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Abstract: This study focuses on surrogate measures (SMs) of robustness for the stochastic job
shop scheduling problems (SJSSP) with uncertain processing times. The objective is to provide
the robust predictive schedule to the decision makers. The mathematical model of SJSSP is
formulated by considering the railway execution strategy, which defined that the starting time
of each operation cannot be earlier than its predictive starting time. Robustness is defined as the
expected relative deviation between the realized makespan and the predictive makespan. In view of
the time-consuming characteristic of simulation-based robustness measure (RMsim), this paper puts
forward new SMs and investigates their performance through simulations. By utilizing the structure
of schedule and the available information of stochastic processing times, two SMs on the basis of
minimizing the robustness degradation on the critical path and the non-critical path are suggested.
For this purpose, a hybrid estimation of distribution algorithm (HEDA) is adopted to conduct the
simulations. To analyze the performance of the presented SMs, two computational experiments are
carried out. Specifically, the correlation analysis is firstly conducted by comparing the coefficient of
determination between the presented SMs and the corresponding simulation-based robustness values
with those of the existing SMs. Secondly, the effectiveness and the performance of the presented SMs
are further validated by comparing with the simulation-based robustness measure under different
uncertainty levels. The experimental results demonstrate that the presented SMs are not only effective
for assessing the robustness of SJSSP no matter the uncertainty levels, but also require a tremendously
lower computational burden than the simulation-based robustness measure.

Keywords: robust scheduling; stochastic job shop scheduling problems; surrogate measures;
stochastic processing times; hybrid estimation of distribution algorithm

1. Introduction

Job shop scheduling problem (JSSP) has been widely studied in the literature. However, in the
real-world manufacturing environment, the scheduling performance of JSSP is affected by various
uncertainties including the proficiency level of the workers, random machine breakdowns, the lack of
tools or resources, the uncertain processing times, etc. [1,2]. In fact, most of these uncertainties result
in stochastic processing times, thus named as a stochastic job shop scheduling problem (SJSSP) [3].
To keep up with a high profitable performance for a job shop, the scheduling needs to be robust against
those inevitable disturbances.

Robust scheduling is an effective approach to deal with the uncertainties in the field of both
machine scheduling and project scheduling. Herroelen and Leus [4] reviewed the techniques to
cope with the uncertainties in project scheduling problems. Ouelhadj and Petrovic [2] summarized
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the methods on real-world scheduling in dynamic manufacturing environments. According to the
literature, the robustness measures are mainly classified into two categories: quality robustness and
solution robustness [4]. Quality robustness is often used to indicate the insensitivity of the scheduling
performance under uncertainty in terms of the objective value, such as makespan, tardiness, while the
solution robustness, also called stability, refers to the insensitivity of activity’s starting times to the
uncertainty [5]. The improvement of quality robustness of SJSSP will reduce the risk of tardiness and
increase the customer satisfaction. Therefore, we investigate the quality robustness that is defined by
the expected deviation between realized makespan and predictive makespan [6].

Robustness evaluation is a critical process for robust scheduling. To appropriately assess the
scheduling robustness, quantitative robustness measures are required to indicate the robustness
performance of the evaluated schedules. The slack-based robust scheduling is a method based on the
slack times or the insertion of additional idle times. It is widely used in the field of machine scheduling
and project scheduling, which are mutually promoted. The slack-based robustness measures are
divided into two categories. The first category allows the insertion of additional idle times or buffers
that can be deemed as redundancy time, such as the literature by Ghosh et al. [7], Ghosh [8], Herroelen
and Leus [9], Vonder et al. [10], Lambrechts et al. [11], Kuchta [12], Salmasnia et al. [13] and Jamili [14].
Although this approach is effective to improve the robustness, the insertion of idle time will inevitably
increase the total cost of production. Furthermore, the strategies to determine the positions and units
of the idle times or buffers are still the main difficulties as stated by Al-hinai and ElMekkawy [15].
The second category is to directly get the schedule solutions based on the neighborhood structure
and/or the partially known uncertain information of the schedule without inserting additional idle
times or buffers, such as the research by Goren and Sabuncuoglu [5], Leon et al. [6], Jensen [16,17],
Artigues et al. [18], Ghezail et al. [19], Hazir et al. [20], Goren et al. [21], Xiong et al. [22] and Xiao et al. [23].

Stochastic scenario simulation-based measures also fall into the category without idle time
insertion. Ahmadizar et al. [24] presented a simulation-based ant colony optimization algorithm
to minimize the expected makespan in a stochastic group shop. In the study of Chaari et al. [25],
a robust bi-objective evaluation function was developed to obtain a robust, effective solution that
is slightly sensitive to data uncertainty. Wang et al. [26] proposed a two-phase simulation-based
estimation of distribution algorithm for minimizing the makespan of a hybrid flow shop under
stochastic processing times. However, the computational burden of simulation-based robust scheduling
is usually unacceptable, thus a practical approach to improving the computational efficiency is to use
the surrogate measure as an estimator and select an algorithm to optimize it [20].

The slack-based method is usually used in surrogate measures (SMs) to generate robust
schedules [27]. Two types of slacks, i.e., total slack and free slack, have been widely studied in
the literature for robust scheduling [20,22]. Total slack is defined as the difference between the earliest
start time and latest start time of an activity while free slack is the amount of time that an activity can
be delayed without delaying the start of the very next activity [28]. However, the available information
on the uncertainty has seldom been considered in most of the literature. Leon et al. [6] proposed a
surrogate measure using the mean of total slack, but the available uncertainty information was not
fully utilized. Hazir et al. [20] proposed a surrogate robustness measure based on the potential critical
operations, but the location of slack times had not been taken into consideration. Goren et al. [21]
considered the variance of processing times on the critical path and developed an effective surrogate
stability measure for the JSSP with machine breakdown and random processing times. However,
the slack time and the non-critical operation were not considered. More recently, Xiong et al. [22]
considered both the available uncertain information and the location of slack times, in which two
effective SMs were proposed considering both the structure and the uncertainty information of the
schedule for flexible JSSP under random machine breakdown. Due to the complexity of SJSSP, the
existing SMs proposed for the project scheduling [10,20,28,29] and machine scheduling [6,21,22] are
not well applicable for SJSSP. To the best of our knowledge, little research has been conducted on the
robust scheduling of SJSSP by using SMs. In view of the wide range of industrial application of SJSSP
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in the field of discrete manufacturing, we focus on the SMs with the aim of providing the predictive
schedules with satisfactory robustness and a lower computational burden.

To improve the accuracy of robustness estimation and reduce the computational burden of
robust scheduling for SJSSP, we will utilize the probability distribution information of stochastic
processing times and the structure of the schedule determined by the slack times to estimate the
quantity of possible robustness degradation. Two SMs will be presented by analyzing the disturbances
of critical operation set on the critical paths and non-critical operation set on the non-critical paths.
The computational experiments demonstrate that the developed SMs are effective for the robust
scheduling of SJSSP no matter if partial or all of the operations are uncertain. Therefore, the robust
scheduling of SJSSP can be conducted by optimizing SMs and makespan simultaneously with a lower
computational burden and a satisfactory robustness improvement.

The rest of this paper is organized as follows. Section 2 describes and analyzes the focused
problem, and then the mathematical model of SJSSP is constructed. In Section 3, the existing SMs
are discussed based on which two new SMs are suggested for the robust scheduling of SJSSP. A brief
description of the HEDA is presented for the simulation experiments in Section 4. In Section 5,
the effectiveness and the computational efficiency of SMs are verified by two simulation experiments.
Finally, conclusions are given in Section 6 along with a description of the future work.

2. Mathematical Modeling

2.1. Problem Description and Analysis

A stochastic job shop scheduling problem (SJSSP) is the extended version of a JSSP by introducing
some stochastic processing constraints such as stochastic processing time [3]. In this study, the SJSSP
is described on the basis of JSSP: n jobs processed on m machines; each job has m operations; the
stochastic processing times ξTij of job Ji at machine Mj is assumed to follow a normal distribution
N(µij, σ2

ij); the operation’s process information is denoted by a vector (Mj, µij, σ2
ij). The following

assumptions on JSSP are also used in the SJSSP: the setup time is included in the processing time and
is not considered separately; a machine can only process one job at a time, and one job can only be
processed on one machine at a time; each job can only be processed on one machine at most once; there
are no precedence constraints between two jobs; the operations cannot be preempted; all machines are
available at time zero.

In the literature on stochastic scheduling, various types of probability distributions for stochastic
processing times have been studied, such as exponential distribution [3], normal distribution [30,31]
and uniform distribution [25]. One method is to treat both the stochastic processing time and the
scheduling objective as the stochastic variables, which aims at providing the processing ordering
of the tasks on the machines with an expected optimization model. For example, Gu et al. [30]
studied the SJSSP considering the processing times subjected to independent normal distributions
with the aim of optimizing the expected makespan. The other direction is to firstly define an initial
scenario of scheduling, then to deal with the uncertainties by imitating all of the possible scenarios.
For example, Chaari et al. [25] studied the hybrid flow shop scheduling considering the processing
times following a uniform distribution. An initial processing time scenario is obtained first. Then,
the makespan and the initial scenario and the deviation of the makespan under all disrupted scenarios
are minimized simultaneously.

