVS for EV charging.

3. Some previous works aimed to maximize the satisfaction of EV users by completing all charging
demands (e.g., [19–21]) or minimizing the operational costs (e.g., [16,24,27,28]). A simple yet
efficient objective function is proposed to attain these contradictory goals by considering (a) the
charging or discharging priorities of EVs and (b) the preferred electricity price as the coefficient
in an objective function to dictate the power dispatches of the power grid and ESS.

Table 1. Comparisons of the proposed work with other EV charging schemes.

Reference Objective Model Solution Method RES V2G ESS

Jin et al. [11] Max. aggregator’s profit, Min. charging cost LP No No No
Xu et al. [12] Min. electricity cost, Min. system peak load LP No No No
Jin et al. [13] Max. aggregator’s revenue MILP No No Yes

Ansari et al. [7] Max. aggregator’s profit FLP No No No
Kuran et al. [14] Max. revenue or Max. EV users’ satisfaction LP No No No

Yao et al. [15] Max. charged EV number, Min. charging cost LP + convex
relaxation No No No

He et al. [16] Min. charging cost QP No Yes No
Jian et al. [17] Min. overall load variance QP No Yes No
Han et al. [18] Max. aggregator’s profit DP No Yes No

Su et al. [19–21] Max. average SOC of all EVs for next time step Swarm intelligence No No No
Zhang and Li [22] Max. EV user utilization Game theoretic No No No

Moeini-Aghtaie et al. [23] Min. system losses, Min. rescheduling cost,
Max. RES utilization for EV charging

Muti-objective
optimization Wind No No

Gao et al. [24] Min. operational cost LP Wind Yes No

Jin et al. [25] Min. charging cost, Min. waiting time of
fulfilling EV charging request

Lyapunov
optimization PVS No No

Wang et al. [26] Min. charging cost, Min. PAR of system QP PVS No No
Tushar et al. [27] Min. charging cost MILP PVS Yes No

Mohamed et al. [28] Min. charging cost Fuzzy logic PVS Yes No

Proposed work Max. satisfaction of EV owners, Min.
operational cost of parking station MILP PVS Yes Yes

3. EV Charging Management in the Proposed Parking Station

Consider a parking station consisting of a number of charging poles for EV charging and
discharging under a day-ahead electricity tariff environment. The parking station is equipped with
a PVS that serves as an alternative energy source to charge the connected EVs. The parking station
is also connected to a power grid, allowing EV charging using conventional power from utility and
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EV discharging to power grid. Both the energy storage capability of ESS and the V2G capability of
EVs are further exploited in the parking station to reduce electricity consumption from the power grid.
This goal can be achieved by charging both ESS and EVs with PVS as much as possible, and the stored
energy in both ESS and EV is discharged to the grid. The parking station operator can also leverage the
variations of electricity prices to reduce the operational costs by selecting proper time slots to purchase
electricity from the grid and sell excessive energy to the grid if the electricity prices are right.

Given that each EV has a different arrival time, departure time, and residual battery capacity,
an optimal EV charging and discharging scheduling is required to determine the charging and
discharging priorities of EVs to ensure charging and discharging fairness, as well as the requirement
of supplying adequate energy for every EV before departure. Moreover, the simultaneous charging or
discharging of all connected EVs and ESS are prohibited in a parking station because of the installation
capacity limit assigned to the electric distribution system. Nevertheless, these charging and discharging
operations of connected EVs and ESS can be leveled, delayed, and managed intelligently.

A CMS is designed to optimize the charging and discharging scheduling of EVs in real time and
to optimize the power dispatch from the power grid, ESS, and PVS with the dynamic electricity tariff.
As illustrated in Figure 1, the day-ahead electricity price signals are sent from the utility company
to the CMS via the Internet. A smart meter is installed in the parking station to record the electricity
to or from the grid. This recorded power profile is then returned to the utility through the Internet.
It is assumed that each charging pole can record the EV’s arrival time and allow every EV driver to
input their estimated departure time. Two-way communication between the CMS and other entities
in the parking station are established with a local area network (LAN) to enable the CMS to monitor
the solar power generated from PVS, the residual energy of ESS, and the connection status of each
charging pole.
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Figure 1. Illustration of EV charging and discharging in a parking station with ESS, PVS, and the
power grid.

4. Optimal Charging Scheduling

Assume that the parking station consists of N charging poles to charge the incoming EVs.
An online optimization scheme is developed in CMS, not only to coordinate the charging and
discharging scheduling of these N charging poles, but also to determine the optimal power dispatch
to/from the power grid, ESS, and PVS. The EV charging scheduling problem herein is approximated
with the slotted time modeling approach, i.e., the total available time period H for charging during
a day is uniformly divided by a sampling interval Ts into J intervals, where J = H/Ts. Suppose that
the n-th charging pole is connected by an EV that arrives at a real arrival time of tarr

n , n = 1, . . . , N, the
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charging pole is activated by initializing its sign-on status. A ceiling rounding operator d·e is used to
obtain the associated arrival time step κarr

n by mapping the real value ratio of tarr
n /Ts onto the smallest

following integer, i.e., κarr
n = dtarr

n /Tse. Let tdep
n be the estimated departure time provided by EV

driver to the n-th charging pole. A floor rounding operator b·c is applied to acquire the corresponding
departure time step denoted as κ

dep
n by mapping the real value ratio of tdep

n /Ts as the largest previous
integer, where κ

dep
n =

⌊
tdep
n /Ts

⌋
.

