Next Article in Journal
Development of Heterogeneous Catalysts for Thermo-Chemical Conversion of Lignocellulosic Biomass
Previous Article in Journal
Strategic Choices of China’s New Energy Vehicle Industry: An Analysis Based on ANP and SWOT
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Energies 2017, 10(4), 549; doi:10.3390/en10040549

An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources

1
COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
2
Center for Advanced Studies in Engineering (CASE), Islamabad 44000, Pakistan
3
Research Chair of Pervasive and Mobile Computing, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia
*
Author to whom correspondence should be addressed.
Received: 14 February 2017 / Revised: 15 March 2017 / Accepted: 11 April 2017 / Published: 17 April 2017

Abstract

Traditional power grid and its demand-side management (DSM) techniques are centralized and mainly focus on industrial consumers. The ignorance of residential and commercial sectors in DSM activities degrades the overall performance of a conventional grid. Therefore, the concept of DSM and demand response (DR) via residential sector makes the smart grid (SG) superior over the traditional grid. In this context, this paper proposes an optimized home energy management system (OHEMS) that not only facilitates the integration of renewable energy source (RES) and energy storage system (ESS) but also incorporates the residential sector into DSM activities. The proposed OHEMS minimizes the electricity bill by scheduling the household appliances and ESS in response to the dynamic pricing of electricity market. First, the constrained optimization problem is mathematically formulated by using multiple knapsack problems, and then solved by using the heuristic algorithms; genetic algorithm (GA), binary particle swarm optimization (BPSO), wind driven optimization (WDO), bacterial foraging optimization (BFO) and hybrid GA-PSO (HGPO) algorithms. The performance of the proposed scheme and heuristic algorithms is evaluated via MATLAB simulations. Results illustrate that the integration of RES and ESS reduces the electricity bill and peak-to-average ratio (PAR) by 19.94% and 21.55% respectively. Moreover, the HGPO algorithm based home energy management system outperforms the other heuristic algorithms, and further reduces the bill by 25.12% and PAR by 24.88%. View Full-Text
Keywords: smart grid; demand side management; home energy management system; renewable energy source; energy storage system; real time pricing; heuristic algorithms smart grid; demand side management; home energy management system; renewable energy source; energy storage system; real time pricing; heuristic algorithms
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Azim Niaz, I. An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources. Energies 2017, 10, 549.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top