In this study, we consider the processing time as a random variable and deal with it by using
processing time scenarios, in which one scenario is denoted by a group of possible realized processing
times. In the real-world job shop scheduling, a predictive guidance is vital to the production
preparation to provide detailed directions on when to transmit the tools or the materials to the
workstation, or on when to arrange operators to the corresponding machines prior to the execution of
the scheduling. Therefore, we aim to provide a robust predictive schedule by firstly using the expected
processing times as the initial processing time scenario, and then dealing with the disturbances caused
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by the stochastic processing times under the possible processing time scenarios. Simulation-based
optimization is an effective way to solve the problem; however, it is very time-consuming, especially
for the large-sized problems [20,22,26]. In order to speed up the optimization, inspired by the SMs
of robustness that are designed for the robust scheduling of a flexible job-shop scheduling problem
with random machine breakdowns [22], we put forward two SMs for SJSSP to estimate the robustness
degradation by utilizing the available information of stochastic processing times and the structure of
predictive schedule.

The railway execution strategy [32] that was adopted in the project scheduling is considered in
this study, which means each activity will never start earlier than its planned starting time in the
initial schedule. Since in the predictive schedule of SJSSP, the earlier completion of an operation will
never affect the starting times of succeeding operations, we will only focus on the operations where
processing times exceed the expected values. Additionally, the number of operations with stochastic
processing times is random in the real-world manufacturing, so the SMs should be effective over all
possible uncertain environments, regardless of whether partial or all the operations’ processing times
are random. To describe the degree of the uncertainties, we define uncertainty levels (ULs) to represent
the proportion of the operations those with stochastic processing times.

2.2. Mathematical Modeling of SJSSP

The purpose of robust scheduling of SJSSP is to generate the predictive schedule capable of
absorbing the disturbances caused by the stochastic processing times when a right-shift reaction policy
is adopted. Generally, the robustness measure (RM) can be estimated through Monte Carlo simulation
to generate the possible processing time scenarios, shown as Equation (1):

RMsim(S) =
1
L

L

∑
l=1

[ξCl
max(S)− Ce

max(S)] (1)

where l = 1, 2, ..., L denotes the number of simulation replications of processing time scenarios,
RMsim denotes the simulation-based robustness measure and ξCl

max(S) denotes the potential realized
makespan of schedule S under the lth simulation by sampling a potentially realized processing
time scenario.

The studied SJSSP is described by a triplet proposed by Graham et al. [33]. Therefore, the problem
is described as Jm|SPT|ηCe

max + (1− η)RM , where Jm denotes the JSSP, SPT denotes the stochastic
processing times, Ce

max denotes the makespan of the predictive schedule and RM denotes the
robustness measure. The robust scheduling model of SJSSP considering the predictive makespan and
the robustness measure is shown as follows:

min
S∈Ω

F(S) : F(S) = (1− η)Ce
max(S) + ηRM(S) (2)

subject to
ξCik − ξTik + M0(1− aijk) ≥ ξCij

i = 1, 2, ..., n; j, k = 1, 2, ..., m ∧ j 6= k;
(3)

ξChj − ξThj + M0(1− xihj) ≥ ξCij
i, h = 1, 2, ..., n ∧ i 6= h; j = 1, 2, ..., m;

(4)

∑ aijk = 1, ∀i, j, k ∧ j 6= k; (5)

∑ xihk = 1, ∀i, h, k ∧ i 6= h; (6)

aijk ∈ {0, 1}, ∀i, j, k ∧ j 6= k; (7)

xihj ∈ {0, 1}, ∀i, h, j ∧ i 6= h; (8)
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ξCij ≥ 0, ∀i, j. (9)

In the objective function as Equation (2), η and 1− η denote the weight coefficients of robustness
measure RM (can be represented by RMsim and the SMs) and efficiency measure Ce

max(S), respectively,
where η ∈ [0, 1]. The inequality (3) represents the process constraints, which means the job Ji has
to be processed on the machine Mj before being processed on the machine Mk. If this condition is
satisfied, aijk = 1, else zero. M0 is a large enough positive number. The machine constraints are
denoted by Inequality (4), which means the job Jh has to be processed on the machine Mj after job Ji,
if this constraint is satisfied, xihj = 1, else zero. Constraints (5) and (6) denote that one machine can
only process one job at one time and one job can only be processed on one machine at the same time.
While Constraints (7) and (8) state that the value of aijk and xihj can only be integer one or zero. The
inequality (9) represents that none of the completion times of the operations can be negative.

3. SMs of Robustness for SJSSP

3.1. The Existing SMs of Robustness

To facilitate the description of the SMs, several definitions for SJSSP are given:

Definition 1. Critical path (CP): The longest path composed of the operations where any delay in any operation
would increase the makespan.

Definition 2. Non-critical path (NCP): The paths constructed by all of the operations except for the operations
on the critical path.

Definition 3. Critical operation set: The operation set where any delay in any operation would increase the
total makespan, denoted by Ocp.

Definition 4. Non-critical operation set: The operation set in which all of the operations have total slack time,
denoted by Oncp.

Definition 5. Disturbance absorption capability: The capability of a predictive schedule to absorb the
disturbances caused by stochastic processing times by using slack times existing in the schedule structure.

A surrogate measure for evaluating the absorptive capability of a schedule was proposed based
on the average total slack time in the research of Leon [6], which is rewritten as SM1:

SM1 = Ce
max −

n

∑
i=1

m

∑
j=1

TSij/mn (10)

where TSij denotes the total slack time of operation Oij.
The SMs that aim at providing an accurate estimation of the schedule robustness for the

multi-mode project scheduling problem were investigated in the study of Hazir et al. [20]. In one
surrogate measure, they define the activities that have total slacks (TSij) less than a certain
percent (ξ) of the expected activity duration (µij) as the potential critical activities (PCA), i.e.,
PCA =

{
Oij : TSij/µij ≤ ξ

}
. The delays in PCA are likely to result in delays in the project completion

time. Schedules with fewer critical activities are preferred on the robustness. The measure of PCA
can also be used in SJSSP because of the similarity of the two problems, which is named potential
critical operations (PCO). Assuming the variance of SJSSP is known, the definition of PCA is revised to
include the effect of the standard deviation, i.e., PCO =

{
Oij : TSij/(µij + σij) ≤ ξ

}
. Therefore, a new

definition of SM2 is written as:

SM2 =
{

Npco/mn : Oij ∈ Opco
}

(11)
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where Npco denotes the number of PCO and Opco denotes the set of PCO, which includes all of the
operations that satisfy the inequality TSij/(µij + σij) ≤ ξ, and we set ξ = 0.25 in this study.

Goren et al. [21] developed a surrogate stability measure to generate efficient and stable schedules
for a job shop subject to processing time variability and random machine breakdowns. The variance
of the realized completion time is estimated as the sum of the variances of the arc lengths that lie on
the mean-critical path. Therefore, the expected delay of the realized completion times can also be
estimated by the proposed measure. If there is more than one mean-critical paths, the one with the
maximum total variance is selected. This surrogate measure is based on decreasing the maximum
variance on the mean critical path, where the mean critical path is equivalent to the critical path of
SJSSP when expected processing times are used. In this case, SM3 is defined in Equation (12) to
estimate the robustness of SJSSP:

SM3 = max
{
∑ Var

(
Oij
)

: Oij ∈ Ocp
}

(12)

where Var denotes the variance of the operations in the critical operation set Ocp.
Intuitively, the SMs discussed above are suitable to evaluate the robustness of SJSSP. However,

the SMs, which consider only the total slacks [6], potential critical operations [20] or the variance on the
critical path [21], are insufficient to estimate the robustness accurately. To overcome the weakness of
SMs, we propose a quantitative evaluation method based on the probability distribution information
of stochastic processing times and the slack times in the schedule.

3.2. New SMs of Robustness for SJSSP

3.2.1. Quantifying the Disturbances of the Stochastic Processing Times

The main difficulty of robustness estimation is to model the relationship between the probability
distribution information of the stochastic processing times and the disturbance absorption capability
of the schedule. To tackle this problem, we propose a statistical approach to convert the stochastic
processing time with a known mean and variance into a deterministic value with a predefined
confidence level. It is assumed that the processing time follows the normal distribution, i.e.,
ξTij ∼ N(µij, σ2

ij). To standardize ξTij into Zij = (ξTij − µij)/σij, yielding Zij ∼ N(0, 1). Let
δij = ξTij − µij denotes the difference between the realized processing times and expected processing
times of operation Oij. Due to the adoption of railway execution policy [32], it holds that
δij = (ξTij − µij)+, where (ξTij − µij)+ = max

{
ξTij − µij, 0

}
. If the confidence level of (1 − α) is

prespecified by the decision maker, we can consider this estimated upper bound of the stochastic
processing times as the worst disturbance to be used as an input in the designing of SMs. Under
the railway execution strategy, the right-sided confidence range of the normal distribution is used to
estimate the upper bound of stochastic processing times, thus yielding Equation (13):

Pr
{

Zij = (ξTij − µij)+/σij ≤ Zα

}
= 1− α (13)

where Zα is the critical value under a prespecified α, and then it derives ξTij ∈ [µij, µij + Zασij].