Suppose that δ
j
n is a binary parameter used to indicate the connect status of each n-th charging

pole at the j-th time step for n = 1, . . . , N and j = 1, . . . , J. In particular,

δ
j
n =

 1, ∀j ∈
[
κarr

n , κ
dep
n

]
0, ∀j ∈ [1, J]\

[
κarr

n , κ
dep
n

] , (1)

implying that δ
j
n is set to be 1 if the n-th charging pole is occupied and δ

j
n = 0, otherwise. Let Pc,max

n
be the maximum charging power provided to EV connected to the n-th charging pole and Pd,max

n be
the maximum discharging power drawn from this EV. Then, two continuous variables known as
sc,j

n ∈ [0, 1] and sd,j
n ∈ [0, 1] are used to represent the charging and discharging rates of the n-th charging

pole, respectively. Therefore,
sc,j

n ≤ δ
j
n (2)

sd,j
n ≤ δ

j
n. (3)

The proposed approach aims to optimize the charging schedule by simultaneously maximizing
EV owners’ satisfaction in fulfilling all charging requests and minimizing the operational costs of the
parking station by considering the dynamic electricity tariff, the solar power generated from PVS, and
the energy stored in ESS. To achieve these objectives, two criteria, (a) EV charging and discharging
priorities; as well as (b) the preferred electricity price to perform the power dispatches of power grid
and ESS, are considered to determine the optimal charging or discharging rate of all charging poles at
each time step.

4.1. EV Charging and Discharging Priorities

Two weightings are utilized to denote the charging and discharging priorities of each n-th
connected EVs at different time steps by considering both the capacity to refill the EV’s battery and the
remaining charging time. Define Dj

n as the remaining charging time steps of the EV connected to the
n-th charging pole at the j-th time step, then

Dj
n = κ

dep
n − j. (4)

Let γmax
n , γ

j
n, and Ecap

n be the upper limit of SOC, current SOC level, and battery capacity of EV
connected to the n-th charging pole, respectively. Then, the weighting of charging and discharging
priorities for every n-th connected EV at any j-th time step can be represented as wc,j

n and wd,j
n as follows:

wc,j
n =


Ecap

n

(
γmax

n −γ
j
n

)
Pc,max

n Dj
n

, if δ
j
n = 1

0 , if δ
j
n = 0

, (5)

wd,j
n =


Pd,max

n Dj
n

Ecap
n

(
γmax

n −γ
j
n

) , if δ
j
n = 1

0 , if δ
j
n = 0

. (6)
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Both the numerator in Equation (5) and the denominator in Equation (6) represent the remaining
capacity required to meet the battery’s upper limit γmax

n . Both Equations (5) and (6) imply that EVs
with less SOC have more urgent charging needs, while those with higher SOC are suitable for V2G
operations. Each of the n-th charging poles is controlled to charge or discharge the connected EV
without exceeding the maximum power of Pc,max

n and Pd,max
n , respectively. Therefore, the denominator

of Equation (5) and the numerator of Equation (6) imply the maximum energy that can be provided
to and supplied by the EVs. EVs with shorter Dj

n have more urgent charging needs and need to
be charged as much as possible prior to their departure, whereas those with longer Dj

n are ready to
discharge and sell the stored energy to the grid. Both of wc,j

n and wd,j
n are normalized into [0, 1]. Notably,

when a connected EV is unplugged from the n-th charging pole and departs the parking station, this
charging pole is signed off by resetting both the weighting wc,j

n and wd,j
n , as well as the connect status δ

j
n

to 0 for n = 1, . . . , N and j = 1, . . . , J. The charging pole is activated again when a new EV connects with
it at later time steps and the associated weighting wc,j

n and wd,j
n are recomputed using Equations (5)

and (6), respectively.

4.2. Preference on Electricity Prices for Power Dispatches of Power Grid and ESS

Apart from fulfilling all charging requests of connected EVs, the parking station operator also
tends to leverage the time-varying electricity price to minimize the operational costs, as driven by the
economic motivation. In general, more EVs should be scheduled for charging during the off-peak
electricity tariffs, while the discharging of EVs is encouraged at time periods when the electricity
price becomes expensive. Suppose that αmax and αmin refer to the maximum and minimum values of
day-ahead electricity prices, respectively. Two auxiliary parameters known as ρ

c,j
n and ρ

d,j
n are then

used to quantify the preference levels of the n-th charging pole to charge and discharge the connected
EV, respectively, at the j-th time step given the electricity price of αj. Therefore,

ρ
c,j
n =

 (αmax−αj)
(αmax−αmin)

, if δ
j
n = 1

0 , if δ
j
n = 0

, (7)

ρ
d,j
n =

 (αj−αmin)
(αmax−αmin)