3.2.2. Disturbance Absorption Capability

The disturbances on the non-critical path can be partially or totally absorbed due to the existence
of total slacks while the disturbances occurred on the critical path would lead to higher robustness
degradation since there is no slack time to absorb the disturbance. Therefore, to absorb as much
disturbance as possible, the disturbances allocated to the critical path should be less. However, inspired
by the surrogate measure proposed by Goren et al. [21], when it comes to design the SMs for SJSSP,
it is not reasonable to simply consider the disturbance on the critical path. If non-critical operations
are allocated with so much disturbance that cannot be totally absorbed by the slacks, the non-critical
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operation would possibly become a critical operation and affect the predictive makespan of the
schedule. To demonstrate the importance of considering the disturbance on both the critical path
and non-critical path, we provide an example with three jobs and three machines supposing partial
operations are uncertain. The process information of the operations is listed in Table 1, which are
denoted by the vector (Mj, µij, σ2

ij).

Table 1. An stochastic job shop scheduling problem (SJSSP) instance with three jobs and three machines.

Jobs
The Process Constraints of Each Job (Mj, µij, σ2

ij)

Operation 1 Operation 2 Operation 3

J1 (3, 3, 0.74) (2, 2, 0) (1, 5, 0.18)
J2 (2, 4, 0) (3, 5, 0.74) (1, 3, 0)
J3 (1, 4, 0) (2, 5, 0) (3, 4, 0)

One scheduling scenario given in Table 1 is analyzed as shown in Figure 1. The makespan of
the schedule is 15 time units, shown in Figure 1a; the critical operations are indicated by bolded C,
and non-critical operations are indicated by NC. The possible realized schedule when considering
the potential disturbances is shown in Figure 1b. The total slacks that can be used to absorb the
disturbances are denoted by TSij (seven time units in total) while the disturbance denoted by δij is
represented by the upper bound of the stochastic processing time. For example, if we set α = 0.01,
then the maximal disturbance is estimated by δij = 2.33σij. If the predictive schedule is executed, the
possible maximal total performance degradation caused by the disturbance will be less than three time
units with a probability of 0.99. From Figure 1a, we assume that all of the operations with stochastic
processing times are located on the non-critical path while some of the non-critical operations are
possibly turned into critical operations. Comparing Figure 1a, and Figure 1b, the critical operations O22,
O32 and O33 would possibly turn into non-critical operations due to the processing times of non-critical
operations O13, O11 and O21 are increased and turned into critical operations. In this case, assigning all
of the operations with disturbances to the non-critical path is unreasonable. In fact, the disturbance
should be assigned to both the critical operations and non-critical operations so as to balance the
robustness degradation of the non-critical path and the critical path from an overall perspective.
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Essentially, the capability of absorbing disturbances of a schedule is determined by the total
amount of free slacks. However, the free slacks may be shared by several non-critical operations
because they may have the common total slacks. To make full use of the slacks, the total slacks and
free slacks are focused on in the following section with the aim of assessing the ability to absorb the
disturbance’s effect for the scheduling solutions.

3.2.3. New SMs for Robustness Scheduling

As the previous analysis, minimizing the disturbances on the critical path may allocate more
disturbances on the non-critical operations. Therefore, it is important to balance the disturbances
assigned to the critical operation set and to the non-critical operation set. Meanwhile, there are two
possibilities that determine the maximum robustness degradation when the predictive schedule
is executed in the real-world manufacturing environment. The first possibility is that the total
disturbances on the critical path determine the robustness degradation. The second possibility is that
the disturbances on the non-critical path play a leading role when the disturbances assigned to the
critical path are apparently less than those assigned to the non-critical path. Therefore, minimizing the
maximum robustness degradation can be conducted by considering two strategies. We first suggest
SM4 to estimate and optimize the scheduling robustness based on minimizing the total influence of
disturbances on the critical path and non-critical path from an overall perspective. Then, we suggest
SM5 minimizing the maximum of the robustness degradation on the critical operation set and on the
non-critical operation set. The suggested SMs are represented by Equations (14) and (15):

SM4 = SMcp + SMncp (14)

SM5 = max{SMcp, SMncp
}

(15)

where SMcp and SMncp denote the estimated robustness degradation on the critical path and the
non-critical path, respectively. SM4 is based on minimizing the overall possible robustness degradation
of the predictive schedule. The reasonability of SM5 is that the non-critical operations would absorb a
certain amount of disturbances; meanwhile, the critical operations may transform into non-critical
operations and get a certain amount of disturbance absorption capability. Therefore, it will also have
the ability to estimate the possible robustness degradation by minimizing the maximum robustness
degradation on the critical path and non-critical path.

In SM4 and SM5, the calculation of SMcp should consider all of the critical operations. The reason
is that if only the critical path with the largest sum variance is considered, other critical operations
would be neglected since the robustness evaluation of the non-critical operation set will not consider
the remaining critical operations. Therefore, the total disturbance on the critical operation set should
be estimated to consider all of the variance of the critical operations. Given that there is no slack on the
critical operations, the maximum possible disturbance on the critical operation set is estimated by:

SMcp= Zα

√√√√Ncp

∑
h=1

σh
2, h = 1, 2, ..., Ncp (16)

where Ncp denotes the total number of critical operations and Zα denotes the critical value determined
by the predefined confidence level (1− α).

In the non-critical operation sets, the disturbances can be partially or totally absorbed by the total
slacks. Then the maximum disruptions can be estimated by using the maximum possible disturbance
that is estimated by the right-sided probability distribution function. Therefore, the main problem that
should be tackled is how to determine the disturbance absorption capability based on the total slacks
and free slacks in the predictive schedule. As shown in Figure 2, a Gantt chart is used to analyze the
strategy of assessing the disturbance absorption capability.
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In the non-critical operation set, there are five operations that have total slacks to absorb
disturbances, namely O13, O23, O31, O11, and O21. However, the total slacks of some operations
are greater than its corresponding free slacks. For example, FS23 < TS23 for operation O23, so the
disturbance in O23 will occupy the total slack of the succeeding operation O21 if the disturbance cannot
be completely absorbed in the case of FS23 < δ23. Besides, FS11 of operation O11 is equal to zero when
TS11 = TS21, which means FS21 of operation O21 is shared by the operations O11, O21 and possibly
O23 if FS23 cannot absorb the disturbance completely. From the above analysis, the total slacks may
be occupied by a single operation or shared by several operations, which leads to directly evaluating
the disturbance absorption capability intractable. To estimate the disturbances absorptive capability,
an approximate equivalent method is proposed to calculate the occupation rate of total slacks for
the operations that share the common total slacks. The basic idea is that the maximum capability of
absorbing the disturbances is determined by the total quantity of free slacks. We use the mean ratio to
denote the occupation coefficient of each operation since the total slacks are shared by all non-critical
operations. The average slack occupation coefficient of each operation for any schedule is estimated by:

ε0 =
n

∑
i=1

m

∑
j=1

FSij/
n

∑
i=1

m

∑
j=1

TSij (17)

where ε0 denotes the basic average occupation coefficient of total slacks. However, the average
occupation coefficient should be modified because the critical operations in the predictive schedule
need to be excluded when calculating the average occupation coefficient of non-critical operations.
Therefore, the average occupation coefficient should be modified by considering that the critical
operations do not share the free slacks. After removing the critical operations, the average occupation
coefficient is modified as:

ε =
1

(1− Ncp/mn)
ε0 =

mn
(mn− Ncp)

ε0 (18)

where ε is adopted to estimate the occupation rate of each operation in a schedule. Then, the disturbance
absorption capability Ck for each operation is estimated by:

Ck =

mn
n
∑

i=1

m
∑

j=1
FSij

(mn− Ncp)
n
∑

i=1

m
∑

j=1
TSij

TSk, k = 1, ..., Nncp (19)

Therefore, the possible robustness degradation in non-critical operation set is calculated by:

SMncp =
Nncp

∑
k=1

δk, k = 1, 2, ..., Nncp (20)
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where δk represents the processing time deviation of any non-critical operation in the non-critical
operation set with Nncp elements. Therefore, the maximum possible disturbance of each non-critical
operations is estimated by:

δk =

{
|Ck − Zασk|, if Ck − Zασk < 0

0, otherwise
(21)

After the robustness evaluation function has been formulated, SM4 and SM5 are rewritten as:

SM4= Zα

√√√√Ncp

∑
h=1

σh
2 +

Nncp

∑
k=1

δk (22)

SM5 = max

Zα

√√√√Ncp

∑
h=1

σh
2,

Nncp

∑
k=1

δk

 (23)

where h = 1, ..., Ncp, k = 1, ..., Nncp. By using the above quantified equations, the robustness of the
predictive schedule can be effectively estimated. Therefore, the robust predictive schedule can be
identified by using the presented SMs.