, if δ
j
n = 1

0 , if δ
j
n = 0

. (8)

From Equation (7), a larger value preference term ρ
c,j
n is obtained for the lower electricity tariff

αj and vice versa. The opposite preference is designed in ρ
d,j
n , as in Equation (8), in response to

the variation in electricity price. Both ρ
c,j
n and ρ

d,j
n are normalized into [0, 1] by the terms in the

denominators of Equations (7) and (8), respectively.
To further minimize the operational costs, the parking station operator also needs to consider

the preference on electricity price in the power dispatches of power grid and ESS at every time slot.
Intuitively, the parking station operator tends to discharge the ESS and sell as much electricity as
possible to the power grid during time periods with a higher electricity price in order to generate
higher revenues and vice versa. The power dispatches for both ESS and the power grid at every j-th
time slot in response to different electricity prices can be induced by an auxiliary parameter denoted
as ρj and defined as:

ρj =

(
αj − αmin

)
(αmax − αmin)

. (9)

Similar to Equation (8), a larger value preference term ρj is obtained from Equation (9) when the
electricity price αj becomes higher and vice versa for j = 1, . . . , J.
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4.3. Objective Function

An optimal charging and discharging scheduling is proposed to coordinate the charging and
discharging rates of connected EVs along with the power dispatches of ESS and power grid at every
j-th time step based on the charging and discharging weight priorities (i.e., wc,j

n and wd,j
n ), as well as

the preference on electricity prices (i.e., ρ
c,j
n , ρ

d,j
n , and ρj), without violating their respective constraints.

Define Pc,max
ESS and Pd,max

n as the maximum charging and discharging powers of an ESS, respectively,
while the associated charging and discharging rate ratios at any j-th time step are represented by two
continuous variables, sc,j

ESS ∈ [0, 1] and sd,j
ESS ∈ [0, 1], respectively. The electricity purchased and sold at

every j-th time step is denoted as Pb,j
grid and Ps,j

grid, respectively. The objective function of scheduling
optimization is then formulated to ensure that the satisfaction of EV owners in terms of completing all
charging requests is maximized and the operational costs of the parking station are simultaneously
minimized. To attain these contradictory goals, the objective function to be maximized at every time
step is expressed as:

Φj =
J

∑
j=k

(
N
∑

n=1

(
sc,j

n Pc,max
n wc,j

n ρ
c,j
n + sd,j

n Pd,max
n wd,j

n ρ
d,j
n

)
+ ρj

(
sd,j

ESSPd,max
ESS − sc,j

ESSPc,max
ESS

)
+ ρj

(
Ps,j

grid − Pb,j
grid

))
. (10)

As shown in Equation (10), the parking station operator maximizes the charging power of
connected EVs, especially during the time intervals with lower electricity prices, so that these EVs can
be fully charged as soon as possible and the right of charging can be passed to more connected and
yet uncharged EVs. The goal of maximizing the total charging rate of connected EVs at the current
k-th time step is formulated as the product of charging priorities wc,j

n , preference on electricity price for
charging ρ

c,j
n , and maximum charging power Pc,max

n evaluated from the current k-th time step to the
end of day, i.e., j = k, . . . , J as mentioned in Equation (10).

The proposed EV charging and discharging scheduling aims to minimize the operational costs of
the parking station by coordinating the V2G operation of EVs and the power dispatches of the power
and ESS. As the electricity prices are high enough, the CMS is to discharge the energy stored in EVs’
batteries and utilize the energy to charge other EVs or sell to the power grid. This strategy is formulated
as the product of discharging priorities wd,j

n , the preference on electricity price for discharging ρ
d,j
n ,

and the maximum discharging power Pd,max
n evaluated from the current k-th time step to the end of

the day, as shown in Equation (10). Apart from exploiting the V2G capability of connected EVs, the
operational costs of the parking station can be further minimized by maximizing the net discharging
power of ESS, denoted as

(
sd,j

ESSPd,max
ESS − sc,j

ESSPc,max
ESS

)
, and the net electricity sold to the grid, denoted as(

Ps,j
grid − Pb,j

grid

)
, evaluated from the current k-th time step to the end of the day. The auxiliary parameter

ρj plays an essential role by inducing ESS discharging and electricity selling to the grid at time periods
with higher electricity prices, while both ESS charging and electricity purchasing from the grid are
preferred in the time periods with lower electricity prices.

4.4. Optimization Constraints

Define Pb,j
grid and Ps,j

grid as the amount of electricity purchased from and sold to the power grid at
every j-th time step, respectively. The solar generation obtained from PVS at the same time period
is denoted as Pj

PV . A demand–supply constraint is then defined to ensure the parking station load
consisting of the total charging loads of EVs and ESS as well as the electricity to be sold to the grid at
any j-th time step is balanced. Therefore,

Ps,j
grid + sc,j

ESSPc,max
ESS +

N

∑
n=1

sc,j
n Pc,max

n = Pb,j
grid + Pj

PV + sd,j
ESSPd,max

ESS +
N

∑
n=1

sd,j
n Pd,max

n , j = k, . . . , J. (11)
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Note that Pk
PV is measured at the current k-th time step while Pj

PV for j = (k + 1), . . . , J are based
on an estimated profile that can be obtained using statistical modeling via the Markov model [40] or
multi-step-ahead prediction with different neural network variants [41]. Both statistical modeling
and multi-step-ahead prediction problems are beyond the scope of this work and hence will not be
investigated further.