4. HEDA for SJSSP

4.1. Framework of HEDA

To optimize the SJSSP, the HEDA proposed by Xiao et al. [34] is adopted. To enhance the
population diversity of EDA [35], the recombination process and (µ + λ) selection method of
(µ + λ)− ES [36] are combined with EDA. The procedure is shown in Figure 3.
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The first step is to set the parameters, and then the probability matrix for sampling the initial
individuals is initialized. The recombination method is executed to enhance the population diversity
of the EDA. In the selection process, Bsize individuals for updating the probability model are selected.
Meanwhile, µ(l) elite individuals are saved for the next iteration. The detailed procedures of the
HEDA are presented in the following sections.

4.2. Encoding and Decoding

An operation-based encoding scheme is adopted. Each individual of the population denotes a
schedule solution of the SJSSP, which is represented by a sequence of the operations. The operations of
the job Ji are represented by [(i− 1)m+ 1, ..., (i− 1)m+ j, ..., (i− 1)m+m]. Let π = [π1, ..., πk, ..., πm×n],
where k = 1, ..., m × n denotes m × n positions in each individual. Under this encoding scheme,
(i− 1)m + j in the position of πk in π denotes that the jth operation of the job Ji is located at the kth
position of π. The individual is encoded under the constraints of process precedence, so it will never
produce infeasible solutions in both the population initialization process and the individual sampling
process. In addition, the active decoding method used in the study of Wang and Zheng [37] is adopted
to decode the schedule solution, in which the set of active schedules is a subset of the semi-active ones
and an optimal solution must be an active schedule to the regular index makespan. By converting the
semi-active schedule to the active one, the makespan can be shortened. In this study, the decoding
process uses the expected processing times when generating the predictive schedule; when conducting
the simulation based robustness evaluation, the decoding process will use the simulated processing
time scenario.

4.3. Probability Model and Updating Mechanism

In the HEDA, the new individuals in each generation are sampled according to their probability
model such that the superior population can be generated from the most promising area in the solution
space [38]. A probability matrix P(l) =

{
pl

ij,πk

∣∣∣i = 1, 2, ...n; j = 1, 2, ..., m; k = 1, ..., m× n
}

with m× n
rows and m× n columns is designed for SJSSP considering the encoding scheme. A more detailed
description of P(l) is shown as:

P(l) =



pl
11,π1

pl
11,π2

· · · pl
11,πm×n

pl
12,π1

pl
12,π2

. . . pl
12,πm×n

...
...

...
...

pl
1m,π1

pl
1m,π2

· · · pl
1m,πm×n

pl
21,π1

pl
21,π2

. . . pl
21,πm×n

pl
22,π1

pl
22,π2

· · · pl
22,πm×n

...
...

...
...

pl
2m,π1

pl
2m,π2

· · · pl
2m,πm×n

...
...

...
...

pl
n1,π1

pl
n1,π2

· · · pl
n1,πm×n

pl
n2,π1

pl
n2,π2

· · · pl
n2,πm×n

...
...

...
...

pl
nm,π1

pl
nm,π2

· · · pl
nm,πm×n



(24)

The element pl
ij,πk

in the probability matrix P(l) represents the probability of the jth operation of
job Ji located in the position πk in a schedule, and l denotes the generation. The probability function of
the superior population Bsize is written as:
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pl
ij,πk

= ∑ Bsize
s=1

Iij,πk (l)
Bsize

, ∀i, j, k (25)

where Iij,πk (l) defines the statistical function as follows:

Iij,πk (l) =


1, if the jth operation of job Ji appears

in position πk of a schedule
0, otherwise

(26)

To update the probability matrix of each generation, an incremental learning rule in the field of
machine learning is adopted. The learning function is presented as:

pl+1
ij,πk

= (1− β)pl
ij,πk

+ β
1

Bsize∑ Bsize
s=1 [Iij,πk (l)] (27)

where pl+1
ij,πk

denotes the probability of the jth operation of job Ji located in the position πk of the
generation l + 1, and β(0 < β < 1) denotes the learning rate.

4.4. Initializing and Sampling

In the phase of population initialization, the entire solution space would be sampled uniformly
by P(0) via the roulette wheel selection method. In each generation of the HEDA, the new individuals
are generated via sampling the solution space according to the probability matrix P(l). The individual
sampling algorithm is shown as follows:

Step 1. Initialize the candidate operation matrix Qm×n =
{

Oij : i = 1, 2, ..., n, j = 1, 2...., m
}

, which is
used to store the operations sequenced by considering the process constraints;
Step 2. While k < m× n do

Step 2.1. Select the optional operation vector Qopt
m×1, Qopt

m×1(k) ⊆ Qm×n, k = 1, ..., m × n by
selecting only the immediate succeeding operations those needed to be processed following the
process constraints;

Step 2.2. Obtain the probability of each operation in the operation set Qopt
m×1(k), which is possibly

located in the positionπkaccording to the probability matrix P(l);
Step 2.3. Normalize the probability of each operation that belongs to operation set Qopt

m×1(k) by
equation p′ ij,πk = pij,πk /∑ pij,πk , for all Oij ∈ Qopt

m×1(k), and then, select an operation by the roulette
algorithm according to the normalized probability, then put the selected operation in the location πk of
π = [π1, ..., πk, ..., πm×n];

Step 2.4 Delete the selected operation in candidate operation set Qm×n;
End While

Step 3. Return the newly generated individual S.

To describe the sampling algorithm more detailed, we use a problem instance with two jobs and
three machines to illustrate the statistical probability of each operation. By the encoding scheme, the
three operations of job J1 are denoted by [1, 2, 3]; the three operations of job J2 are denoted by [4, 5, 6].
By using Equation (24), the probability matrix of the problem instance is shown as Equation (28):

P(l) =



pl
11,1 pl

11,2 pl
11,3 pl

11,4 pl
11,5 pl

11,6
pl

12,1 pl
12,2 pl

12,3 pl
12,4 pl

12,5 pl
12,6

pl
13,1 pl

13,2 pl
13,3 pl

13,4 pl
13,5 pl

13,6
pl

21,1 pl
21,2 pl

21,3 pl
21,4 pl

21,5 pl
21,6

pl
22,1 pl

22,2 pl
22,3 pl

22,4 pl
22,5 pl

22,6
pl

23,1 pl
23,2 pl

23,3 pl
23,4 pl

23,5 pl
23,6


=



pl
11,1 pl

11,2 pl
11,3 pl

11,4 0 0
0 pl

12,2 pl
12,3 pl

12,4 pl
12,5 0

0 0 pl
13,3 pl

13,4 pl
13,5 pl

13,6
pl

21,1 pl
21,2 pl

21,3 pl
21,4 0 0

0 pl
22,2 pl

22,3 pl
22,4 pl

22,5 0
0 0 pl

23,3 pl
23,4 pl

23,5 pl
23,6


(28)
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in which the statistical probability of the operations that violate the process constraints is zero. After
the operation has been selected and placed on the corresponds position, the probability of the remained
optional operations needs to be normalized, then the new optional operation can be selected by the
normalized probability. For example, if the first operation of Job 2 is first selected, then the first
operation of Job 1 is selected, in sequence, the sampling process by using the above probability matrix
can be described by Figure 4.
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In Figure 4, the operations in the individual are selected according to the statistical probability.
The procedure will be continued following the above sampling algorithm until the candidate operation
set becomes empty. In this sampling method, the process constraints are under consideration, so there
exists no infeasible individual.

4.5. Recombination and Selection

To enhance population diversity and avoid premature convergence in the evolutionary process of
the EDA, a recombination method based on the inherit ratio of parent operation is used [34].

After decoding and evaluating the individuals by using the objective function, the promising
individuals will be selected and saved. In the (µ + λ) selection process, a deterministic sorting
method of evolutionary strategy is adopted. Specifically, in each generation, µ new individuals will be
generated, and λ offspring will be obtained by recombining the µ parent individuals saved in the last
generation. In the selection block of the HEDA, the performance values of Ngood individuals obtained
by µ elite individuals in the last generation are sorted in ascending order, then the Bsize superior
population and µ elite individuals are saved to update the probability model for the next generation.