In order to prevent the overloading of the parking station, the total powers obtained from power
grid Pb,j

grid at any j-th time step must not exceed the associated capacity limit, Pmax,j
grid . Similar restriction

of Pmax,j
grid is also imposed for the power discharged back to the grid Ps,j

grid. Pmax,j
grid can either be a fixed

or time-varying parameter, depending on whether a parking station operator participates in other
demand response programs offered by the utility (e.g., load curtailment). While the market bidding
mechanism used to clear the time-varying profile of Pmax,j

grid in the day-ahead electricity market has
drawn wide research interest [42–44], this research topic is beyond the scope of the current study and
hence will not be further investigated. Furthermore, it is necessary to prohibit a scenario in which
power discharge back to the grid and power drawn from the grid occur simultaneously in the parking
station. To this end, both the capacity limit constraints of Pb,j

grid and Ps,j
grid, as well as the aforementioned

power exchange logic can be defined as:

Pb,j
grid ≤ uj

gridPmax,j
grid , j = k, . . . , J, (12)

Ps,j
grid ≤

(
1− uj

grid

)
Pmax,j

grid , j = k, . . . , J, (13)

where uj
grid ∈ {0, 1} is a binary auxiliary variable denoting whether the electricity needs to be drawn

from or discharged back to grid at every j-th time step as shown below:

uj
grid =

{
1, if power is drawn from grid
0, otherwise

. (14)

For each n-th charging pole connected with an EV, the initial SOC of EV is recorded as γint
n upon

its arrival time step of κarr
n , i.e.,

γ
j
n = γint

n , if j = κarr
n , n = 1, . . . , N. (15)

The n-th connected EV can be charged, discharged, or remain idle at every j-th time step for
n = 1, . . . , N, j = κarr

n , . . . , κ
dep
n . During the scheduling process, the charging and discharging powers

of each connected EV are regulated without violating its rated maximum charging and discharging
powers (i.e., Pc,max

n and Pd,max
n ), respectively. A power exchange logic is further implemented to prevent

the simultaneous charging and discharging of EV’s battery at any scheduling period. Hence,

sc,j
n Pc,max

n ≤ uj
nPc,max

n , n = 1, . . . , N, j = κarr
n , . . . , κ

dep
n , (16)

sd,j
n Pd,max

n ≤
(

1− uj
n

)
Pd,max

n , n = 1, . . . , N, j = κarr
n , . . . , κ

dep
n , (17)

where uj
n ∈ {0, 1} is a binary auxiliary variable introduced to indicate the charging and discharging

status of each n-th connected EV at the j-th time step such that

uj
n =

{
1, if EV is charged
0, if EV is discharged

. (18)
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Notably, the idle state of the n-th connected EV can be described by Equations (16) or (17) because
both decision variables referring to the charging and discharging rate ratios of EV (i.e., sc,j

n and sd,j
n ) are

allowed to have zero values during its scheduling periods of j = κarr
n , . . . , κ

dep
n .

The current SOC level γ
j
n of every n-th connected EV at any j-th time step can be obtained by

considering (a) the SOC of the previous slot γ
j−1
n ; (b) the increment of SOC due to the energy provided

to the EV’s battery if it is charged; and (c) the decrement of SOC due to the energy released from
the EV’s battery if it is discharged. Let ηc

n and ηd
n be the charging and discharging efficiencies of the

n-th connected EV. Given the sampling time Ts, the SOC of EV’s battery at each time step is updated
as follow:

γ
j
n = γ

j−1
n +

ηc
nPc,max

n sc,j
n Ts

Ecap
n

− Pd,max
n sd,j

n Ts

ηd
nEcap

n
, n = 1, . . . , N, j = κarr

n , . . . , κ
dep
n . (19)

At any j-th step, the SOC of each connected EV is restricted by an upper SOC limit γmax
n and

a lower SOC limit γmin
n to avoid the overcharging and deep discharging of battery, respectively, i.e.,

γ
j−1
n +

ηc
nPc,max

n sc,j
n Ts

Ecap
n

− Pd,max
n sd,j

n Ts

ηd
nEcap

n
≤ γmax

n , n = 1, . . . , N, j = κarr
n , . . . , κ

dep
n , (20)

γ
j−1
n +

ηc
nPc,max

n sc,j
n Ts

Ecap
n

− Pd,max
n sd,j

n Ts

ηd
nEcap

n
≥ γmin

n , n = 1, . . . , N, j = κarr
n , . . . , κ

dep
n . (21)

The charging of every EV needs to guarantee the minimum energy requirement for its next
journey. For this reason, the SOC of EV connected to the n-th charging pole must satisfy the departure
limit, denoted as γ

dep
n , when it leaves the parking station during the time step κ

dep
n as shown below:

γ
j−1
n +

κ
dep
n

∑
j=k

(
ηc

nPc,max
n sc,j

n Ts

Ecap
n

− Pd,max
n sd,j

n Ts

ηd
nEcap

n

)
≥ γ

dep
n , n = 1, . . . , N. (22)

The ESS is essentially similar to the EV’s battery except that the former entity is available in the
parking station throughout the scheduling process, and therefore offers less uncertain characteristics.
At the beginning of each day, the initial SOC of ESS is recorded as γint

ESS, i.e.,

γ
j
ESS = γint

ESS, if j = 1. (23)

Similar to the EV’s battery, the scheduling of ESS is also decomposed into two variables, sc,j
ESS and

sd,j
ESS, denoting the charging and discharging operations, respectively, for j = 1, . . . , J. Both the charging

and discharging powers of ESS are controllable and yet constrained by their upper limits, given as
Pc,max

ESS and Pd,max
ESS , respectively. Furthermore, an ESS cannot be charged and discharged at the same

time period. These charging and discharging power constraints of ESS are represented as:

sc,j
ESSPc,max

ESS ≤ uj
ESSPc,max

ESS , j = 1, . . . , J, (24)

sd,j
ESSPd,max

ESS ≤
(

1− uj
ESS

)
Pd,max

ESS , j = 1, . . . , J, (25)

where uj
ESS ∈ {0, 1} is a binary auxiliary variable associated with ESS at the j-th time step such that

uj
ESS =

{
1, if ESS is charged
0, if ESS is discharged

. (26)
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The SOC of ESS at any j-th time step, denoted as γ
j
ESS, is updated based on its SOC from previous

time step γ
j−1
ESS and the changes of SOC due to the power charged or discharged by ESS at that time

step. Let Ecap
ESS be the battery capacity of ESS, while the power losses experienced by ESS during the

charging and discharging are represented by the charging efficiency, ηc
ESS, and discharging efficiency,

ηd
ESS. At any j-th time step, the SOC of ESS is computed as:

γ
j
ESS = γ

j−1
ESS +

ηc
ESSPc,max

ESS sc,j
ESSTs

Ecap
ESS

−
Pd,max

ESS sd,j
ESSTs

ηd
ESSEcap

ESS
j = 1, . . . , J. (27)

During the charging and discharging, the SOC level of ESS at any time periods should not exceed
its upper limit γmax

ESS to prevent the battery from being overcharged. Furthermore, the SOC of ESS
cannot be less than the lower limit, γmin

ESS, as provided by the manufacturer to ensure reasonable battery
life-span. Hence,

γ
j
ESS +

ηc
ESSPc,max

ESS sc,j
ESSTs

Ecap
ESS

−
Pd,max

ESS sd,j
ESSTs

ηd
ESSEcap

ESS
≤ γmax

ESS , j = 1, . . . , J, (28)

γ
j
ESS +

ηc
ESSPc,max

ESS sc,j
ESSTs

Ecap
ESS

−
Pd,max

ESS sd,j
ESSTs

ηd
ESSEcap

ESS
≥ γmin

ESS, j = 1, . . . , J. (29)

Since the ESS serves as an energy source in the parking station, it must have a minimum amount
of energy to provide charging for incoming EVs every day. In order to guarantee the minimum energy
requirement for next-day usage, the SOC of ESS must satisfy a threshold limit γthres

ESS at the last time
step of the scheduling process. Therefore,

γ
j
ESS +

J

∑
j=k

(
ηc

ESSPc,max
ESS sc,j

ESSTs

Ecap
ESS

−
Pd,max

ESS sd,j
ESSTs

ηd
ESSEcap

ESS

)
≥ γthres

ESS . (30)

4.5. Scheduling Optimization

Given the objective function and constraints defined in the previous subsections, the real-time
optimal charging scheduling scheme for an EV parking station considering both PVS and ESS at every
j-th time step is a maximization problem defined as follows:

max
sc,j

n , n = 1, . . . , N, j = k, . . . , J
sd,j

n , n = 1, . . . , N, j = k, . . . , J
uj

n, n = 1, . . . , N, j = k, . . . , J
sc,j

ESS, j = k, . . . , J
sd,j

ESS, j = k, . . . , J
uj

ESS, j = k, . . . , J
Pb,j

grid, j = k, . . . , J

Ps,j
grid, j = k, . . . , J

uj
grid, j = k, . . . , J

Φi =
J

∑
j=k

(
N
∑

n=1

(
sc,j

n Pc,max
n wc,j

n ρ
c,j
n + sd,j

n Pd,max
n wd,j

n ρ
d,j
n

)
+ ρj

(
sd,j

ESSPd,max
ESS − sc,j

ESSPc,max
ESS

)
+ ρj

(
Ps,j

grid − Pb,j
grid

))
, (31)

subject to the constraints of Equations (11)–(13), (16), (17), (20)–(22), (24), (25), and (28)–(30).
The optimization of Equation (31) is a mixed-integer linear programming (MILP) problem because

it consists of both continuous decision variables (i.e., sc,j
n , sd,j

n , sc,j
ESS, sd,j

ESS, Pb,j
grid, and Ps,j

grid,) and binary

auxiliary variables (i.e.,uj
n, uj

ESS, and uj
grid) to be optimized for n = 1, . . . , N and j = k, . . . , J. General