5. Computational Experiments

5.1. Experiment Settings

The experimental analysis approach and the HEDA are both coded by Matlab 2015b
(The MathWorks, Inc., Natick, MA, USA) on a computer of Intel(R) Xeon(R) CPU E31230 @ 3.2 GHz
with RAM 8.00 GB. In this study, we focus on the performance comparison of different surrogate
measures of robustness. For comparability and ease of implementation reasons, all the replications of
HEDA are closely related and the parameters are set to the same values.

We first set the parameters according to the experimental purpose and then conduct the
simulations under the same computational environment for the purpose of a fair comparison.
To improve the computational efficiency of the simulations while keeping the satisfactory performance
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of the HEDA, the population size (Psize) and the evolutionary generation (gen) are both set to 100
according to a one-way ANOVA (analysis of variance), in which the experimental results demonstrate
that both the evolutionary generation and the population size have no significant performance
decreasing under the confidence level of 0.95 (set α = 0.05). In the next step, we use the Taguchi
method of design of experiment (DOE) [39] to select a group of the key parameters of HEDA by using
the benchmark FT10 [40], in which the makespan is used as the optimization objective. The value of
recombination probability (Rp), the learning rate (β) and the number of the superior population (Bsize)
are tested under four factor levels. For each parameter combination, the HEDA runs 20 times and the
average of makespan is obtained. Finally, a group of good parameter combination is selected: Rp = 0.8;
β = 0.3; Bsize = 40. For the details of the experimental results of the ANOVA and the DOE, please refer
to the supplementary material.

The number of simulation replications is set to L = 200, which is enough to approximate the
expected value as stated by Ahmadizar et al. [24]. The number of parents individuals (µ) is the same
as the population size, by which λ = 100 new offspring will be generated through the recombination
process. In addition, the number of positioning jobs is set to bn/2c by referring to the previous
research [34]. Therefore, the parameters setting of HEDA is shown in Table 2.

Table 2. The parameters setting of HEDA.

Parameters Values Parameters Values

Population size (Psize) 100 Learning rate (β) 0.3
Evolutionary generations (gen) 100 Superior population (Bsize) 40
Recombination probability (Rp) 0.8 Value of µ and λ 100

Number of positioning jobs bn/2c Simulation replications (L) 200

Since there are no standard benchmark problems for SJSSP, we use the deterministic problem
instances and modify them into stochastic versions by introducing variances into the processing times.
The benchmarks of FT06, FT10 and FT20 provided by Muth and Thompson [40] and LA06, LA16,
LA21, LA26 and LA32 provided by Lawrence [41] are selected. The expected processing times are
using the deterministic processing times in the benchmarks. The variances of the processing times are
set randomly and the modified benchmarks can be obtained from the authors.

The aim of the first experiment is to investigate the correlation between the SMs and the
corresponding simulation-based robustness denoted by SMsim when optimizing the robustness
of SJSSP by using the SMs. The coefficient of determination (R2 value) of three existing SMs (SM1,
SM2, and SM3) and two presented SMs (SM4, SM5) are investigated. The second experiment includes
two parts: the first part using a one-way ANOVA to analyze whether the specified confidence level
(1− α) has a significant effect on the performance of the proposed SMs. The second part is to verify
the effectiveness of SMs and the computational efficiency.

To compare the performances of SMs under different degrees of uncertainty, five ULs are
considered. For example, the UL with 20% uncertain operations is denoted by UL2. The uncertain
operations are randomly selected by a uniformly distributed number xij, xij ∈ U [0, 1]with the
following steps:

Step 1. For each operation Oij, generate a number xij randomly;
Step 2. If xij < UL, UL = 0.2, 0.4, ..., 1, the processing time of operation Oij is allocated with
a prespecified variance σ2

ij and transformed into an uncertain operation; the variance is set at

σ2
ij = 0, otherwise.

5.2. Correlation Analysis of the SMs

To evaluate the correlation between SMs and the corresponding simulation-based robustness
(SMsim), we analyze the coefficient of determination (R2 value). The weight coefficient of robustness
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measure is set as η = 1 then the robustness can be analyzed independently without being affected by
the makespan (MK). The values of SMsim can also be calculated by Equation (1).

The R2 values are obtained from the regression of the values of SMs and the corresponding SMsim
in the optimization process of HEDA with 100 generations. The higher the R2 values between the SMs
and SMsim, the better the performance to estimate and optimize the robustness. In the simulation,
the critical value is set as Zα = 1.96 with a confidence level of 0.975. The algorithm for correlation
analysis is shown as follows:

Step 1. Select the best schedule in each generation, and save the values of SMs of each schedule in each
run of HEDA;
Step 2. Use Monte Carlo simulation to calculate the value of SMsim for the selected schedule:

Step 2.1. Generate the processing time scenario using the known probability distribution;
Step 2.2. Decode the schedule using the randomly-generated processing time scenario and then

obtain and save the possible realized makespan ξCl
max, l = 1, 2, ..., L of each simulation replication;

Step 2.3. Repeat Step 2.2 for L times, and calculate the SMsim value by Equation (1);
Step 3. Calculate the R2 value between SMs and its corresponding SMsim.

The analyzed R2 value in the following is represented by the average value of 20 runs of HEDA.
As the comparison measures, SM1, SM2 and SM3 are investigated. The measure MK is also examined,
which is conducted by only optimizing the makespan (set η = 0) to analyze the correlation between
optimizing the makespan and its corresponding simulation-based robustness under different ULs.
Table 3 shows the simulation results.

Table 3. The R2 values for the regression between SMs and SMsim. UL: uncertainty level;
MK: makespan.

Benchmarks Measures
Uncertainty Levels

UL2 UL4 UL6 UL8 UL10 Average

FT06
Size: 6 × 6

SM1 0.44 0.46 0.29 0.55 0.53 0.45
SM2 0.27 0.09 0.14 0.48 0.53 0.30
SM3 0.15 0.13 0.26 0.23 0.14 0.18
SM4 0.69 0.72 0.83 0.69 0.87 0.76
SM5 0.71 0.77 0.74 0.73 0.76 0.74
MK 0.15 0.17 0.14 0.10 0.14 0.14

FT10
Size: 10 × 10

SM1 0.13 0.19 0.39 0.69 0.77 0.43
SM2 0.14 0.16 0.44 0.56 0.72 0.40
SM3 0.53 0.57 0.59 0.48 0.70 0.57
SM4 0.82 0.90 0.89 0.89 0.85 0.87
SM5 0.78 0.83 0.83 0.86 0.85 0.83
MK 0.09 0.27 0.26 0.27 0.73 0.32

FT20
Size: 20 × 10

SM1 0.03 0.12 0.35 0.48 0.76 0.35
SM2 0.14 0.31 0.35 0.40 0.73 0.39
SM3 0.44 0.67 0.62 0.59 0.68 0.60
SM4 0.84 0.83 0.90 0.84 0.81 0.84
SM5 0.84 0.76 0.87 0.79 0.82 0.82
MK 0.11 0.06 0.18 0.30 0.67 0.26

LA06
Size: 15 × 5

SM1 0.53 0.61 0.31 0.18 0.58 0.44
SM2 0.46 0.49 0.45 0.68 0.87 0.59
SM3 0.51 0.56 0.29 0.52 0.40 0.46
SM4 0.84 0.78 0.67 0.79 0.68 0.75
SM5 0.87 0.81 0.84 0.73 0.69 0.79
MK 0.31 0.29 0.08 0.37 0.41 0.29
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Table 3. Cont.

Benchmarks Measures
Uncertainty Levels

UL2 UL4 UL6 UL8 UL10 Average

LA16
Size: 10 × 10

SM1 0.11 0.29 0.46 0.45 0.81 0.42
SM2 0.20 0.39 0.44 0.55 0.79 0.47
SM3 0.20 0.20 0.26 0.47 0.77 0.38
SM4 0.90 0.92 0.83 0.87 0.79 0.86
SM5 0.81 0.75 0.73 0.81 0.80 0.78
MK 0.06 0.16 0.28 0.31 0.71 0.30

LA21
Size: 15 × 10

SM1 0.20 0.20 0.26 0.47 0.77 0.38
SM2 0.24 0.22 0.45 0.47 0.84 0.44
SM3 0.55 0.59 0.57 0.71 0.68 0.62
SM4 0.79 0.80 0.82 0.78 0.80 0.80
SM5 0.84 0.78 0.71 0.78 0.80 0.78
MK 0.06 0.10 0.23 0.42 0.67 0.30

LA26
Size: 20 × 10

SM1 0.10 0.15 0.37 0.64 0.71 0.39
SM2 0.16 0.39 0.50 0.58 0.78 0.48
SM3 0.64 0.70 0.74 0.65 0.71 0.69
SM4 0.83 0.85 0.82 0.87 0.77 0.83
SM5 0.81 0.83 0.80 0.84 0.82 0.82
MK 0.08 0.12 0.41 0.56 0.70 0.37

LA32
Size: 30 × 10

SM1 0.42 0.37 0.54 0.77 0.86 0.59
SM2 0.40 0.35 0.41 0.70 0.89 0.55
SM3 0.67 0.83 0.88 0.87 0.87 0.82
SM4 0.88 0.94 0.92 0.88 0.87 0.90
SM5 0.85 0.91 0.92 0.92 0.90 0.90
MK 0.29 0.34 0.39 0.46 0.69 0.44

In Table 3, the average R2 values under five ULs for the benchmarks are provided. The resultant
average R2 values of the suggested SM4, SM5 are apparently higher than those obtained by SM1, SM2
and SM3, in which the lowest value is 0.67 in LA06 under UL6. Further analysis finds that slightly
lower average R2 values of the suggested SMs exist in the benchmarks with a small size under lower
or medium ULs, such as the cases in FT06 and LA06. The reason lies in that the disturbances are easily
absorbed and then the optimization process of small-sized benchmarks under lower ULs are much
easier to converge to the optimum within several generations.