MILP techniques such as the branch and bound algorithm [45] and the branch and cut algorithm [46],
available in most available commercial optimization solvers, can be used to solve the EV charging
optimization problem in Equation (31) effectively and efficiently. The proposed charging scheduling
scheme repeatedly calculates the charging or discharging rate for each connected EV and ESS at
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every time step until the end of the scheduling task. The SOC levels of connected EV and ESS can be
updated using Equations (19) and (27), respectively, as soon as their latest charging or discharging
rates are obtained from Equation (31) at every time step. Note that although the EV connected to the
n-th charging pole only stays at the parking station for the time steps j ∈

[
κarr

n , κ
dep
n

]
, the charging

scheduling optimization in Equation (31) can be made from the current k-th time step to the end of
the day, i.e., j ∈ [k, J] for convenient calculation due to the fact that wc,j

n = wd,j
n = ρ

c,j
n = ρ

d,j
n = 0 for

∀j ∈
[
κ

dep
n , J

]
, as defined in Equations (5)–(8), respectively.

5. Computer Simulation

5.1. Simulation Settings

Extensive performance evaluations are conducted in this section by considering an EV parking
station consisting of N = 200 charging poles. The total available time period H for charging scheduling
is set as 30 h, including the 24 h of a given day and the first 6 h of the next day, due to the different
operational cycles of EVs and ESS. The sampling interval length used for calculating the optimal
charging scheduling is set as Ts = 15 min or 0.25 h, leading to the total time step of J = H/Ts = 120.
The capacity limit used in the parking station to restrict the electricity drawn from or discharged to the
power grid at any j-th time step is given as Pmax,j

grid = 400 kW. The day-ahead electricity prices used in
this simulation are obtained from [47]. The solar radiation data for a typical summer day in Taiwan,
measured by the National Taipei University of Technology (NTUT), are considered. The following
parameter settings are considered for ESS. Each ESS unit is assumed to have a battery capacity
of Ecap

ESS = 100 kWh. The charging and discharging of ESS are constrained at the upper limits of
Pc,max

ESS = Pd,max
ESS = 25 kW, considering the efficiencies of ηc

ESS = ηc
ESS = 0.95. The initial and threshold

limit SOC levels of ESS are set as γint
ESS = γthres

ESS = 0.80. Meanwhile, the upper and lower SOC limits of
ESS are set as γmax

ESS = 0.99 and γmin
ESS = 0.30, respectively. Let U be the number of ESS units used in the

performance evaluation, set as U = 20.
To simulate a more realistic scenario of parking station utilization, the presence of both regular

and random EVs is assumed and the ratio is set at 5:5. Regular EVs refer to those with relatively
fixed arrival and departure times due to their predictable parking station utilization habits. Both the
arrival and departure times of regular EVs are generated using Gaussian models, in which the arrival
times follow a normal distribution with mean µarv = 6:00 a.m. and standard deviation σarv = 60 min.
The departure times are modeled using a normal distribution with µdep = 6:00 p.m. and σdep = 120 min.
The random-arrival EVs have more unpredictable habits of using the parking station because of
their random staying time. These uncertain utilization characteristics can be simulated by uniformly
distributing both the arrival and departure time along the scheduling period j ∈ [1, J]. Suppose that
the total number of incoming EVs at a parking station over an entire day, i.e., for j = 1, . . . , J, is equal
to M. As the charging of an EV is completed and it leaves the parking station, other EVs could reuse
the charging pole. Hence, each charging pole can provide charging to more than one EV during
a day. The total incoming EVs considered in the simulation are M = {100, 200, 300, 400, 500}. With the
number of charging poles N = 200, variations of number of EVs along the time steps j = 1, . . . , J are
simulated in Figure 2a–e. It is shown that all the charging poles are fully occupied for a certain time
period when M increases to 300 or above.

Some key parameters of EVs used in the simulations are given as follows. The EVs with four types
of battery capacities, i.e., 8 kWh, 17 kWh, 18 kWh, and 48 kWh are considered and their proportions
are set as 20%, 30%, 30%, and 20% of the M EVs, respectively. The maximum charging and discharging
powers of these EVs are 1.6 kW, 3.4 kW, 3.6 kW, and 9.6 kW, respectively. The charging and discharging
of these EVs are conducted with the charging and discharging efficiencies that are uniformly distributed
between [0.90, 0.99]. The initial and departure SOC of each EV is uniformly distributed in the range of
[0.40, 0.60] and [0.90, 0.95], respectively. Furthermore, the SOC level of these EVs are constrained by
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an upper limit and a lower limit that are uniformly distributed between [0.95, 0.99] and [0.30, 0.40],
respectively. All simulations are made using MATLAB 2014a on a personal computer with Intel® Core
i5-4570 CPU @ 3.40 GHz and the proposed EV charging optimization problem is solved using CPLEX
12.1 [48].
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5.2. Simulation of Optimal Charging Scheduling and Power Dispatches

The charging scheduling of M = 500 EVs in a parking station consisting of U = 20 ESS units is
simulated to evaluate the performance of the proposed EV charging optimization scheme. Figure 3
demonstrates the charging and discharging profiles of all connected EVs and the power dispatch
profiles for both the power grid and ESS in a parking station along with the solar energy generated by
PVS and dynamic electricity tariffs at different time slots beginning from 0:00 a.m. of a typical day to
6:00 a.m. of the next day. The net amount of grid electricity purchased or sold at every j-th time step is
given as Pj

net = Pb,j
grid − Ps,j

grid for j = 1, . . . , J. Positive values of Pj
net imply that electricity is bought by

the CMS from the power grid, while negative Pj
net means the excess energy of the parking station is

sold to the grid. From Figure 3, it is noticed that the total power received by the parking station at
every time slot is balanced by its power demand, as given in Equation (11). The purchase and selling
of electricity from/to the grid do not occur simultaneously. Both Pb,j

grid and Ps,j
grid are constrained below
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the capacity limit of Pmax,j
grid , as stated in Equations (12)–(14). Similarly, the ESS does not charge and

discharge concurrently and charging and discharges rates are restricted, as in Equations (24)–(26).
For the time periods where no solar power is generated from PVS to charge EVs, some connected

EVs are scheduled by CMS to perform V2G and release their stored energy in order to meet a portion of
the EV charging demands. The remaining charging requests are satisfied by the electricity purchased
by the CMS from the power grid. Notably, a portion of the grid electricity purchased at these time
steps is also used to charge the ESS for later use, as will be explained in the following. At certain
time steps between 9:00 a.m. and 11:00 a.m., the scheduled charging demands of connected EVs
exceed the grid’s capacity. These tremendous charging demands are first satisfied by the CMS using
the solar power generation and the energy stored in ESS, followed by the electricity drawn from the
grid. Similar observations are made from 5:00 p.m. to 7:00 p.m., except that the V2G capability of
some connected EVs is also exploited at these time steps to cover a portion of the scheduled charging
requests. In these two scenarios, drawing power from the grid is considered the last resort for the CMS
to compensate for the power deficits of EV charging with the goal of minimizing the total charging
costs. More connected EVs are scheduled to discharge than are scheduled to charge at the time periods
with expensive electricity prices. The ESS is also discharged by the CMS, driven by the same economic
motivation. Coincidentally, solar power generation at the time periods with higher electricity prices is
relatively abundant. The total power supply contributed by PVS, ESS, and V2G operation of EVs is
first used to charge the connected EVs with higher charging priorities, followed by selling the surplus
power to the power grid.
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Figure 4 presents the financial transactions recorded in a parking station for each time slot,
including the revenue generated due to electricity selling, the overall charging cost incurred, and the net
profit realized. Positive net profit implies that the surplus power available in a parking station is sold
to the power grid, while negative net profit is equivalent to the net cost of purchasing electricity from
the grid to compensate for the power deficit in the parking station. The cost optimization capability
of the proposed approach is validated in Figure 4 because the majority of electricity purchases are
shifted to the off-peak price periods, while most electricity sales are concentrated around the peak
price periods. More connected EVs are scheduled for charging during the time periods when electricity
tariffs are relatively low. The available power supplied by PVS, ESS, and V2G operation of EVs at these
time periods is insufficient to meet the huge amount of charging load; therefore, the CMS needs to
purchase electricity from the grid to compensate for the power deficits. For the scheduling periods
with more expensive electricity prices, the CMS tends to discharge the energy stored in most connected
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EVs and ESS. Since the EV charging demands at these periods are relatively smaller, the CMS can sell
the excess electricity to the power grid for more revenue.

The variations in average SOC for existing EVs and SOC of ESS in a parking station in response
to the dynamic electricity tariff are illustrated in Figure 5. The average SOC of EVs starts to grow
when the electricity tariff is relatively low. Similar behavior is demonstrated by the SOC profile of ESS.
When the electricity price reaches its peak, the majority of connected EVs are scheduled by the CMS
to discharge their stored energy to the grid, leading to the decrement of SOC. Meanwhile, the ESS
is discharged for longer time intervals. The electricity released by ESS from 11:00 a.m. to 5:00 p.m.
is sold to the grid, while these energy is used to cover a portion of EV charging demands for the
remaining time periods. As shown in Figure 5, the variation in SOC profiles for both connected EVs
and ESS is bounded by their respective lower and upper limits along the scheduling process, as stated
by Equations (20) and (21) or (28) and (29), respectively. Finally, it is also observed that the average
SOC of connected EVs and the SOC of ESS reach their respective threshold values before the end of the
scheduling process, as specified by Equations (22) and (30).
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5.3. Charging Performance Comparisons