The suggested SM4, SM5 are highly correlated with the robustness measure under all of the
ULs. However, the variation of the R2 values of SM1, SM2, SM3 and MK is quite obvious. For SM1,
the average R2 value is increasing gradually from UL2 to UL10, which is as high as 0.81 under UL10
of LA16, but, the average R2 value is very low under lower ULs. Part of the reason lies in that SM1
only considers the average total slack while the available information is neglected. The average R2

values of SM2 and SM3 show the similar characteristic as SM1, that is the higher the ULs, the higher
the correlations. Therefore, the SM1, SM2, and SM3 are not well applicable to the SJSSP under all of
the ULs, even if they show slightly higher correlation under higher ULs. Concerning the average R2

values of MK, it is also found that the correlation is increased with the increasing of UL. The main
reason is that the optimization of MK would decrease the length of the critical path, as well as the total
number of operations on the longest critical path at the higher ULs, which has the potential to decrease
the total disturbances on the critical path.

To further compare the average R2 values of the suggested SMs and the existing SMs, the average
R2 values under five ULs on all of the benchmarks are shown in Figure 5. It is found that the average
R2 values of the suggested SM4, SM5 are apparently greater than those of SM1, SM2 and SM3 over all
of the benchmarks. Among the three existing SMs, SM3 shows the highest correlation, which means
that minimizing the maximum sum of variance on the critical path is better than considering only
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the average total slacks or the number of potential critical operations. From the above analyses, it is
concluded that the correlation values of the suggested SM4, SM5 are apparently higher than those of
the existing SMs, so the suggested SMs can estimate the robustness of the schedule more accurately.
The performance of the optimal robustness needs to be evaluated further. However, the performance
analyses of SM1, SM2 and SM3 are not conducted, since the average R2 values are apparently lower.Energies 2017, 10, 543 17 of 25 
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Figure 5. The coefficient of determination of the robustness on the tested benchmarks.

5.3. The Performance of the SMs

5.3.1. One-Way ANOVA Analysis for Different Confidence Levels

To further investigate the effect of the different predefined confidence levels of the processing
time’s disturbance on the performance of the proposed SMs, a one-way ANOVA test on the average
R2 values of the presented SMs is performed by using the modified benchmarks of FT06, FT10 and
FT20. The UL10 is selected because the trial would be more reliable under the most severe UL, which
means all of the operations are uncertain. We first conduct the normality test of the data before the
implement the ANOVA. The effects are considered significant if the p-value is less than 0.05.

In this experiment, three confidence levels for setting the maximum disturbances of stochastic
processing times, i.e., 0.95, 0.975 and 0.99 are tested. Therefore, the corresponding critical values can
be obtained by finding the table of right-sided normal distribution, which are Zα = 1.65, 1.96 and
2.33, respectively. The null hypothesis is that different Zα values have no significant effect on the
mean values of the R2 values. If the calculated p-value is greater than the prespecified significant level
0.05, we accept the null hypothesis and conclude that the tested factors have no significant effects on
the average R2 values. Table 4 shows the F-ratio and the p-value of the one-way ANOVA results for
SM4, SM5.

Seen from Table 4, the lowest p-value is equal to 0.11, which is still greater than 0.05; therefore, we
conclude that the predefined confidence level of processing time’s disturbance has no significant effect
on the performance of SMs at the significance level of 0.05. Hence, the presented SMs provide more
choices to the decision makers when different risk averse levels are required.
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Table 4. One-way ANOVA results concerning three confidence levels.

Factor
FT06

SM4 SM5

F-Ratio p-Value F-Ratio p-Value

Zα value 2.34 0.12 2.38 0.11

FT10

SM4 SM5

F-Ratio p-Value F-Ratio p-Value

Zα value 0.56 0.57 0.71 0.49

FT20

SM4 SM5

F-Ratio p-Value F-Ratio p-Value

Zα value 1.59 0.22 1.72 0.19

5.3.2. The Performance Analysis of the SMs

In this section, the performance of the suggested SMs for the robustness optimization is analyzed.
As the comparison experiments, the simulation-based robustness values obtained by optimizing the
makespan and RMsim are adopted. Optimizing makespan would obtain the schedule with the best
makespan without considering robustness, while optimizing the RMsim would get the best robustness
without taking the makespan into consideration. The weight η in the Equation (3) is set to zero when
MK is optimized; η is set to one when SMs or RMsim is optimized.

The critical value of the disturbances is set as Zα = 1.96 with the confidence level of 0.975.
The optimization of the measure MK is used to demonstrate the effectiveness of the SMs by comparing
the robustness values between using and not using the SMs. The robustness values obtained by SM4,
SM5, as well as MK would be transformed into SMsim by using Equation (1), in which the robustness
obtained by directly optimizing MK is denoted by RMmk. The average and the standard deviation
(Std.) of robustness as well as the associated predictive makespan (with 20 simulation replications)
that obtained by optimizing SM4, SM5, RMsim and MK are reported in Tables 5 and 6, respectively.
Since we mainly focus on the effectiveness of SMs for robustness estimation, the data of the makespan
are obtained by decoding the schedule solution using the expected processing times, which is used to
show the trend of the makespan when optimizing the robustness by using SMs.

Table 5. The average and standard deviation (Std.) of robustness for the comparison measures.

Benchmarks UL

The Comparison Measures

SM4 SM5 RMsim RMmk

Average Std. Average Std. Average Std. Average Std.

FT06
Size: 6 × 6

UL2 0.06 0.02 0.90 0.77 0.30 0.73 5.64 0.64
UL4 0.21 0.37 3.66 0.74 0.35 1.59 7.49 0.35
UL6 7.37 1.08 5.01 0.52 2.18 0.64 12.06 0.47
UL8 8.55 1.02 11.61 0.47 8.63 0.96 15.24 0.49
UL10 15.06 0.95 14.57 0.53 13.15 0.62 17.52 0.26

FT10
Size: 10 × 10

UL2 0.00 0.00 0.00 0.00 0.00 0.00 18.40 6.23
UL4 6.50 3.11 7.80 7.42 1.50 2.83 46.68 9.73
UL6 31.24 8.16 28.51 3.84 17.60 2.45 81.26 8.41
UL8 66.54 5.72 57.13 7.22 54.06 5.82 88.32 5.05
UL10 103.23 5.84 98.89 4.37 93.14 4.81 108.61 4.95
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Table 5. Cont.

Benchmarks UL

The Comparison Measures

SM4 SM5 RMsim RMmk

Average Std. Average Std. Average Std. Average Std.

FT20
Size: 20 × 5

UL2 0.00 0.00 0.00 0.01 0.01 0.03 45.03 5.91
UL4 0.64 1.18 0.41 0.78 0.00 0.01 79.68 7.68
UL6 43.46 7.04 24.65 7.62 14.80 2.64 80.19 6.44
UL8 83.93 6.12 66.37 6.96 51.84 8.04 121.03 4.33
UL10 126.85 4.31 126.02 2.75 119.65 4.11 132.93 3.90

LA06
Size: 15 × 5

UL2 0.00 0.00 0.00 0.00 0.00 0.00 21.98 0.74
UL4 0.20 0.66 0.20 0.53 0.00 0.00 27.12 1.62
UL6 8.52 3.06 4.16 3.18 3.45 1.29 33.69 1.67
UL8 31.18 2.60 21.78 5.84 14.14 1.53 40.56 2.79
UL10 45.52 2.37 47.23 3.99 43.60 1.84 60.32 2.87

LA16
Size: 10 × 10

UL2 0.01 0.03 0.08 0.24 0.01 3.27 26.05 0.01
UL4 5.38 2.53 5.15 0.47 5.25 6.13 24.79 1.69
UL6 17.73 2.12 20.22 6.28 8.90 4.27 37.59 2.79
UL8 35.07 3.28 37.78 3.96 30.68 4.17 51.36 1.52
UL10 64.63 2.09 61.87 1.88 60.90 2.96 68.72 1.79