The proposed optimal EV charging scheduling scheme is compared with a baseline method in
order to verify its charging optimization capability. The baseline method is essentially similar to the
proposed approach except that both PVS and ESS are discarded in the former method. Define γ

f
avg

as the average SOC of all vehicles leaving the parking station, ξR as the total revenue gained from
electricity sales,ξC as the total charging costs incurred, and ξP as the net profit realized. Comparisons
of γ

f
avg, ξR, ξC, and ξP between the baseline and proposed methods for M = 100 to 500 are simulated

and presented in Table 2.
Both the baseline and the proposed method produce similar values of γ

f
avg for different values of

M, implying that both methods are able to satisfy the charging requests of all EVs. On the contrary,
the proposed approach greatly outperforms the baseline method from an economic point of view by
producing lower charging costs ξC, higher revenue ξR, and higher net profit ξP for M = 100 to 500.
The negative values of ξP produced by the baseline for different M values imply that the revenue
gained from electricity sales contributed by the V2G operation of EVs are insufficient to cover the
total charging costs incurred, leading to the financial loss of the parking station. This challenge can be
addressed by deploying both PVS and ESS in a parking station as alternative sources to provide EV
charging. As demonstrated in Table 2, the proposed approach is able to achieve significant revenue
and net profit gains by harnessing the economic value brought by both the PVS and ESS.

Table 2. Comparison of final average SOC of EVs γ
f
avg, total revenue obtained ξR, total charging

incurred ξC, and net profit gained ξP for different number of EVs.

M Method γ
f
avg ξR ($) ξC ($) ξP ($)

100
Baseline 0.919 1883.00 2517.55 −634.55

Proposed 0.919 5877.46 3975.75 1901.71

200
Baseline 0.916 3603.85 4815.94 −1212.09

Proposed 0.916 7572.46 6290.36 1282.10

300
Baseline 0.915 5219.75 6802.98 −1583.23

Proposed 0.915 8892.06 8057.68 834.38

400
Baseline 0.916 5243.41 6847.51 −1604.10

Proposed 0.916 8777.38 8024.16 753.22

500
Baseline 0.916 5657.87 7521.19 −1863.32

Proposed 0.916 8876.05 8396.65 479.40

Notably, Table 2 also shows that the net profit realized, ξP, decreases with the number of EVs
served despite the increase in M implying that more electricity can potentially be contributed by the
V2G operation of EVs. To justify these observations, the total revenue and charging costs contributed
by different entities in the parking station (i.e., EVs, ESS, and PVS) are further analyzed in Figure 6.
It is reported that the revenue and costs contributed by PVS and ESS are fixed with M due to their
constant parameter settings. While both the charging costs incurred and the revenue gained by EVs
increases with the total number of vehicles, the former shows a more rapidly growing trend than the
latter, resulting in the reduction of net profit gained with M. These observations can be justified by the
different staying times of EVs at the parking station due to their different arrival and departure times.
The majority of EVs, especially those with random arrival and departure times, are not able to sell their
stored energy at the highest electricity price and perform charging at time periods with the lowest
electricity price. Furthermore, for those EVs with a shorter staying time, the main priority is to provide
sufficient energy to these vehicles in order to fulfill their charging needs instead of withdrawing their
stored energy for electricity selling to the main grid. The uncertainties about EV charging demands
due to their different or short staying times in parking stations becomes more notable as the number
of vehicles further increases; these undesirable characteristics tend to offset the economic benefits
brought by the V2G operation of EVs.
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6. Conclusions

Solar energy has become a widely utilized renewable energy. This paper has integrated solar
energy into energy resources for EV charging. In order to overcome the inevitable electricity
intermittency of PVS, the EES is installed with PVS so that EES could supplement the necessary
electricity during the period of electricity intermittency of PVS. The EV charging and discharging
management thus becomes a complex optimization problem because not only does the charging
and discharging of every EV in the parking need to be delicately scheduled, but the charging and
discharging of ESS as well as the power dispatch of the grid and PVS also need to be optimally
managed. A real-time optimal charging and discharging scheduling is formulated using MILP to
coordinate the charging or discharging rates of EVs along with the power dispatches of the power grid
and ESS, aiming to maximize EVs users’ satisfaction in meeting charging and discharging requests
while also maximizing the profit of the parking station. To ensure the proposed charging scheme is
technically and financially feasible in parking stations, the constraints of the power grid, connected EV,
and ESS are considered in the MILP optimization framework. Extensive simulations are conducted to
evaluate the optimization capability of the proposed approach. The economic benefits of deploying
both PVS and ESS in a parking station for EV charging are verified: this combination is able to generate
more revenue and net profit from electricity sales than a scheme without PVS and ESS.

Some future works can be suggested based on the current proposal. First, the optimal charging and
discharging scheduling in a parking station can be further extended by considering both price-based
and incentive-based demand response programs in order to generate more revenue. Second, the ageing
effect of ESS due to charging and discharging mechanisms can be considered during optimization in
order to further preserve the lifetime of ESS by developing a suitable storage power loss model with
linear characteristics that facilitates real-time optimization. To this end, a more comprehensive CMS
framework can be developed by formulating the EV charging management in a parking station as
a multi-objective optimization problem, aiming to minimize the operating costs of the EV parking
station and the lifetime degradation of ESS simultaneously. Finally, the deployment of emerging
energy sources such as a fuel cell system for EV charging in parking stations appears to be a promising
research direction. More sophisticated optimization frameworks can be explored depending on the
type of integration between the fuel cell system and the existing entities available at the parking station.
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