LA21
Size: 15 × 10

UL2 0.01 0.04 0.01 0.02 0.00 0.00 32.04 5.95
UL4 2.88 2.67 1.32 2.59 1.69 1.61 31.87 5.91
UL6 19.55 5.06 21.73 5.31 16.30 1.81 49.93 5.28
UL8 53.97 5.38 48.16 6.78 46.89 4.80 74.43 6.30
UL10 87.30 3.94 84.01 4.98 77.43 3.63 90.91 3.12

LA26
Size: 20 × 10

UL2 0.01 0.02 0.00 0.00 0.00 0.00 21.74 5.41
UL4 4.16 2.43 4.88 4.10 1.06 1.35 39.72 4.85
UL6 32.79 4.69 28.30 7.52 21.00 3.96 64.40 6.76
UL8 55.19 7.59 54.45 6.75 54.94 6.08 76.40 7.01
UL10 90.84 4.54 91.55 6.33 86.54 2.59 99.17 5.72

LA32
Size: 30 × 10

UL2 0.01 0.02 0.09 0.36 0.00 0.01 30.06 10.58
UL4 24.04 4.12 21.79 6.76 16.32 3.46 58.65 8.85
UL6 41.91 4.95 34.77 5.97 32.15 6.69 77.71 12.18
UL8 92.83 7.36 89.33 9.83 87.96 8.98 111.93 10.89
UL10 134.16 4.74 130.21 7.59 120.98 5.63 144.34 8.99

Table 6. The average and Std. of the makespan for the comparison measures.

Benchmarks UL

The Comparison Measures

SM4 SM5 RMsim MK

Average Std. Average Std. Average Std. Average Std.

FT06
Size: 6 × 6

UL2 89.5 7.9 80.1 5.3 96.0 11.6 55.0 0.0
UL4 95.4 12.3 78.1 7.8 75.1 5.7 55.0 0.0
UL6 78.5 7.9 77.6 4.7 84.8 8.6 55.0 0.0
UL8 72.1 3.9 70.6 5.6 69.6 2.2 55.0 0.0
UL10 71.3 4.2 65.7 1.9 64.7 2.7 55.0 0.0

FT10
Size: 10 × 10

UL2 1853.9 142.3 1949.2 170.2 2084.9 110.2 1008.8 17.9
UL4 1644.3 142.9 1799.2 147.2 1859.0 88.9 1015.7 26.6
UL6 1523.7 72.5 1477.6 47.5 1674.2 77.4 1019.9 26.4
UL8 1429.6 49.5 1457.5 68.1 1410.9 77.3 1003.3 32.0
UL10 1315.1 60.0 1177.8 34.0 1167.6 50.4 1028.4 44.2

FT20
Size: 20 × 5

UL2 2095.5 160.1 2009.8 130.5 2098.9 201.2 1266.9 26.1
UL4 1800.3 108.3 1953.7 77.4 1990.9 129.9 1257.8 23.5
UL6 1802.1 89.9 1590.1 38.6 1628.2 58.7 1247.5 25.6
UL8 1635.9 50.8 1552.5 47.4 1623.4 41.8 1272.9 23.0
UL10 1461.9 29.1 1383.3 20.8 1418.7 36.2 1251.7 16.5
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Table 6. Cont.

Benchmarks UL

The Comparison Measures

SM4 SM5 RMsim MK

Average Std. Average Std. Average Std. Average Std.

LA06
Size: 10 × 5

UL2 1451.9 168.1 1543.4 101.7 1608.3 156.6 926.0 0.0
UL4 1388.9 90.3 1285.0 78.5 1365.6 103.0 926.0 0.0
UL6 1131.9 67.3 1214.0 76.1 1183.0 55.5 926.0 0.0
UL8 1070.9 57.2 1156.3 76.1 1083.6 51.0 926.0 0.0
UL10 1017.4 33.8 991.1 37.5 989.4 13.8 926.0 0.0

LA16
Size: 10 × 10

UL2 1703.7 138.3 1653.9 144.3 1674.1 8.0 998.0 150.4
UL4 1533.9 117.1 1498.8 76.7 1494.5 16.1 978.0 68.9
UL6 1347.5 98.5 1318.9 69.1 1377.6 20.5 1014.0 96.8
UL8 1209.7 54.1 1208.0 47.3 1245.4 16.3 1001.0 98.0
UL10 1157.2 38.2 1094.9 35.1 1055.3 17.5 987.0 36.3

LA21
Size: 15 × 10

UL2 2149.2 159.0 2322.1 186.1 2232.3 145.5 1188.0 26.0
UL4 1908.6 132.1 1933.0 118.6 1976.7 130.6 1168.0 28.9
UL6 1788.0 119.1 1646.9 96.8 1824.0 71.5 1180.0 28.9
UL8 1547.6 82.6 1610.1 71.6 1529.5 79.9 1230.0 27.5
UL10 1425.2 65.9 1426.7 70.3 1367.5 44.0 1126.0 29.3

LA26
Size: 20 × 10

UL2 2584.8 280.9 2497.9 152.6 2651.4 203.3 1412.1 48.8
UL4 2328.3 207.1 2315.6 179.5 2373.7 171.7 1415.3 33.8
UL6 2168.6 108.9 2178.7 124.5 2119.6 98.2 1398.1 35.7
UL8 1995.5 64.9 1929.7 62.7 1951.1 131.3 1404.3 29.6
UL10 1804.4 70.9 1765.2 87.6 1658.8 66.6 1423.7 38.2

LA32
Size: 30 × 10

UL2 3528.4 219.2 3546.9 266.7 3664.8 264.2 2166.4 60.6
UL4 3310.9 259.8 3174.6 184.2 3282 189.3 2158.3 59.0
UL6 3136.6 185.6 3027.8 154.8 3090 164.6 2159.7 54.6
UL8 2897.4 166.7 2913.8 130.9 2774 140.6 2139.4 41.4
UL10 2708 117.07 2560.5 108.7 2467 121.2 2128.8 51.8

Seen from Table 5, the average of robustness and Std. are almost equal to zero under the lower
ULs for all of the benchmarks. The reason is that all of the disruptions can be easily absorbed by
assigning the slacks to possible uncertain operations appropriately. Moreover, by comparing the
performance between SMs and RMsim, it is evident that the performance of SMs is nearly the same as
RMsim under the lower ULs. Meanwhile, the SMs can still improve the robustness of SJSSP efficiently
even under the highest UL. As for the Std., the values obtained under different ULs have no noticeable
trend except that the Std. of SMs and RMsim are smaller than that obtained by optimizing MK under
the lower UL. The variation of the standard deviation is caused by either the randomly-generated
uncertain operations in each run of HEDA or by the different optimal solutions of HEDA.

The associated makespan obtained by optimizing the robustness measure would certainly be
worse than the makespan by optimizing makespan directly, which can be clearly found in Table 6.
However, after the effectiveness of SMs for robustness estimation has been verified, the robust
predictive schedule with satisfactory makespan can be easily obtained by optimizing the SMs and the
predictive makespan simultaneously with a tremendously lower computational burden. Seen from
Table 6, we also find that the average makespan has the trend of decreasing with the increasing of the
UL. To show the trend of the SMsim and the associated makespan when the ULs increases, the average
of the SMsim and the makespan of two typical benchmarks (FT10 and LA21) are selected and shown
in Figures 6 and 7, as the results of other benchmarks show a similar trend.

From Figures 6 and 7, the robustness obtained by only optimizing makespan shows the worst
performance, while the robustness obtained by RMsim shows the best in all comparison measures.
For all of the benchmarks, the robustness value is increased with the higher ULs. The increasing of
the robustness value lies in that the higher the UL, the more serious the disruptions caused by the
uncertainties. The performance of each SM will be further analyzed later. Before the analysis, the trend
of MK will be discussed.
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Figure 6. The average value of robustness and MK for FT10 under different ULs.
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Figure 7. The average value of robustness and MK for LA21 under different ULs.

Seen from the right-side of Figures 6 and 7, we found that as the UL increases, the average
makespan values of SMs and RMsim have decreased. The reason lies in that more uncertain operations
lead to the increase of the total potential disturbances in the schedule. Consequently, the disturbances
on the critical path would also be increased. The robustness degradation on the critical path will
decrease when minimizing the SMs; therefore, the makespan would be decreased under higher
ULs. The trade-off interval of makespan can be obtained by directly optimizing makespan and the
makespan obtained by optimizing robustness measures. Meanwhile, the trade-off range of robustness
is determined by the robustness values that are obtained by only optimizing makespan or RMsim
under the corresponding ULs.

From Figures 6 and 7, we also find that the trade-off range of robustness and makespan is
becoming smaller with the increase of the uncertainty level. It is known that the disturbance of
stochastic processing time for non-critical operations can be partially absorbed by its slack time, but
not for critical operations. Therefore, the greater the number of uncertain operations being non-critical
operations is, the better the robustness will be. However, with the increase of the UL, there will be
more random operations, and it will require more slack time for the non-critical operations to absorb
the disturbance. It is natural that a schedule with a larger makespan may have more slack time for
the non-critical operations. However, especially for the high UL, it is inevitable that there will be
more critical operations with stochastic processing time, the operations of which will directly reduce
the robustness. Therefore, the efficiency of robustness improvement by increasing the makespan
will reduce with the increase of UL. This is why there is no significant improvement in robustness
when the UL is 10. The trend of the figures demonstrates that when the total disturbance exceeds the
total disturbance absorption capability of the predictive schedule, the robustness improvement by
sacrificing the makespan is not cost effective.
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Back to Table 5, the average robustness values obtained by SMs (SM4, SM5) and RMsim are
approximately equal to zero under the lower ULs, which leads to the inappropriate performance
comparison based on the absolute difference. To tackle this problem, we use the relative performance
to conduct the performance comparison. RMsim represents the lower bound of robustness.
The robustness obtained by optimizing only the makespan is the upper bound of robustness. From
Figures 6 and 7, it is obvious that nearly all of the SMsim values are falling into the interval of [RMsim,
RMmk] under all ULs. Therefore, the effectiveness of SMs can be verified by comparing the robustness
improvement with RMmk. The formula that calculates the percentage of robustness improvement
(Imp%) compared with RMmk is shown in Equation (29):

Imp% = (1− SMsim− RMsim
RMmk− RMsim

)100% (29)

To avoid the negative values, the value of SMsim subtracting RMsim is set at zero when SMsim are
slightly smaller than RMsim. Hence, the performance of SMs is evaluated by the relative improvement
in the robustness comparison with RMmk. The percentage improvement for the presented SMs under
five ULs are shown in Table 7 along with the average values.

Table 7. The percentage improvement (Imp%) of robustness.

Benchmarks Measures
Uncertainty Levels

UL2 UL4 UL6 UL8 UL10 Average

FT06 SM4 100.00 100.00 47.51 100.00 56.19 80.74
Size: 6 × 6 SM5 88.63 83.70 71.35 54.92 67.52 73.22

FT10 SM4 100.00 88.95 78.58 47.09 34.75 69.87
Size: 10 × 10 SM5 100.00 86.07 82.86 67.42 62.83 79.84

FT20 SM4 100.00 99.20 54.05 53.62 45.75 70.52
Size: 20 × 5 SM5 100.00 99.49 84.93 78.99 52.01 83.08

LA06 SM4 100.00 99.28 83.23 35.48 88.53 81.30
Size: 15 × 5 SM5 100.00 99.28 97.66 71.08 78.30 89.27

LA16 SM4 99.99 99.36 69.23 78.79 52.29 79.93
Size: 10 × 10 SM5 99.74 100.00 60.56 65.66 87.55 82.70

LA21 SM4 99.96 96.07 90.33 74.29 26.73 77.48
Size: 15 × 10 SM5 99.97 100.00 83.85 95.39 51.14 86.07

LA26 SM4 99.97 91.99 72.84 98.81 65.92 85.90
Size: 20 × 10 SM5 100.00 90.12 83.18 100.00 60.31 86.72

LA32 SM4 99.97 81.77 78.57 79.68 43.56 76.71
Size: 30 × 10 SM5 99.69 87.09 94.25 94.29 60.46 87.16

As shown in Table 7, under the lower ULs, such as UL2, most of the percentage of improvement is
approximately equal to 100%, which means SMs have nearly the same performance on the robustness
optimization of SJSSP. With the increased UL, some average Imp% of the SMs decrease, which means
that the performance of SMs is slightly worse than the best robustness obtained by RMsim. Under UL8
and UL10, which denote more severe uncertainty environment, the average Imp% shows a slightly
lower improvement value. This is because when nearly all of the operations are uncertain, there
will be more critical operations and potential critical operations to make the estimation of robustness
more complicated. When we analyze the performance from an overall perspective, the average Imp%
under five ULs for each SM can be adopted to compare the performance of SM4, SM5. The Imp% of
SM5 ranges from 73.22% to 89.27%. The improvement of SM4 ranges 69.87% to 85.90%, which is an
apparent improvement on robustness. In addition, when comparing the performance of SM4 and SM5,
we found that SM5 shows greater values of average robustness improvement in seven of the eight
benchmarks, which are bolded in Table 7.
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From the above analysis, the proposed SMs are valid for the robust scheduling of SJSSP with
a satisfactory robustness improvement. Moreover, the primary reason for the decision makers to
choose the SMs for robustness optimization lies in the computational efficiency. To investigate the
computational efficiency of SMs, we report the average computational times (CT) of SMs and RMsim
in Table 8. Furthermore, the decreasing percentage of computational time (PT) consumed by SMs
compared with that consumed by RMsim is calculated by Equation (30) for easier comparison:

PT = 100 × (
CT of RMsim − CT of SMs

CT of RMsim
)% (30)

Table 8. Average Computational times (CT) (in seconds) and the decreasing percentage of
computational time (PT) (%) under five ULs for each measure.

Benchmarks

Type of Measures

SM4 SM5 RMsim

CT (Seconds) PT CT (Seconds) PT CT (Seconds)

FT06 20.67 96.02 19.88 94.83 384.87
FT10 39.41 95.15 38.82 93.43 590.63
FT20 40.97 93.58 40.90 92.59 551.92
LA06 46.31 90.05 48.22 90.47 506.00
LA16 38.45 92.43 40.64 93.27 604.20
LA21 53.63 92.04 70.69 90.00 706.97
LA26 89.79 88.91 93.55 88.73 829.66
LA32 233.41 90.24 238.58 90.04 2397.34

According to the results in Table 8, the computational efficiency of SMs is apparently superior to
RMsim, which is reduced by 88.73%~96.02% when compared with the computational time consumed
by RMsim. Therefore, it can be concluded that the suggested SMs can obtain apparent robustness
improvement for the robustness scheduling of SJSSP while the computational time is tremendously
lower than that of RMsim.

6. Conclusions

This paper presented two new SMs for robust scheduling of SJSSP with the aim of decreasing the
computational burden. To develop effective SMs, a statistical estimation approach is provided, which
converts the disturbances of stochastic processing time into an estimated value under a prespecified
confidence level. The disturbance absorption capability of the schedule was analyzed. Furthermore, the
stochastic processing time’s probability distribution along with the disturbance absorption capability
of the predictive schedule was integrated for estimating the robustness of SJSSP. By analyzing the
existing SMs and the characteristics of SJSSP, two SMs were suggested to be used as the estimator
of RMsim.

The effectiveness and the performance of SMs were verified by two experiments. The first
one studied the correlation between the SMs and the corresponding SMsim, which was used to
explore the reason why the SMs can be used for robust scheduling of SJSSP. It was found that the
correlation of the proposed SMs is apparently higher than that of the existing SMs. In the second
experiment, a one-way ANOVA was conducted under different critical values that were determined
by the prespecified confidence level. The results showed that the confidence level has no significant
effect on the performance of SMs. Secondly, the performance of SMs for robustness optimization
was compared against the robustness value obtained by optimizing MK and RMsim. According to
the results, it was found that the robustness can be effectively improved by using the presented SMs.
Moreover, the computational efficiency of SMs was validated by comparing the computational time
with that of the RMsim under the same simulation environment. Therefore, we concluded that the
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proposed SMs could effectively optimize the robustness of SJSSP with a lower computational burden,
which decreased at least 88.73%. By using the suggested SMs for SJSSP, the identified predictive
schedule is not only capable of absorbing the potential disturbances but also provides the decision
makers with acceptable computational time.

As future work, the proposed SMs will be further explored for SJSSP under different types
of probability distributions of stochastic processing times, such as lognormal, exponential, and
uniform. Another direction is to develop a multi-objective optimization approach that can provide a
multi-objective solution for the decision makers with different robustness and efficiency preference by
using the suggested SMs. Meanwhile, the parameters tuning should also be studied to improve the
performance of the HEDA for the robust scheduling of SJSSP by using the presented SMs.
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Notations

S A feasible schedule solution
Ω The whole feasible solution space
n The total number of jobs
m The total number of machines
Ji Job i, i = 1, 2, ..., n
Mj Machine j, j = 1, 2, ..., m
Oij The operation of job Ji processed on machine Mj
ξTij The stochastic processing time of job Ji on machine Mj
µij The expected processing time of operation Oij
σ2

ij The variance of operation Oij

M0 A positive number that is large enough;
aijk Job Ji must be processed on machine Mj then on Mk, if it is satisfied, aijk = 1, otherwise, aijk = 0
xihj Job Jh must be processed after Ji on machine Mj, if it is satisfied, xihj = 1, otherwise, xihj = 0
ξCij The possible realized completion time of job Ji on machine Mj under the disturbances
Ce

max The maximize completion time of the predictive schedule using expected processing times
RM. The robustness measure to evaluate the robustness of the schedule
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